Ky 0 Kx u, v / 1, u cos v, u sin v n = u 0 0. cfac = Ku cos v 0 K1. r := t/ 1, R cos t, R sin t. K8 cos t sin t 2 C 4 cos t sin t dt = 0

Size: px
Start display at page:

Download "Ky 0 Kx u, v / 1, u cos v, u sin v n = u 0 0. cfac = Ku cos v 0 K1. r := t/ 1, R cos t, R sin t. K8 cos t sin t 2 C 4 cos t sin t dt = 0"

Transcription

1 > restart: with(linalg): with(plots): > #Stokes Theorem Example R:=2: #define vector field F, find curl of F, and parametrize surface (a disc) F:=(x,y,z)->[x*y,y*z,z]; cf:=curl(f(x,y,z),[x,y,z]); r:=(u,v)->[1,u*cos(v),u*sin(v)]; plot1:=plot3d(r(u,v),u=..r,v=..2*pi,axes=boxed): plot2:=fieldplot3d(f(x,y,z),x=-2..2,y=-2..2,z=-2..2,arrows=slim, fieldstrength=fixed,grid=[1,1,1],color=black): plot3:=fieldplot3d(cf,x=-2..2,y=-2..2,z=-2..2,arrows=slim, fieldstrength=fixed,grid=[1,1,1],color=black): #find normal to surface and compute curl of F along surface for flux integral of the curl of F n:=(u,v)->simplify(crossprod(diff(r(u,v),u),diff(r(u,v),v))): n=n(u,v); cfac:=(u,v)->subs(x=r(u,v)[1],y=r(u,v)[2],z=r(u,v)[3],evalm(cf)): cfac=cfac(u,v); #set up the flux integral Int(Int(dotprod(cFAC(u,v),n(u,v),orthogonal),u=..R),v=..2*Pi)=int (int(dotprod(cfac(u,v),n(u,v),orthogonal),u=..r),v=..2*pi); #parametrize boundary curve and set up line integral (or work integral) of vector field along boundary r:=t->[1,r*cos(t),r*sin(t)]; plot4:=spacecurve(r(t),t=..2*pi,color=red,thickness=3,axes=boxed): Int(dotprod(F(r(t)[1],r(t)[2],r(t)[3]),diff(r(t),t),orthogonal),t=..2*Pi)=int(dotprod(F(r(t)[1],r(t)[2],r(t)[3]),diff(r(t),t), orthogonal),t=..2*pi); P:=array(1..2): P[1]:=display({plot1,plot3}): P[2]:=display({plot2,plot4}): display(p); F := x, y, z / x y, y z, z r := cf := Ky Kx u, v / 1, u cos v, u sin v n = u cfac = Ku cos v K1 2 Ku 2 cos v du dv = r := t/ 1, R cos t, R sin t K8 cos t sin t 2 C 4 cos t sin t dt =

2

3 > with(plots): with(linalg): Three given surfaces (and their normals) with the same boundary curve x^2+y^2=r^2 > R:=4: #define 3 surfaces surf1:=(x,y)->[x,y,x+y]; n_surf1:=crossprod(diff(surf1(x,y),x),diff(surf1(x,y),y)); surf2:=(u,v)->[r*cos(u)*cos(v),r*sin(u)*cos(v),r*sin(v)]; n_surf2:=simplify(crossprod(diff(surf2(u,v),u),diff(surf2(u,v),v) )); surf3:=(x,y)->[x,y,1/2*(x^2+y^2)]; n_surf3:=crossprod(diff(surf3(x,y),x),diff(surf3(x,y),y)); # plot surfaces plot1:=plot3d(surf1(x,y),x=-r..r,y=-sqrt(r^2-x^2)..sqrt(r^2-x^2), color=red,scaling=constrained): plot2:=plot3d(surf2(u,v),u=..2*pi,v=..pi,color=green): plot3:=plot3d(surf3(x,y),x=-r..r,y=-sqrt(r^2-x^2)..sqrt(r^2-x^2), color=blue,axes=frame): #define boundary curves b1:=t->[r*cos(t),r*sin(t),r*cos(t)+r*sin(t)]; b2:=t->[r*cos(t),r*sin(t),]; b3:=t->[r*cos(t),r*sin(t),8]; #plot boundary curves b1plot:=spacecurve(b1(t),t=..2*pi,color=red,thickness=5, linestyle=2): b2plot:=spacecurve(b2(t),t=..2*pi,color=green,thickness=5, linestyle=2): b3plot:=spacecurve(b3(t),t=..2*pi,color=blue,thickness=5, linestyle=2): B:=array(1..2): B[2]:=display({b1plot,b2plot,b3plot}): B[1]:=display({plot2,plot1,plot3}): display(b); surf1 := x, y / x, y, x C y surf2 := n_surf1 := K1 K1 1 u, v / R cos u cos v, R sin u cos v, R sin v n_surf2 := 16 cos u cos v 2 16 sin u cos v 2 16 cos v sin v surf3 := x, y / x, y, n_surf3 := Kx Ky x2 C 1 2 y2 b1 := t/ R cos t, R sin t, R cos t C R sin t b2 := t/ R cos t, R sin t, b3 := t/ R cos t, R sin t, 8

4 A given vector field F and curl(f) > F:=(x,y,z)->[-y,x,2]; curlf:=curl(f(x,y,z),[x,y,z]); N:=4: Fplot:=fieldplot3d(F(x,y,z),x=-R..R,y=-R..R,z=-R..2*R,arrows= SLIM,color=gray,grid=[N,N,N],axes=boxed): curlfplot:=fieldplot3d(curlf,x=-r..r,y=-r..r,z=-r..2*r,arrows= SLIM,color=black,grid=[N,N,N],axes=boxed): display({fplot,curlfplot}); F := x, y, z / Ky, x, 2 curlf := 2

5 Stokes Thm: S 7# F, ds = bdd S F, dr Plots > A:=array(1..2): A[1]:=display({plot2,plot1,plot3,curlFplot}): A[2]:=display({b1plot,b2plot,b3plot,Fplot}): plots[display](a);

6 LHS > curlfalongsurface1:=evalm(subs(surf1(x,y)[1]=x,surf1(x,y)[2]= y,surf1(x,y)[3]=z,curlf)); ans1:=int(int(dotprod(curlfalongsurface1,n_surf1,orthogonal), y=-sqrt(r^2-x^2)..sqrt(r^2-x^2)),x=-r..r); evalf(ans1); curlfalongsurface2:=evalm(subs(surf2(u,v)[1]=x,surf2(u,v)[2]= y,surf2(u,v)[3]=z,curlf)); ans2:=int(int(dotprod(curlfalongsurface2,n_surf2,orthogonal), u=..2*pi),v=..pi/2); evalf(ans2); curlfalongsurface3:=evalm(subs(surf3(x,y)[1]=x,surf4(x,y)[2]= y,surf3(x,y)[3]=z,curlf)); ans3:=int(int(dotprod(curlfalongsurface3,n_surf3,orthogonal), y=-sqrt(r^2-x^2)..sqrt(r^2-x^2)),x=-r..r); evalf(ans3); curlfalongsurface1 := 2

7 ans1 := 4 K4 16 K x 2 2 dy dx K 16 K x curlfalongsurface2 := 2 ans2 := 1 32 cos v sin v du dv curlfalongsurface3 := 2 ans3 := 4 K4 K 16 K x 2 16 K x 2 2 dy dx (3.2.1) RHS > v1:=diff(b1(t),t); F1alongb1:=F(b1(t)[1],b1(t)[2],b1(t)[3]); Int(simplify(dotprod(F1alongb1,v1,orthogonal)),t=..2*Pi)=int (simplify(dotprod(f1alongb1,v1,orthogonal)),t=..2*pi); v2:=diff(b2(t),t); F2alongb2:=F(b2(t)[1],b2(t)[2],b2(t)[3]); Int(simplify(dotprod(F2alongb2,v2,orthogonal)),t=..2*Pi)=int (simplify(dotprod(f2alongb2,v2,orthogonal)),t=..2*pi); v3:=diff(b3(t),t); F3alongb3:=F(b3(t)[1],b3(t)[2],b3(t)[3]); Int(simplify(dotprod(F3alongb3,v3,orthogonal)),t=..2*Pi)=int (simplify(dotprod(f3alongb3,v3,orthogonal)),t=..2*pi); 32*Pi=evalf(32*Pi); v1 := K4 sin t, 4 cos t, K4 sin t C 4 cos t F1alongb1 := K4 sin t, 4 cos t, 2 16 K 8 sin t C 8 cos t dt = 3 v2 := K4 sin t, 4 cos t, F2alongb2 := K4 sin t, 4 cos t, 2 16 dt = 3 v3 := K4 sin t, 4 cos t, F3alongb3 := K4 sin t, 4 cos t, 2

8 16 dt = 3 3 = HM--- (1) Redo the above problems where all of the surfaces (surf1, surf2, surf3) are now defined above the circle x^2+y^2=1 (2) Book Problems---see website (3.3.1)

MAC2313 Final A. a. The vector r u r v lies in the tangent plane of S at a given point. b. S f(x, y, z) ds = R f(r(u, v)) r u r v du dv.

MAC2313 Final A. a. The vector r u r v lies in the tangent plane of S at a given point. b. S f(x, y, z) ds = R f(r(u, v)) r u r v du dv. MAC2313 Final A (5 pts) 1. Let f(x, y, z) be a function continuous in R 3 and let S be a surface parameterized by r(u, v) with the domain of the parameterization given by R; how many of the following are

More information

F dr = f dx + g dy + h dz. Using that dz = q x dx + q y dy we get. (g + hq y ) x (f + hq x ) y da.

F dr = f dx + g dy + h dz. Using that dz = q x dx + q y dy we get. (g + hq y ) x (f + hq x ) y da. Math 55 - Vector alculus II Notes 14.7 tokes Theorem tokes Theorem is the three-dimensional version of the circulation form of Green s Theorem. Let s quickly recall that theorem: Green s Theorem: Let be

More information

Math 251 Quiz 5 Fall b. Calculate. 2. Sketch the region. Write as one double integral by interchanging the order of integration: 2

Math 251 Quiz 5 Fall b. Calculate. 2. Sketch the region. Write as one double integral by interchanging the order of integration: 2 Math 251 Quiz 5 Fall 2002 1. a. Calculate 5 1 0 1 x dx dy b. Calculate 1 5 1 0 xdxdy 2. Sketch the region. Write as one double integral by interchanging the order of integration: 0 2 dx 2 x dy f(x,y) +

More information

8/5/2010 FINAL EXAM PRACTICE IV Maths 21a, O. Knill, Summer 2010

8/5/2010 FINAL EXAM PRACTICE IV Maths 21a, O. Knill, Summer 2010 8/5/21 FINAL EXAM PRACTICE IV Maths 21a, O. Knill, Summer 21 Name: Start by printing your name in the above box. Try to answer each question on the same page as the question is asked. If needed, use the

More information

MATH 2400: CALCULUS 3 MAY 9, 2007 FINAL EXAM

MATH 2400: CALCULUS 3 MAY 9, 2007 FINAL EXAM MATH 4: CALCULUS 3 MAY 9, 7 FINAL EXAM I have neither given nor received aid on this exam. Name: 1 E. Kim................ (9am) E. Angel.............(1am) 3 I. Mishev............ (11am) 4 M. Daniel...........

More information

Determine whether or not F is a conservative vector field. If it is, find a function f such that F = enter NONE.

Determine whether or not F is a conservative vector field. If it is, find a function f such that F = enter NONE. Ch17 Practice Test Sketch the vector field F. F(x, y) = (x - y)i + xj Evaluate the line integral, where C is the given curve. C xy 4 ds. C is the right half of the circle x 2 + y 2 = 4 oriented counterclockwise.

More information

Chapter 15 Vector Calculus

Chapter 15 Vector Calculus Chapter 15 Vector Calculus 151 Vector Fields 152 Line Integrals 153 Fundamental Theorem and Independence of Path 153 Conservative Fields and Potential Functions 154 Green s Theorem 155 urface Integrals

More information

Math 2374 Spring 2007 Midterm 3 Solutions - Page 1 of 6 April 25, 2007

Math 2374 Spring 2007 Midterm 3 Solutions - Page 1 of 6 April 25, 2007 Math 374 Spring 7 Midterm 3 Solutions - Page of 6 April 5, 7. (3 points) Consider the surface parametrized by (x, y, z) Φ(x, y) (x, y,4 (x +y )) between the planes z and z 3. (i) (5 points) Set up the

More information

Math 52 Final Exam March 16, 2009

Math 52 Final Exam March 16, 2009 Math 52 Final Exam March 16, 2009 Name : Section Leader: Josh Lan Xiannan (Circle one) Genauer Huang Li Section Time: 10:00 11:00 1:15 2:15 (Circle one) This is a closed-book, closed-notes exam. No calculators

More information

Lecture 15. Lecturer: Prof. Sergei Fedotov Calculus and Vectors. Length of a Curve and Parametric Equations

Lecture 15. Lecturer: Prof. Sergei Fedotov Calculus and Vectors. Length of a Curve and Parametric Equations Lecture 15 Lecturer: Prof. Sergei Fedotov 10131 - Calculus and Vectors Length of a Curve and Parametric Equations Sergei Fedotov (University of Manchester) MATH10131 2011 1 / 5 Lecture 15 1 Length of a

More information

Math Exam III Review

Math Exam III Review Math 213 - Exam III Review Peter A. Perry University of Kentucky April 10, 2019 Homework Exam III is tonight at 5 PM Exam III will cover 15.1 15.3, 15.6 15.9, 16.1 16.2, and identifying conservative vector

More information

Daily WeBWorK, #1. This means the two planes normal vectors must be multiples of each other.

Daily WeBWorK, #1. This means the two planes normal vectors must be multiples of each other. Daily WeBWorK, #1 Consider the ellipsoid x 2 + 3y 2 + z 2 = 11. Find all the points where the tangent plane to this ellipsoid is parallel to the plane 2x + 3y + 2z = 0. In order for the plane tangent to

More information

1. Suppose that the equation F (x, y, z) = 0 implicitly defines each of the three variables x, y, and z as functions of the other two:

1. Suppose that the equation F (x, y, z) = 0 implicitly defines each of the three variables x, y, and z as functions of the other two: Final Solutions. Suppose that the equation F (x, y, z) implicitly defines each of the three variables x, y, and z as functions of the other two: z f(x, y), y g(x, z), x h(y, z). If F is differentiable

More information

University of California, Berkeley

University of California, Berkeley University of California, Berkeley FINAL EXAMINATION, Fall 2012 DURATION: 3 hours Department of Mathematics MATH 53 Multivariable Calculus Examiner: Sean Fitzpatrick Total: 100 points Family Name: Given

More information

MA FINAL EXAM Green April 30, 2018 EXAM POLICIES

MA FINAL EXAM Green April 30, 2018 EXAM POLICIES MA 6100 FINAL EXAM Green April 0, 018 NAME STUDENT ID # YOUR TA S NAME RECITATION TIME Be sure the paper you are looking at right now is GREEN! Write the following in the TEST/QUIZ NUMBER boxes (and blacken

More information

Topic 5.1: Line Elements and Scalar Line Integrals. Textbook: Section 16.2

Topic 5.1: Line Elements and Scalar Line Integrals. Textbook: Section 16.2 Topic 5.1: Line Elements and Scalar Line Integrals Textbook: Section 16.2 Warm-Up: Derivatives of Vector Functions Suppose r(t) = x(t) î + y(t) ĵ + z(t) ˆk parameterizes a curve C. The vector: is: r (t)

More information

MATH 116 REVIEW PROBLEMS for the FINAL EXAM

MATH 116 REVIEW PROBLEMS for the FINAL EXAM MATH 116 REVIEW PROBLEMS for the FINAL EXAM The following questions are taken from old final exams of various calculus courses taught in Bilkent University 1. onsider the line integral (2xy 2 z + y)dx

More information

Math 52 - Fall Final Exam PART 1

Math 52 - Fall Final Exam PART 1 Math 52 - Fall 2013 - Final Exam PART 1 Name: Student ID: Signature: Instructions: Print your name and student ID number and write your signature to indicate that you accept the Honor Code. This exam consists

More information

1.(6pts) Which integral computes the area of the quarter-disc of radius a centered at the origin in the first quadrant? rdr d

1.(6pts) Which integral computes the area of the quarter-disc of radius a centered at the origin in the first quadrant? rdr d .(6pts) Which integral computes the area of the quarter-disc of radius a centered at the origin in the first quadrant? (a) / Z a rdr d (b) / Z a rdr d (c) Z a dr d (d) / Z a dr d (e) / Z a a rdr d.(6pts)

More information

Name: Class: Date: 1. Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint.

Name: Class: Date: 1. Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint. . Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint. f (x, y) = x y, x + y = 8. Set up the triple integral of an arbitrary continuous function

More information

MA 174: Multivariable Calculus Final EXAM (practice) NO CALCULATORS, BOOKS, OR PAPERS ARE ALLOWED. Use the back of the test pages for scrap paper.

MA 174: Multivariable Calculus Final EXAM (practice) NO CALCULATORS, BOOKS, OR PAPERS ARE ALLOWED. Use the back of the test pages for scrap paper. MA 174: Multivariable alculus Final EXAM (practice) NAME lass Meeting Time: NO ALULATOR, BOOK, OR PAPER ARE ALLOWED. Use the back of the test pages for scrap paper. Points awarded 1. (5 pts). (5 pts).

More information

NATIONAL UNIVERSITY OF SINGAPORE MA MATHEMATICS 1. AY2013/2014 : Semester 2. Time allowed : 2 hours

NATIONAL UNIVERSITY OF SINGAPORE MA MATHEMATICS 1. AY2013/2014 : Semester 2. Time allowed : 2 hours Matriculation Number: NATIONAL UNIVERSITY OF SINGAPORE MA1505 - MATHEMATICS 1 AY2013/2014 : Semester 2 Time allowed : 2 hours INSTRUCTIONS TO CANDIDATES 1. Write your matriculation number neatly in the

More information

MATH 230 FALL 2004 FINAL EXAM DECEMBER 13, :20-2:10 PM

MATH 230 FALL 2004 FINAL EXAM DECEMBER 13, :20-2:10 PM Problem Score 1 2 Name: SID: Section: Instructor: 3 4 5 6 7 8 9 10 11 12 Total MATH 230 FALL 2004 FINAL EXAM DECEMBER 13, 2004 12:20-2:10 PM INSTRUCTIONS There are 12 problems on this exam for a total

More information

14 Vector Calculus Parametric Equations of Curves

14 Vector Calculus Parametric Equations of Curves 8 14 Vector Calculus 14.1 Parametric Equations of Curves In this section we will see how Maple V can be used to plot interesting curves using parametric representation. First of all consider the circle

More information

Solution of final examination

Solution of final examination of final examination Math 20, pring 201 December 9, 201 Problem 1 Let v(t) (2t e t ) i j + π cos(πt) k be the velocity of a particle with initial position r(0) ( 1, 0, 2). Find the accelaration at the

More information

Lesson 10. Transforming 3D Integrals

Lesson 10. Transforming 3D Integrals Lesson 10 Transforming D Integrals Example 1: Triple Integrals to Compute Volume ecall that in previous chapters we could find the length of an interval I by computing dx or the area of a region by computing

More information

Math 265 Exam 3 Solutions

Math 265 Exam 3 Solutions C Roettger, Fall 16 Math 265 Exam 3 Solutions Problem 1 Let D be the region inside the circle r 5 sin θ but outside the cardioid r 2 + sin θ. Find the area of D. Note that r and θ denote polar coordinates.

More information

Math 6A Practice Problems III

Math 6A Practice Problems III Math 6A Practice Problems III Written by Victoria Kala vtkala@math.ucsb.edu H 63u Office Hours: R 1:3 1:3pm Last updated 6//16 Answers 1. 3. 171 1 3. π. 5. a) 8π b) 8π 6. 7. 9 3π 3 1 etailed olutions 1.

More information

Parametric Surfaces. Substitution

Parametric Surfaces. Substitution Calculus Lia Vas Parametric Surfaces. Substitution Recall that a curve in space is given by parametric equations as a function of single parameter t x = x(t) y = y(t) z = z(t). A curve is a one-dimensional

More information

MATH 234. Excercises on Integration in Several Variables. I. Double Integrals

MATH 234. Excercises on Integration in Several Variables. I. Double Integrals MATH 234 Excercises on Integration in everal Variables I. Double Integrals Problem 1. D = {(x, y) : y x 1, 0 y 1}. Compute D ex3 da. Problem 2. Find the volume of the solid bounded above by the plane 3x

More information

This exam will be cumulative. Consult the review sheets for the midterms for reviews of Chapters

This exam will be cumulative. Consult the review sheets for the midterms for reviews of Chapters Final exam review Math 265 Fall 2007 This exam will be cumulative. onsult the review sheets for the midterms for reviews of hapters 12 15. 16.1. Vector Fields. A vector field on R 2 is a function F from

More information

There are 10 problems, with a total of 150 points possible. (a) Find the tangent plane to the surface S at the point ( 2, 1, 2).

There are 10 problems, with a total of 150 points possible. (a) Find the tangent plane to the surface S at the point ( 2, 1, 2). Instructions Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. Put your name on each page of your paper. You may use a scientific

More information

4. LINE AND PATH INTEGRALS

4. LINE AND PATH INTEGRALS Universidad arlos III de Madrid alculus II 4. LINE AN PATH INTEGRALS Marina elgado Téllez de epeda Parametrizations of important curves: ircumference: (x a) 2 + (y b) 2 = r 2 1 (t) = (a + cos t,b + sin

More information

Find the specific function values. Complete parts (a) through (d) below. f (x,y,z) = x y y 2 + z = (Simplify your answer.) ID: 14.1.

Find the specific function values. Complete parts (a) through (d) below. f (x,y,z) = x y y 2 + z = (Simplify your answer.) ID: 14.1. . Find the specific function values. Complete parts (a) through (d) below. f (x,y,z) = x y y 2 + z 2 (a) f(2, 4,5) = (b) f 2,, 3 9 = (c) f 0,,0 2 (d) f(4,4,00) = = ID: 4..3 2. Given the function f(x,y)

More information

18.02 Final Exam. y = 0

18.02 Final Exam. y = 0 No books, notes or calculators. 5 problems, 50 points. 8.0 Final Exam Useful formula: cos (θ) = ( + cos(θ)) Problem. (0 points) a) (5 pts.) Find the equation in the form Ax + By + z = D of the plane P

More information

Dr. Allen Back. Nov. 21, 2014

Dr. Allen Back. Nov. 21, 2014 Dr. Allen Back of Nov. 21, 2014 The most important thing you should know (e.g. for exams and homework) is how to setup (and perhaps compute if not too hard) surface integrals, triple integrals, etc. But

More information

Math 241 Spring 2015 Final Exam Solutions

Math 241 Spring 2015 Final Exam Solutions Math 4 Spring 5 Final Exam Solutions. Find the equation of the plane containing the line x y z+ and the point (,,). Write [ pts] your final answer in the form ax+by +cz d. Solution: A vector parallel to

More information

Total. Math 2130 Practice Final (Spring 2017) (1) (2) (3) (4) (5) (6) (7) (8)

Total. Math 2130 Practice Final (Spring 2017) (1) (2) (3) (4) (5) (6) (7) (8) Math 130 Practice Final (Spring 017) Before the exam: Do not write anything on this page. Do not open the exam. Turn off your cell phone. Make sure your books, notes, and electronics are not visible during

More information

Curves: We always parameterize a curve with a single variable, for example r(t) =

Curves: We always parameterize a curve with a single variable, for example r(t) = Final Exam Topics hapters 16 and 17 In a very broad sense, the two major topics of this exam will be line and surface integrals. Both of these have versions for scalar functions and vector fields, and

More information

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is 1. Let f(x, y) = 5 + 3x 2 + 3y 2 + 2y 3 + x 3. (a) Final all critical points of f. (b) Use the second derivatives test to classify the critical points you found in (a) as a local maximum, local minimum,

More information

Math Parametric Surfaces

Math Parametric Surfaces Math 13 - Parametric Surfaces Peter A. Perry University of Kentucky April 15, 019 Homework Homework D is due Wednesday Work on Stewart problems for 16.6: 1-5 odd, 33, 39-49 odd Read section 16.7 for Wednesday,

More information

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions Calculus III Math Spring 7 In-term exam April th. Suggested solutions This exam contains sixteen problems numbered through 6. Problems 5 are multiple choice problems, which each count 5% of your total

More information

PURE MATHEMATICS 212 Multivariable Calculus CONTENTS. Page. 1. Assignment Summary... i 2. Summary Assignments...2

PURE MATHEMATICS 212 Multivariable Calculus CONTENTS. Page. 1. Assignment Summary... i 2. Summary Assignments...2 PURE MATHEMATICS 212 Multivariable Calculus CONTENTS Page 1. Assignment Summary... i 2. Summary...1 3. Assignments...2 i PMTH212, Multivariable Calculus Assignment Summary 2010 Assignment Date to be Posted

More information

Math 241, Final Exam. 12/11/12.

Math 241, Final Exam. 12/11/12. Math, Final Exam. //. No notes, calculator, or text. There are points total. Partial credit may be given. ircle or otherwise clearly identify your final answer. Name:. (5 points): Equation of a line. Find

More information

Equation of tangent plane: for implicitly defined surfaces section 12.9

Equation of tangent plane: for implicitly defined surfaces section 12.9 Equation of tangent plane: for implicitly defined surfaces section 12.9 Some surfaces are defined implicitly, such as the sphere x 2 + y 2 + z 2 = 1. In general an implicitly defined surface has the equation

More information

(c) 0 (d) (a) 27 (b) (e) x 2 3x2

(c) 0 (d) (a) 27 (b) (e) x 2 3x2 1. Sarah the architect is designing a modern building. The base of the building is the region in the xy-plane bounded by x =, y =, and y = 3 x. The building itself has a height bounded between z = and

More information

MATH 2400, Analytic Geometry and Calculus 3

MATH 2400, Analytic Geometry and Calculus 3 MATH 2400, Analytic Geometry and Calculus 3 List of important Definitions and Theorems 1 Foundations Definition 1. By a function f one understands a mathematical object consisting of (i) a set X, called

More information

y ds y(θ, z) = 3 sin(θ) 0 z 4 Likewise the bottom of the cylinder will be a disc of radius 3 located at a fixed z = 0

y ds y(θ, z) = 3 sin(θ) 0 z 4 Likewise the bottom of the cylinder will be a disc of radius 3 located at a fixed z = 0 1. Let denote the closed cylinder with bottom given by z and top given by z 4 and the lateral surface given by x 2 + y 2 9. Orient with outward normals. Determine the urface Integral y d (a) Is this a

More information

Final Exam Review. Name: Class: Date: Short Answer

Final Exam Review. Name: Class: Date: Short Answer Name: Class: Date: ID: A Final Exam Review Short Answer 1. Find the distance between the sphere (x 1) + (y + 1) + z = 1 4 and the sphere (x 3) + (y + ) + (z + ) = 1. Find, a a + b, a b, a, and 3a + 4b

More information

f (Pijk ) V. may form the Riemann sum: . Definition. The triple integral of f over the rectangular box B is defined to f (x, y, z) dv = lim

f (Pijk ) V. may form the Riemann sum: . Definition. The triple integral of f over the rectangular box B is defined to f (x, y, z) dv = lim Chapter 14 Multiple Integrals..1 Double Integrals, Iterated Integrals, Cross-sections.2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals.3

More information

1 Vector Functions and Space Curves

1 Vector Functions and Space Curves ontents 1 Vector Functions and pace urves 2 1.1 Limits, Derivatives, and Integrals of Vector Functions...................... 2 1.2 Arc Length and urvature..................................... 2 1.3 Motion

More information

Chapter 5 Partial Differentiation

Chapter 5 Partial Differentiation Chapter 5 Partial Differentiation For functions of one variable, y = f (x), the rate of change of the dependent variable can dy be found unambiguously by differentiation: f x. In this chapter we explore

More information

A small review, Second Midterm, Calculus 3, Prof. Montero 3450: , Fall 2008

A small review, Second Midterm, Calculus 3, Prof. Montero 3450: , Fall 2008 A small review, Second Midterm, Calculus, Prof. Montero 45:-4, Fall 8 Maxima and minima Let us recall first, that for a function f(x, y), the gradient is the vector ( f)(x, y) = ( ) f f (x, y); (x, y).

More information

Topic 5-6: Parameterizing Surfaces and the Surface Elements ds and ds. Big Ideas. What We Are Doing Today... Notes. Notes. Notes

Topic 5-6: Parameterizing Surfaces and the Surface Elements ds and ds. Big Ideas. What We Are Doing Today... Notes. Notes. Notes Topic 5-6: Parameterizing Surfaces and the Surface Elements ds and ds. Textbook: Section 16.6 Big Ideas A surface in R 3 is a 2-dimensional object in 3-space. Surfaces can be described using two variables.

More information

Multivariate Calculus Review Problems for Examination Two

Multivariate Calculus Review Problems for Examination Two Multivariate Calculus Review Problems for Examination Two Note: Exam Two is on Thursday, February 28, class time. The coverage is multivariate differential calculus and double integration: sections 13.3,

More information

Dr. Allen Back. Nov. 19, 2014

Dr. Allen Back. Nov. 19, 2014 Why of Dr. Allen Back Nov. 19, 2014 Graph Picture of T u, T v for a Lat/Long Param. of the Sphere. Why of Graph Basic Picture Why of Graph Why Φ(u, v) = (x(u, v), y(u, v), z(u, v)) Tangents T u = (x u,

More information

Background for Surface Integration

Background for Surface Integration Background for urface Integration 1 urface Integrals We have seen in previous work how to define and compute line integrals in R 2. You should remember the basic surface integrals that we will need to

More information

12/15/2017 FINAL PRACTICE III Math 21a, Fall Name:

12/15/2017 FINAL PRACTICE III Math 21a, Fall Name: 12/15/2017 FINAL PRACTICE III Math 21a, Fall 2017 Name: MWF 9 Jameel Al-Aidroos MWF 9 Dennis Tseng MWF 10 Yu-Wei Fan MWF 10 Koji Shimizu MWF 11 Oliver Knill MWF 11 Chenglong Yu MWF 12 Stepan Paul TTH 10

More information

Math S21a: Multivariable calculus Oliver Knill, Summer 2018

Math S21a: Multivariable calculus Oliver Knill, Summer 2018 Math 2a: Multivariable calculus Oliver Knill, ummer 208 hecklist III Partial Derivatives f x (x,y) = f(x,y) partial derivative x L(x,y) = f(x 0,y 0 )+f x (x 0,y 0 )(x x 0 )+f y (x 0,y 0 )(y y 0 ) linear

More information

Mysterious or unsupported answers will not receive full credit. Your work should be mathematically correct and carefully and legibly written.

Mysterious or unsupported answers will not receive full credit. Your work should be mathematically correct and carefully and legibly written. Math 2374 Spring 2006 Final May 8, 2006 Time Limit: 1 Hour Name (Print): Student ID: Section Number: Teaching Assistant: Signature: This exams contains 11 pages (including this cover page) and 10 problems.

More information

8(x 2) + 21(y 1) + 6(z 3) = 0 8x + 21y + 6z = 55.

8(x 2) + 21(y 1) + 6(z 3) = 0 8x + 21y + 6z = 55. MATH 24 -Review for Final Exam. Let f(x, y, z) x 2 yz + y 3 z x 2 + z, and a (2,, 3). Note: f (2xyz 2x, x 2 z + 3y 2 z, x 2 y + y 3 + ) f(a) (8, 2, 6) (a) Find all stationary points (if any) of f. et f.

More information

12/15/2017 FINAL PRACTICE IV Math 21a, Fall Name:

12/15/2017 FINAL PRACTICE IV Math 21a, Fall Name: 12/15/2017 FINAL PRACTICE IV Math 21a, Fall 2017 Name: MWF 9 Jameel Al-Aidroos MWF 9 Dennis Tseng MWF 10 Yu-Wei Fan MWF 10 Koji Shimizu MWF 11 Oliver Knill MWF 11 Chenglong Yu MWF 12 Stepan Paul TTH 10

More information

Quiz problem bank. Quiz 1 problems. 1. Find all solutions (x, y) to the following:

Quiz problem bank. Quiz 1 problems. 1. Find all solutions (x, y) to the following: Quiz problem bank Quiz problems. Find all solutions x, y) to the following: xy x + y = x + 5x + 4y = ) x. Let gx) = ln. Find g x). sin x 3. Find the tangent line to fx) = xe x at x =. 4. Let hx) = x 3

More information

1. No calculators or other electronic devices are allowed during this exam.

1. No calculators or other electronic devices are allowed during this exam. Version A Math 2E Spring 24 Midterm Exam Instructions. No calculators or other electronic devices are allowed during this exam. 2. You may use one page of notes, but no books or other assistance during

More information

Calculus III Meets the Final

Calculus III Meets the Final Calculus III Meets the Final Peter A. Perry University of Kentucky December 7, 2018 Homework Review for Final Exam on Thursday, December 13, 6:00-8:00 PM Be sure you know which room to go to for the final!

More information

Exercises: Divergence Theorem and Stokes Theorem

Exercises: Divergence Theorem and Stokes Theorem Exercises: ivergence heorem and tokes heorem Problem 1. his exercise allows you to see the main idea behind the proof of the ivergence heorem. uppose that is a closed region in R 3 whose boundary surface

More information

12/15/2017 FINAL EXAM Math 21a, Fall Name:

12/15/2017 FINAL EXAM Math 21a, Fall Name: 12/15/2017 FINL EXM Math 21a, Fall 2017 Name: MWF 9 Jameel l-idroos MWF 9 Dennis Tseng MWF 10 Yu-Wei Fan MWF 10 Koji Shimizu MWF 11 Oliver Knill MWF 11 Chenglong Yu MWF 12 Stepan Paul TTH 10 Matt Demers

More information

Double integrals over a General (Bounded) Region

Double integrals over a General (Bounded) Region ouble integrals over a General (Bounded) Region Recall: Suppose z f (x, y) iscontinuousontherectangularregionr [a, b] [c, d]. We define the double integral of f on R by R f (x, y) da lim max x i, y j!0

More information

14.1 Vector Fields. Gradient of 3d surface: Divergence of a vector field:

14.1 Vector Fields. Gradient of 3d surface: Divergence of a vector field: 14.1 Vector Fields Gradient of 3d surface: Divergence of a vector field: 1 14.1 (continued) url of a vector field: Ex 1: Fill in the table. Let f (x, y, z) be a scalar field (i.e. it returns a scalar)

More information

Name: Final Exam Review. (b) Reparameterize r(t) with respect to arc length measured for the point (1, 0, 1) in the direction of increasing t.

Name: Final Exam Review. (b) Reparameterize r(t) with respect to arc length measured for the point (1, 0, 1) in the direction of increasing t. MATH 127 ALULU III Name: 1. Let r(t) = e t i + e t sin t j + e t cos t k (a) Find r (t) Final Exam Review (b) Reparameterize r(t) with respect to arc length measured for the point (1,, 1) in the direction

More information

Volumes of Solids of Revolution Lecture #6 a

Volumes of Solids of Revolution Lecture #6 a Volumes of Solids of Revolution Lecture #6 a Sphereoid Parabaloid Hyperboloid Whateveroid Volumes Calculating 3-D Space an Object Occupies Take a cross-sectional slice. Compute the area of the slice. Multiply

More information

MA EXAM 2 Form 01 April 4, You must use a #2 pencil on the mark sense sheet (answer sheet).

MA EXAM 2 Form 01 April 4, You must use a #2 pencil on the mark sense sheet (answer sheet). MA 6100 EXAM Form 01 April, 017 NAME STUDENT ID # YOUR TA S NAME RECITATION TIME 1. You must use a # pencil on the mark sense sheet (answer sheet).. On the scantron, write 01 in the TEST/QUIZ NUMBER boxes

More information

1 Programs for double integrals

1 Programs for double integrals > restart; Double Integrals IMPORTANT: This worksheet depends on some programs we have written in Maple. You have to execute these first. Click on the + in the box below, then follow the directions you

More information

Math 113 Calculus III Final Exam Practice Problems Spring 2003

Math 113 Calculus III Final Exam Practice Problems Spring 2003 Math 113 Calculus III Final Exam Practice Problems Spring 23 1. Let g(x, y, z) = 2x 2 + y 2 + 4z 2. (a) Describe the shapes of the level surfaces of g. (b) In three different graphs, sketch the three cross

More information

Name: Date: 1. Match the equation with its graph. Page 1

Name: Date: 1. Match the equation with its graph. Page 1 Name: Date: 1. Match the equation with its graph. y 6x A) C) Page 1 D) E) Page . Match the equation with its graph. ( x3) ( y3) A) C) Page 3 D) E) Page 4 3. Match the equation with its graph. ( x ) y 1

More information

The Divergence Theorem

The Divergence Theorem The Divergence Theorem MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Summer 2011 Green s Theorem Revisited Green s Theorem: M(x, y) dx + N(x, y) dy = C R ( N x M ) da y y x Green

More information

MATH. 2153, Spring 16, MWF 12:40 p.m. QUIZ 1 January 25, 2016 PRINT NAME A. Derdzinski Show all work. No calculators. The problem is worth 10 points.

MATH. 2153, Spring 16, MWF 12:40 p.m. QUIZ 1 January 25, 2016 PRINT NAME A. Derdzinski Show all work. No calculators. The problem is worth 10 points. MATH. 2153, Spring 16, MWF 12:40 p.m. QUIZ 1 January 25, 2016 PRINT NAME A. Derdzinski Show all work. No calculators. The problem is worth 10 points. 1. Evaluate the area A of the triangle with the vertices

More information

MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS

MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS MAT203 covers essentially the same material as MAT201, but is more in depth and theoretical. Exam problems are often more sophisticated in scope and difficulty

More information

University of Saskatchewan Department of Mathematics & Statistics MATH Final Instructors: (01) P. J. Browne (03) B. Friberg (05) H.

University of Saskatchewan Department of Mathematics & Statistics MATH Final Instructors: (01) P. J. Browne (03) B. Friberg (05) H. University of Saskatchewan Department of Mathematics & Statistics MATH. Final Instructors: (0) P. J. Browne (0) B. Friberg (0) H. Teismann December 9, 000 Time: :00-:00 pm This is an open book exam. Students

More information

the straight line in the xy plane from the point (0, 4) to the point (2,0)

the straight line in the xy plane from the point (0, 4) to the point (2,0) Math 238 Review Problems for Final Exam For problems #1 to #6, we define the following paths vector fields: b(t) = the straight line in the xy plane from the point (0, 4) to the point (2,0) c(t) = the

More information

PURE MATHEMATICS 212 Multivariable Calculus CONTENTS. Page. 1. Assignment Summary... i 2. Introduction Timetable Assignments...

PURE MATHEMATICS 212 Multivariable Calculus CONTENTS. Page. 1. Assignment Summary... i 2. Introduction Timetable Assignments... PURE MATHEMATICS 212 Multivariable Calculus CONTENTS Page 1. Assignment Summary... i 2. Introduction...1 3. Timetable... 3 4. Assignments...5 i PMTH212, Multivariable Calculus Assignment Summary 2009

More information

MATH 261 FALL 2000 FINAL EXAM INSTRUCTIONS. 1. This test booklet has 14 pages including this one. There are 25 questions, each worth 8 points.

MATH 261 FALL 2000 FINAL EXAM INSTRUCTIONS. 1. This test booklet has 14 pages including this one. There are 25 questions, each worth 8 points. MATH 261 FALL 2 FINAL EXAM STUDENT NAME - STUDENT ID - RECITATION HOUR - RECITATION INSTRUCTOR INSTRUCTOR - INSTRUCTIONS 1. This test booklet has 14 pages including this one. There are 25 questions, each

More information

MH2800/MAS183 - Linear Algebra and Multivariable Calculus

MH2800/MAS183 - Linear Algebra and Multivariable Calculus MH28/MAS83 - Linear Algebra and Multivariable Calculus SEMESTER II EXAMINATION 2-22 Solved by Tao Biaoshuai Email: taob@e.ntu.edu.sg QESTION Let A 2 2 2. Solve the homogeneous linear system Ax and write

More information

Multivariate Calculus: Review Problems for Examination Two

Multivariate Calculus: Review Problems for Examination Two Multivariate Calculus: Review Problems for Examination Two Note: Exam Two is on Tuesday, August 16. The coverage is multivariate differential calculus and double integration. You should review the double

More information

Direction Fields; Euler s Method

Direction Fields; Euler s Method Direction Fields; Euler s Method It frequently happens that we cannot solve first order systems dy (, ) dx = f xy or corresponding initial value problems in terms of formulas. Remarkably, however, this

More information

302 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES. 4. Function of several variables, their domain. 6. Limit of a function of several variables

302 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES. 4. Function of several variables, their domain. 6. Limit of a function of several variables 302 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES 3.8 Chapter Review 3.8.1 Concepts to Know You should have an understanding of, and be able to explain the concepts listed below. 1. Boundary and interior points

More information

MATH 261 EXAM III PRACTICE PROBLEMS

MATH 261 EXAM III PRACTICE PROBLEMS MATH 6 EXAM III PRACTICE PROBLEMS These practice problems are pulled from actual midterms in previous semesters. Exam 3 typically has 5 (not 6!) problems on it, with no more than one problem of any given

More information

Grad operator, triple and line integrals. Notice: this material must not be used as a substitute for attending the lectures

Grad operator, triple and line integrals. Notice: this material must not be used as a substitute for attending the lectures Grad operator, triple and line integrals Notice: this material must not be used as a substitute for attending the lectures 1 .1 The grad operator Let f(x 1, x,..., x n ) be a function of the n variables

More information

Lecture 1.1 Introduction to Fluid Dynamics

Lecture 1.1 Introduction to Fluid Dynamics Lecture 1.1 Introduction to Fluid Dynamics 1 Introduction A thorough study of the laws of fluid mechanics is necessary to understand the fluid motion within the turbomachinery components. In this introductory

More information

Fourier Series. Period 2π over the interval [ π, π]. > > restart:with(plots): Warning, the name changecoords has been redefined

Fourier Series. Period 2π over the interval [ π, π]. > > restart:with(plots): Warning, the name changecoords has been redefined > Fourier Series Period 2 over the interval [, ]. > > restart:with(plots): Warning, the name changecoords has been redefined We begin by considering the function > f:=piecewise(x

More information

INTRODUCTION TO LINE INTEGRALS

INTRODUCTION TO LINE INTEGRALS INTRODUTION TO LINE INTEGRALS PROF. MIHAEL VANVALKENBURGH Last week we discussed triple integrals. This week we will study a new topic of great importance in mathematics and physics: line integrals. 1.

More information

First of all, we need to know what it means for a parameterize curve to be differentiable. FACT:

First of all, we need to know what it means for a parameterize curve to be differentiable. FACT: CALCULUS WITH PARAMETERIZED CURVES In calculus I we learned how to differentiate and integrate functions. In the chapter covering the applications of the integral, we learned how to find the length of

More information

Without fully opening the exam, check that you have pages 1 through 11.

Without fully opening the exam, check that you have pages 1 through 11. Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages 1 through 11. Show all your work on the standard

More information

The base of a solid is the region in the first quadrant bounded above by the line y = 2, below by

The base of a solid is the region in the first quadrant bounded above by the line y = 2, below by Chapter 7 1) (AB/BC, calculator) The base of a solid is the region in the first quadrant bounded above by the line y =, below by y sin 1 x, and to the right by the line x = 1. For this solid, each cross-section

More information

27. Tangent Planes & Approximations

27. Tangent Planes & Approximations 27. Tangent Planes & Approximations If z = f(x, y) is a differentiable surface in R 3 and (x 0, y 0, z 0 ) is a point on this surface, then it is possible to construct a plane passing through this point,

More information

Math 11 Fall Multivariable Calculus. Final Exam

Math 11 Fall Multivariable Calculus. Final Exam Math 11 Fall 2004 Multivariable Calculus for Two-Term Advanced Placement First-Year Students Final Exam Tuesday, December 7, 11:30-2:30 Murdough, Cook Auditorium Your name (please print): Instructions:

More information

MATH 209 Lab Solutions

MATH 209 Lab Solutions MATH 9 Lab Solutions Richard M. Slevinsky 1 November 1, 13 1 Contact: rms8@ualberta.ca Contents 1 Multivariable Functions and Limits Partial Derivatives 6 3 Directional Derivatives and Gradients 15 4 Maximum

More information

MATH 2023 Multivariable Calculus

MATH 2023 Multivariable Calculus MATH 2023 Multivariable Calculus Problem Sets Note: Problems with asterisks represent supplementary informations. You may want to read their solutions if you like, but you don t need to work on them. Set

More information

11/1/2017 Second Hourly Practice 11 Math 21a, Fall Name:

11/1/2017 Second Hourly Practice 11 Math 21a, Fall Name: 11/1/217 Second Hourly Practice 11 Math 21a, Fall 217 Name: MWF 9 Jameel Al-Aidroos MWF 9 Dennis Tseng MWF 1 Yu-Wei Fan MWF 1 Koji Shimizu MWF 11 Oliver Knill MWF 11 Chenglong Yu MWF 12 Stepan Paul TTH

More information

MAC2313 Test 3 A E g(x, y, z) dy dx dz

MAC2313 Test 3 A E g(x, y, z) dy dx dz MAC2313 Test 3 A (5 pts) 1. If the function g(x, y, z) is integrated over the cylindrical solid bounded by x 2 + y 2 = 3, z = 1, and z = 7, the correct integral in Cartesian coordinates is given by: A.

More information