18.3 Deleting a key from a B-tree

Size: px
Start display at page:

Download "18.3 Deleting a key from a B-tree"

Transcription

1 18.3 Deleting a key from a B-tree B-TREE-DELETE deletes the key from the subtree rooted at We design it to guarantee that whenever it calls itself recursively on a node, the number of keys in is at least the minimum degree This condition requires one more key than the minimum required by usual B-tree conditions Sometimes a key may have to be moved into a child node before recursion descends to that child MAT AA+DS, Fall Nov The strengthened condition allows us to delete a key in one downward pass without having to back up (with one exception) Interpret the following speci cation for deletion from a B-tree with the understanding that if the root node ever becomes an internal node having no keys (this situation can occur in cases 2c and 3b), then we delete, and s only child becomes the new root of the tree, decreasing the height of the tree by one and preserving the property that the root of the tree contains at least one key (unless it is empty) MAT AA+DS, Fall Nov

2 MAT AA+DS, Fall Nov MAT AA+DS, Fall Nov

3 MAT AA+DS, Fall Nov MAT AA+DS, Fall Nov

4 MAT AA+DS, Fall Nov MAT AA+DS, Fall Nov

5 Let us sketch how deletion works 1. If the key is a leaf node, delete from 2. If is in an internal node, do the following: a) If the child that precedes in node has at least keys, then nd the predecessor of in the subtree rooted at. Recursively delete, and replace by in. (We can nd and delete it in a single downward pass.) b) If has fewer than keys, then, symmetrically, examine the child that follows in node. If has at least keys, then nd the successor of in the subtree rooted at. Recursively delete, and replace by in. MAT AA+DS, Fall Nov c) Otherwise, if both and have only 1keys, merge and all of into, so that loses both and the pointer to, and now contains 1keys. Then free and recursively delete from. 3. If the key is not present in internal node, determine the root of the appropriate subtree that must contain, if is in the tree at all. If has only 1keys, execute step 3a or 3b as necessary to guarantee that we descend to a node containing at least keys. Then nish by recursing on the appropriate child of. MAT AA+DS, Fall Nov

6 a) If has only 1keys but has an immediate sibling with at least keys, give an extra key by moving a key from down into, moving a key from s immediate left or right sibling up into, and moving the appropriate child pointer from the sibling into. b) If and both of s immediate siblings have 1keys, merge with one sibling, which involves moving a key from down into the new merged node to become the median key for that node. MAT AA+DS, Fall Nov Most of the keys in a B-tree are in the leaves and we may expect that in practice deletions are most often used to delete keys from leaves B-TREE-DELETE then acts in one downward pass through the tree, without having to back up When deleting a key in an internal node, the procedure may have to return to replace the key with its predecessor or successor (2a and 2b) This involves only ) disk operations for a B- tree of height, since only (1) calls to DISK- READ and DISK-WRITE are made between recursive invocations of the procedure The CPU time required is = ( log ) MAT AA+DS, Fall Nov

7 19 Fibonacci Heaps 1. The Fibonacci heap data structure supports a set of operations that constitutes what is known as a mergeable heap 2. Several Fibonacci-heap operations run in constant amortized time, which makes this data structure well suited for applications that invoke these operations frequently MAT AA+DS, Fall Nov Mergeable heaps Support the following operations, each element has a key: MAKE-HEAP() creates and returns a new empty heap INSERT inserts element, whose key has already been lled in, into heap MINIMUM ) returns a pointer to the element in heap whose key is minimum EXTRACT-MIN ) deletes the element from heap whose key is minimum, returning a pointer to the element MAT AA+DS, Fall Nov

8 UNION creates and returns a new heap that contains all the elements of heaps and. Heaps and are destroyed by this operation Fibonacci heaps also support the following two operations: DECREASE-KEY ) assigns to element within heap the new key value, which we assume to be no greater than its current key value DELETE ) deletes element from heap MAT AA+DS, Fall Nov Procedure Binary Heap (worst-case) Fibonacci Heap (amortized) MAKE-HEAP (1) (1) INSERT (lg ) (1) MINIMUM (1) (1) EXTRACT-MIN (lg ) (lg ) UNION ) (1) DECREASE-KEY (lg ) (1) DELETE (lg ) (lg ) MAT AA+DS, Fall Nov

9 Fibonacci heaps in theory and practice Fibonacci heaps are especially desirable when the number of EXTRACT-MIN and DELETE operations is small relative to the number of other operations performed E.g., some algorithms for graph problems may call DECREASE-KEY once per edge For dense graphs, with many edges, the (1) amortized time of each call of DECREASE-KEY is a big improvement over the (lg ) worst-case time of binary heaps Fast algorithms for problems such as computing minimum spanning trees and nding single-source shortest paths make essential use of Fibonacci heaps MAT AA+DS, Fall Nov The constant factors and programming complexity of Fibonacci heaps make them less desirable than ordinary binary (or -ary) heaps for most applications, except for certain applications that manage large amounts of data Thus, Fibonacci heaps are predominantly of theoretical interest If a much simpler data structure with the same amortized time bounds as Fibonacci heaps were developed, it would be of practical use as well MAT AA+DS, Fall Nov

10 Fibonacci heaps are based on rooted trees We represent each element by a node within a tree, and each node has a key attribute We use the term node instead of element We also ignore issues of allocating nodes prior to insertion and freeing nodes following deletion A Fibonacci heap is a collection of rooted trees that are min-heap ordered I.e., each tree obeys the min-heap property: the key of a node is greater than or equal to the key of its parent MAT AA+DS, Fall Nov MAT AA+DS, Fall Nov

11 Each node contains a pointer to its parent and a pointer to any one of its children The children of are linked together in a circular, doubly linked list the child list of Each child in a child list has pointers and that point to s left and right siblings, respectively If is an only child, then Siblings may appear in a child list in any order MAT AA+DS, Fall Nov MAT AA+DS, Fall Nov

12 We store the number of children in the child list of node in The Boolean attribute indicates whether node has lost a child since the last time was made the child of another node Newly created nodes are unmarked, and a node becomes unmarked whenever it is made the child of another node Until we look at the DECREASE-KEY operation we will just set all mark attributes to FALSE We access a given Fibonacci heap by a pointer. min to the root of a tree containing the minimum key MAT AA+DS, Fall Nov When a Fibonacci heap is empty,. min is NIL The roots of all the trees in a heap are linked together using their left and right pointers into a circular, doubly linked list called the root list The pointer. min thus points to the node in the root list whose key is minimum Trees may appear in any order within a root list We rely on one other attribute for a Fibonacci heap :, the number of nodes currently in MAT AA+DS, Fall Nov

13 Potential function We use the potential method to analyze the performance of Fibonacci heap operations Let ) be the number of trees in the root list of Fibonacci heap and ) the number of marked nodes in We de ne the potential ) of heap by + 2 ) For example, the potential of the Fibonacci heap shown above is 5+2 3=11 MAT AA+DS, Fall Nov The potential of a set of Fibonacci heaps is the sum of the potentials of its constituent heaps We assume that a unit of potential can cover the cost of any of the speci c constant-time pieces of work that we might encounter Fibonacci heap application begins with no heaps The initial potential, therefore, is 0, and the potential is nonnegative at all subsequent times An upper bound on the total amortized cost thus provides an upper bound on the total actual cost for the sequence of operations MAT AA+DS, Fall Nov

14 Maximum degree Amortized analyses we perform assume that we know an upper bound ) on the maximum degree of any node in an -node Fibonacci heap When only the mergeable-heap operations are supported lg We shall show that when we support DECREASE- KEY and DELETE as well, (lg ) MAT AA+DS, Fall Nov Mergeable-heap operations The operations delay work as long as possible; various operations have performance trade-offs E.g., we insert a node by adding it to the root list, which takes just constant time If we insert nodes to an empty Fibonacci heap, the heap consist of just a root list of nodes Trade-off: if we then perform EXTRACT-MIN on, after removing the node that. min points to, we have to look through each of the remaining 1 nodes to nd the new minimum node MAT AA+DS, Fall Nov

15 As long as we have to go through the entire root list during the EXTRACT-MIN operation, we also consolidate nodes into min-heapordered trees to reduce the size of the root list We shall see that, no matter what the root list looks like before a EXTRACT-MIN operation, afterward each node in the root list has a degree that is unique within the root list, which leads to a root list of size at most +1 MAT AA+DS, Fall Nov Creating a new Fibonacci heap To make an empty Fibonacci heap, the MAKE- FIB-HEAP procedure allocates and returns the Fibonacci heap object, where =0and =NIL; there are no trees in Because =0and =0, the potential of the empty Fibonacci heap is =0 The amortized cost of MAKE-FIB-HEAP is thus equal to its (1) actual cost MAT AA+DS, Fall Nov

16 FIB-HEAP-INSERT(, ) 1. =0 2. =NIL 3. =NIL 4. =FALSE 5. if == NIL 6. create a root list for containing just 7..min= 8. else insert into s root list 9. if. min. 10..min= 11.. =. +1 MAT AA+DS, Fall Nov MAT AA+DS, Fall Nov

17 To determine the amortized cost of FIB-HEAP- INSERT, let be the input Fibonacci heap and be the resulting Fibonacci heap Then, +1and ), and the increase in potential is =1 Since the actual cost is (1), the amortized cost is = (1) MAT AA+DS, Fall Nov FIB-HEAP-UNION 1. =MAKE-FIB-HEAP() 2..min=. min 3. concatenate the root list of with the root list of 4. if. min == NIL) or.min NIL and.min.. min. ) 5..min=. min return MAT AA+DS, Fall Nov

18 The change in potential is ) = ( + 2 ( =0 because and = The amortized cost of FIB-HEAP-UNION is therefore equal to its (1) actual cost MAT AA+DS, Fall Nov Extracting the minimum node The process of extracting the minimum node is the most complicated of the operations so far It is also where the delayed work of consolidating trees in the root list nally occurs The following code assumes that when a node is removed, pointers remaining in the linked list are updated, but pointers in the extracted node are left unchanged It also calls the auxiliary procedure CONSOLIDATE MAT AA+DS, Fall Nov

19 FIB-HEAP-EXTRACT-MIN( ) 1.. min 2. if NIL 3. for each child of 4. add to the root list of 5. =NIL 6. remove from the root list of 7. if == 8..min=NIL 9. else. min = 10. CONSOLIDATE ) return MAT AA+DS, Fall Nov MAT AA+DS, Fall Nov

20 The next step reduces the number of trees in the Fibonacci heap, CONSOLIDATE accomplishes this Consolidating the root list consists of repeatedly executing the following steps until every root in the root list has a distinct degree value: 1. Find two roots and in the root list with the same degree. Without loss of generality, let 2. Link to : remove from the root list, and make a child of by calling the FIB-HEAP-LINK procedure. This procedure increments the attribute. and clears the mark on MAT AA+DS, Fall Nov MAT AA+DS, Fall Nov

21 MAT AA+DS, Fall Nov Decreasing a key FIB-HEAP-DECREASE-KEY ) 1. if 2. error new key is greater than current key if NIL and 6. CUT ) 7. CASCADING-CUT ) 8. if. min. 9.. min = MAT AA+DS, Fall Nov

22 CUT(,, ) 1. remove from the child list of, decrementing 2. add to the root list of 3. =NIL 4. =FALSE CASCADING-CUT ) if NIL 3. if == FALSE 4. =TRUE 5. else CUT 6. CASCADING-CUT(, ) MAT AA+DS, Fall Nov MAT AA+DS, Fall Nov

23 FIB-HEAP-DECREASE-KEY creates a new tree rooted at node and clears s mark bit Each of the calls of CASCADING-CUT, except the last one, cuts a marked node and clears the mark bit Afterward, the heap contains trees the original trees, 1trees produced by cascading cuts, and the tree rooted at and at most +2marked nodes 1were unmarked by cascading cuts and the last call of CASCADING-CUT may have marked a node MAT AA+DS, Fall Nov The change in potential is therefore at most =4 Thus, the amortized cost of FIB-HEAP-DECREASE- KEY is at most + 4 (1), since we can scale up the units of potential to dominate the constant hidden in When a marked node is cut by a cascading cut, its mark bit is cleared, which reduces the potential by 2 One unit of potential pays for the cut and the clearing of the mark bit, and the other unit compensates for the unit increase in potential due to node becoming a root MAT AA+DS, Fall Nov

24 Deleting a node We assume that there is no key value of currently in the Fibonacci heap FIB-HEAP-DELETE ) 1. FIB-HEAP-DECREASE-KEY ) 2. FIB-HEAP-EXTRACT-MIN ) The amortized time of FIB-HEAP-DELETE is the sum of the (1) amortized time of FIB-HEAP- DECREASE-KEY and the )amortized time of FIB-HEAP-EXTRACT-MIN MAT AA+DS, Fall Nov

V Advanced Data Structures

V Advanced Data Structures V Advanced Data Structures B-Trees Fibonacci Heaps 18 B-Trees B-trees are similar to RBTs, but they are better at minimizing disk I/O operations Many database systems use B-trees, or variants of them,

More information

V Advanced Data Structures

V Advanced Data Structures V Advanced Data Structures B-Trees Fibonacci Heaps 18 B-Trees B-trees are similar to RBTs, but they are better at minimizing disk I/O operations Many database systems use B-trees, or variants of them,

More information

Let the dynamic table support the operations TABLE-INSERT and TABLE-DELETE It is convenient to use the load factor ( )

Let the dynamic table support the operations TABLE-INSERT and TABLE-DELETE It is convenient to use the load factor ( ) 17.4 Dynamic tables Let us now study the problem of dynamically expanding and contracting a table We show that the amortized cost of insertion/ deletion is only (1) Though the actual cost of an operation

More information

Decreasing a key FIB-HEAP-DECREASE-KEY(,, ) 3.. NIL. 2. error new key is greater than current key 6. CASCADING-CUT(, )

Decreasing a key FIB-HEAP-DECREASE-KEY(,, ) 3.. NIL. 2. error new key is greater than current key 6. CASCADING-CUT(, ) Decreasing a key FIB-HEAP-DECREASE-KEY(,, ) 1. if >. 2. error new key is greater than current key 3.. 4.. 5. if NIL and.

More information

Chapter 5 Data Structures Algorithm Theory WS 2016/17 Fabian Kuhn

Chapter 5 Data Structures Algorithm Theory WS 2016/17 Fabian Kuhn Chapter 5 Data Structures Algorithm Theory WS 06/ Fabian Kuhn Examples Dictionary: Operations: insert(key,value), delete(key), find(key) Implementations: Linked list: all operations take O(n) time (n:

More information

We assume uniform hashing (UH):

We assume uniform hashing (UH): We assume uniform hashing (UH): the probe sequence of each key is equally likely to be any of the! permutations of 0,1,, 1 UH generalizes the notion of SUH that produces not just a single number, but a

More information

Fibonacci Heaps. Structure. Implementation. Implementation. Delete Min. Delete Min. Set of min-heap ordered trees min

Fibonacci Heaps. Structure. Implementation. Implementation. Delete Min. Delete Min. Set of min-heap ordered trees min Algorithms Fibonacci Heaps -2 Structure Set of -heap ordered trees Fibonacci Heaps 1 Some nodes marked. H Data Structures and Algorithms Andrei Bulatov Algorithms Fibonacci Heaps - Algorithms Fibonacci

More information

16 Greedy Algorithms

16 Greedy Algorithms 16 Greedy Algorithms Optimization algorithms typically go through a sequence of steps, with a set of choices at each For many optimization problems, using dynamic programming to determine the best choices

More information

22 Elementary Graph Algorithms. There are two standard ways to represent a

22 Elementary Graph Algorithms. There are two standard ways to represent a VI Graph Algorithms Elementary Graph Algorithms Minimum Spanning Trees Single-Source Shortest Paths All-Pairs Shortest Paths 22 Elementary Graph Algorithms There are two standard ways to represent a graph

More information

22 Elementary Graph Algorithms. There are two standard ways to represent a

22 Elementary Graph Algorithms. There are two standard ways to represent a VI Graph Algorithms Elementary Graph Algorithms Minimum Spanning Trees Single-Source Shortest Paths All-Pairs Shortest Paths 22 Elementary Graph Algorithms There are two standard ways to represent a graph

More information

CLRS 19 Fibonacci Heaps

CLRS 19 Fibonacci Heaps CLRS 19 Fibonacci Heaps Mergeable Heaps A mergeable heap is any data structure that supports the following five operations, (each element has a key): MAKE-HEAP() creates and returns a new heap containing

More information

Advanced Algorithms. Class Notes for Thursday, September 18, 2014 Bernard Moret

Advanced Algorithms. Class Notes for Thursday, September 18, 2014 Bernard Moret Advanced Algorithms Class Notes for Thursday, September 18, 2014 Bernard Moret 1 Amortized Analysis (cont d) 1.1 Side note: regarding meldable heaps When we saw how to meld two leftist trees, we did not

More information

CSE 548: Analysis of Algorithms. Lectures 14 & 15 ( Dijkstra s SSSP & Fibonacci Heaps )

CSE 548: Analysis of Algorithms. Lectures 14 & 15 ( Dijkstra s SSSP & Fibonacci Heaps ) CSE 548: Analysis of Algorithms Lectures 14 & 15 ( Dijkstra s SSSP & Fibonacci Heaps ) Rezaul A. Chowdhury Department of Computer Science SUNY Stony Brook Fall 2012 Fibonacci Heaps ( Fredman & Tarjan,

More information

B-Trees. Version of October 2, B-Trees Version of October 2, / 22

B-Trees. Version of October 2, B-Trees Version of October 2, / 22 B-Trees Version of October 2, 2014 B-Trees Version of October 2, 2014 1 / 22 Motivation An AVL tree can be an excellent data structure for implementing dictionary search, insertion and deletion Each operation

More information

CS301 - Data Structures Glossary By

CS301 - Data Structures Glossary By CS301 - Data Structures Glossary By Abstract Data Type : A set of data values and associated operations that are precisely specified independent of any particular implementation. Also known as ADT Algorithm

More information

W4231: Analysis of Algorithms

W4231: Analysis of Algorithms W4231: Analysis of Algorithms From Binomial Heaps to Fibonacci Heaps Fibonacci Heaps 10/7/1999 We first prove that in Binomial Heaps insert and find-min take amortized O(1) time, while still having insert,

More information

Algorithms. Deleting from Red-Black Trees B-Trees

Algorithms. Deleting from Red-Black Trees B-Trees Algorithms Deleting from Red-Black Trees B-Trees Recall the rules for BST deletion 1. If vertex to be deleted is a leaf, just delete it. 2. If vertex to be deleted has just one child, replace it with that

More information

Algorithm Theory, Winter Term 2015/16 Problem Set 5 - Sample Solution

Algorithm Theory, Winter Term 2015/16 Problem Set 5 - Sample Solution Albert-Ludwigs-Universität, Inst. für Informatik Prof. Dr. Fabian Kuhn M. Ahmadi, O. Saukh, A. R. Molla November, 20 Algorithm Theory, Winter Term 20/6 Problem Set - Sample Solution Exercise : Amortized

More information

9/24/ Hash functions

9/24/ Hash functions 11.3 Hash functions A good hash function satis es (approximately) the assumption of SUH: each key is equally likely to hash to any of the slots, independently of the other keys We typically have no way

More information

Advanced algorithms. binary heap, d-ary heap, binomial heap, amortized analysis, Fibonacci heap. Jiří Vyskočil, Radek Mařík 2013

Advanced algorithms. binary heap, d-ary heap, binomial heap, amortized analysis, Fibonacci heap. Jiří Vyskočil, Radek Mařík 2013 binary heap, d-ary heap, binomial heap, amortized analysis, Fibonacci heap Jiří Vyskočil, Radek Mařík 2013 heap Heaps [haldy] a heap is a specialized data structure (usually tree-based) that satisfies

More information

Questions from the material presented in this lecture

Questions from the material presented in this lecture Advanced Data Structures Questions from the material presented in this lecture January 8, 2015 This material illustrates the kind of exercises and questions you may get at the final colloqium. L1. Introduction.

More information

Lecture 3: B-Trees. October Lecture 3: B-Trees

Lecture 3: B-Trees. October Lecture 3: B-Trees October 2017 Remarks Search trees The dynamic set operations search, minimum, maximum, successor, predecessor, insert and del can be performed efficiently (in O(log n) time) if the search tree is balanced.

More information

Properties of red-black trees

Properties of red-black trees Red-Black Trees Introduction We have seen that a binary search tree is a useful tool. I.e., if its height is h, then we can implement any basic operation on it in O(h) units of time. The problem: given

More information

So the actual cost is 2 Handout 3: Problem Set 1 Solutions the mark counter reaches c, a cascading cut is performed and the mark counter is reset to 0

So the actual cost is 2 Handout 3: Problem Set 1 Solutions the mark counter reaches c, a cascading cut is performed and the mark counter is reset to 0 Massachusetts Institute of Technology Handout 3 6854/18415: Advanced Algorithms September 14, 1999 David Karger Problem Set 1 Solutions Problem 1 Suppose that we have a chain of n 1 nodes in a Fibonacci

More information

10/24/ Rotations. 2. // s left subtree s right subtree 3. if // link s parent to elseif == else 11. // put x on s left

10/24/ Rotations. 2. // s left subtree s right subtree 3. if // link s parent to elseif == else 11. // put x on s left 13.2 Rotations MAT-72006 AA+DS, Fall 2013 24-Oct-13 368 LEFT-ROTATE(, ) 1. // set 2. // s left subtree s right subtree 3. if 4. 5. // link s parent to 6. if == 7. 8. elseif == 9. 10. else 11. // put x

More information

CSE 5311 Notes 4a: Priority Queues

CSE 5311 Notes 4a: Priority Queues Chart on p., CLRS (binary, Fibonacci heaps) CSE Notes a: Priority Queues (Last updated 9// : AM) MAKE-HEAP INSERT MINIMUM EXTRACT-MIN UNION (MELD/MERGE) DECREASE-KEY DELETE Applications - sorting (?),

More information

Trees (Part 1, Theoretical) CSE 2320 Algorithms and Data Structures University of Texas at Arlington

Trees (Part 1, Theoretical) CSE 2320 Algorithms and Data Structures University of Texas at Arlington Trees (Part 1, Theoretical) CSE 2320 Algorithms and Data Structures University of Texas at Arlington 1 Trees Trees are a natural data structure for representing specific data. Family trees. Organizational

More information

Sorted Arrays. Operation Access Search Selection Predecessor Successor Output (print) Insert Delete Extract-Min

Sorted Arrays. Operation Access Search Selection Predecessor Successor Output (print) Insert Delete Extract-Min Binary Search Trees FRIDAY ALGORITHMS Sorted Arrays Operation Access Search Selection Predecessor Successor Output (print) Insert Delete Extract-Min 6 10 11 17 2 0 6 Running Time O(1) O(lg n) O(1) O(1)

More information

CS102 Binary Search Trees

CS102 Binary Search Trees CS102 Binary Search Trees Prof Tejada 1 To speed up insertion, removal and search, modify the idea of a Binary Tree to create a Binary Search Tree (BST) Binary Search Trees Binary Search Trees have one

More information

Operations on Heap Tree The major operations required to be performed on a heap tree are Insertion, Deletion, and Merging.

Operations on Heap Tree The major operations required to be performed on a heap tree are Insertion, Deletion, and Merging. Priority Queue, Heap and Heap Sort In this time, we will study Priority queue, heap and heap sort. Heap is a data structure, which permits one to insert elements into a set and also to find the largest

More information

CS Fall 2010 B-trees Carola Wenk

CS Fall 2010 B-trees Carola Wenk CS 3343 -- Fall 2010 B-trees Carola Wenk 10/19/10 CS 3343 Analysis of Algorithms 1 External memory dictionary Task: Given a large amount of data that does not fit into main memory, process it into a dictionary

More information

CS711008Z Algorithm Design and Analysis

CS711008Z Algorithm Design and Analysis CS711008Z Algorithm Design and Analysis Lecture 7. Binary heap, binomial heap, and Fibonacci heap Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, China 1 / 108 Outline

More information

TREES. Trees - Introduction

TREES. Trees - Introduction TREES Chapter 6 Trees - Introduction All previous data organizations we've studied are linear each element can have only one predecessor and successor Accessing all elements in a linear sequence is O(n)

More information

A red-black tree is a balanced binary search tree with the following properties:

A red-black tree is a balanced binary search tree with the following properties: Binary search trees work best when they are balanced or the path length from root to any leaf is within some bounds. The red-black tree algorithm is a method for balancing trees. The name derives from

More information

Efficient pebbling for list traversal synopses

Efficient pebbling for list traversal synopses Efficient pebbling for list traversal synopses Yossi Matias Ely Porat Tel Aviv University Bar-Ilan University & Tel Aviv University Abstract 1 Introduction 1.1 Applications Consider a program P running

More information

(2,4) Trees. 2/22/2006 (2,4) Trees 1

(2,4) Trees. 2/22/2006 (2,4) Trees 1 (2,4) Trees 9 2 5 7 10 14 2/22/2006 (2,4) Trees 1 Outline and Reading Multi-way search tree ( 10.4.1) Definition Search (2,4) tree ( 10.4.2) Definition Search Insertion Deletion Comparison of dictionary

More information

Ensures that no such path is more than twice as long as any other, so that the tree is approximately balanced

Ensures that no such path is more than twice as long as any other, so that the tree is approximately balanced 13 Red-Black Trees A red-black tree (RBT) is a BST with one extra bit of storage per node: color, either RED or BLACK Constraining the node colors on any path from the root to a leaf Ensures that no such

More information

15.4 Longest common subsequence

15.4 Longest common subsequence 15.4 Longest common subsequence Biological applications often need to compare the DNA of two (or more) different organisms A strand of DNA consists of a string of molecules called bases, where the possible

More information

CS711008Z Algorithm Design and Analysis

CS711008Z Algorithm Design and Analysis CS700Z Algorithm Design and Analysis Lecture 7 Binary heap, binomial heap, and Fibonacci heap Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, China 1 / Outline Introduction

More information

Quiz 1 Solutions. (a) f(n) = n g(n) = log n Circle all that apply: f = O(g) f = Θ(g) f = Ω(g)

Quiz 1 Solutions. (a) f(n) = n g(n) = log n Circle all that apply: f = O(g) f = Θ(g) f = Ω(g) Introduction to Algorithms March 11, 2009 Massachusetts Institute of Technology 6.006 Spring 2009 Professors Sivan Toledo and Alan Edelman Quiz 1 Solutions Problem 1. Quiz 1 Solutions Asymptotic orders

More information

Priority queue. Advanced Algorithmics (6EAP) MTAT Heaps. Binary heap. Heap/Priority queue. Binomial heaps:

Priority queue. Advanced Algorithmics (6EAP) MTAT Heaps. Binary heap. Heap/Priority queue. Binomial heaps: Priority queue Advanced Algorithmics (EAP) MTAT.03.38 Heaps Jaak Vilo 0 Fall Insert Q, x Retrieve x from Q s.t. x.value is min (or max) Sorted linked list: O(n) to insert x into right place O() access-min,

More information

Rank-Pairing Heaps. Bernard Haeupler Siddhartha Sen Robert E. Tarjan. SIAM JOURNAL ON COMPUTING Vol. 40, No. 6 (2011), pp.

Rank-Pairing Heaps. Bernard Haeupler Siddhartha Sen Robert E. Tarjan. SIAM JOURNAL ON COMPUTING Vol. 40, No. 6 (2011), pp. Rank-Pairing Heaps Bernard Haeupler Siddhartha Sen Robert E. Tarjan Presentation by Alexander Pokluda Cheriton School of Computer Science, University of Waterloo, Canada SIAM JOURNAL ON COMPUTING Vol.

More information

13.4 Deletion in red-black trees

13.4 Deletion in red-black trees The operation of Deletion in a red-black tree is similar to the operation of Insertion on the tree. That is, apply the deletion algorithm for binary search trees to delete a node z; apply node color changes

More information

Multiway searching. In the worst case of searching a complete binary search tree, we can make log(n) page faults Everyone knows what a page fault is?

Multiway searching. In the worst case of searching a complete binary search tree, we can make log(n) page faults Everyone knows what a page fault is? Multiway searching What do we do if the volume of data to be searched is too large to fit into main memory Search tree is stored on disk pages, and the pages required as comparisons proceed may not be

More information

Review of 4 comparison-based priority queues: Binary, Binomial, Fibonacci and Weak heap : Technical report LUSY-2012/01

Review of 4 comparison-based priority queues: Binary, Binomial, Fibonacci and Weak heap : Technical report LUSY-2012/01 Review of 4 comparison-based priority queues: Binary, Binomial, Fibonacci and Weak heap : Technical report LUSY-2012/01 Matevž Jekovec, Andrej Brodnik University of Ljubljana, Faculty of Computer and Information

More information

Data Structures. Motivation

Data Structures. Motivation Data Structures B Trees Motivation When data is too large to fit in main memory, it expands to the disk. Disk access is highly expensive compared to a typical computer instruction The number of disk accesses

More information

Data Structures and Algorithms (DSA) Course 9 Lists / Graphs / Trees. Iulian Năstac

Data Structures and Algorithms (DSA) Course 9 Lists / Graphs / Trees. Iulian Năstac Data Structures and Algorithms (DSA) Course 9 Lists / Graphs / Trees Iulian Năstac Recapitulation It is considered the following type: typedef struct nod { ; struct nod *next; } NOD; 2 Circular

More information

II (Sorting and) Order Statistics

II (Sorting and) Order Statistics II (Sorting and) Order Statistics Heapsort Quicksort Sorting in Linear Time Medians and Order Statistics 8 Sorting in Linear Time The sorting algorithms introduced thus far are comparison sorts Any comparison

More information

(2,4) Trees Goodrich, Tamassia (2,4) Trees 1

(2,4) Trees Goodrich, Tamassia (2,4) Trees 1 (2,4) Trees 9 2 5 7 10 14 2004 Goodrich, Tamassia (2,4) Trees 1 Multi-Way Search Tree A multi-way search tree is an ordered tree such that Each internal node has at least two children and stores d -1 key-element

More information

Hollow Heaps. Aarhus University, Denmark. Tel Aviv University, Israel. Princeton University, USA. July 7, 2015

Hollow Heaps. Aarhus University, Denmark. Tel Aviv University, Israel. Princeton University, USA. July 7, 2015 Hollow Heaps Thomas Dueholm Hansen 1 Haim Kaplan 2 Robert E. Tarjan 3 Uri Zwick 2 1 Department of Computer Science, Aarhus University, Denmark. 2 School of Computer Science, Tel Aviv University, Israel.

More information

Binary heaps (chapters ) Leftist heaps

Binary heaps (chapters ) Leftist heaps Binary heaps (chapters 20.3 20.5) Leftist heaps Binary heaps are arrays! A binary heap is really implemented using an array! 8 18 29 20 28 39 66 Possible because of completeness property 37 26 76 32 74

More information

l So unlike the search trees, there are neither arbitrary find operations nor arbitrary delete operations possible.

l So unlike the search trees, there are neither arbitrary find operations nor arbitrary delete operations possible. DDS-Heaps 1 Heaps - basics l Heaps an abstract structure where each object has a key value (the priority), and the operations are: insert an object, find the object of minimum key (find min), and delete

More information

Lecture 6: Analysis of Algorithms (CS )

Lecture 6: Analysis of Algorithms (CS ) Lecture 6: Analysis of Algorithms (CS583-002) Amarda Shehu October 08, 2014 1 Outline of Today s Class 2 Traversals Querying Insertion and Deletion Sorting with BSTs 3 Red-black Trees Height of a Red-black

More information

Analysis of Algorithms

Analysis of Algorithms Analysis of Algorithms Concept Exam Code: 16 All questions are weighted equally. Assume worst case behavior and sufficiently large input sizes unless otherwise specified. Strong induction Consider this

More information

B-Trees Data structures on secondary storage primary memory main memory

B-Trees Data structures on secondary storage primary memory main memory 18 B-Trees B-trees are balanced search trees designed to work well on magnetic disks or other direct-access secondary storage devices. B-trees are similar to red-black trees (Chapter 13), but they are

More information

CS127: B-Trees. B-Trees

CS127: B-Trees. B-Trees CS127: B-Trees B-Trees 1 Data Layout on Disk Track: one ring Sector: one pie-shaped piece. Block: intersection of a track and a sector. Disk Based Dictionary Structures Use a disk-based method when the

More information

Data Structures and Algorithms

Data Structures and Algorithms Data Structures and Algorithms CS245-2008S-19 B-Trees David Galles Department of Computer Science University of San Francisco 19-0: Indexing Operations: Add an element Remove an element Find an element,

More information

CMPS 2200 Fall 2017 B-trees Carola Wenk

CMPS 2200 Fall 2017 B-trees Carola Wenk CMPS 2200 Fall 2017 B-trees Carola Wenk 9/18/17 CMPS 2200 Intro. to Algorithms 1 External memory dictionary Task: Given a large amount of data that does not fit into main memory, process it into a dictionary

More information

CSCI2100B Data Structures Heaps

CSCI2100B Data Structures Heaps CSCI2100B Data Structures Heaps Irwin King king@cse.cuhk.edu.hk http://www.cse.cuhk.edu.hk/~king Department of Computer Science & Engineering The Chinese University of Hong Kong Introduction In some applications,

More information

Red-Black-Trees and Heaps in Timestamp-Adjusting Sweepline Based Algorithms

Red-Black-Trees and Heaps in Timestamp-Adjusting Sweepline Based Algorithms Department of Informatics, University of Zürich Vertiefungsarbeit Red-Black-Trees and Heaps in Timestamp-Adjusting Sweepline Based Algorithms Mirko Richter Matrikelnummer: 12-917-175 Email: mirko.richter@uzh.ch

More information

Sorting and Searching

Sorting and Searching Sorting and Searching Lecture 2: Priority Queues, Heaps, and Heapsort Lecture 2: Priority Queues, Heaps, and Heapsort Sorting and Searching 1 / 24 Priority Queue: Motivating Example 3 jobs have been submitted

More information

Worst-case running time for RANDOMIZED-SELECT

Worst-case running time for RANDOMIZED-SELECT Worst-case running time for RANDOMIZED-SELECT is ), even to nd the minimum The algorithm has a linear expected running time, though, and because it is randomized, no particular input elicits the worst-case

More information

Representations of Weighted Graphs (as Matrices) Algorithms and Data Structures: Minimum Spanning Trees. Weighted Graphs

Representations of Weighted Graphs (as Matrices) Algorithms and Data Structures: Minimum Spanning Trees. Weighted Graphs Representations of Weighted Graphs (as Matrices) A B Algorithms and Data Structures: Minimum Spanning Trees 9.0 F 1.0 6.0 5.0 6.0 G 5.0 I H 3.0 1.0 C 5.0 E 1.0 D 28th Oct, 1st & 4th Nov, 2011 ADS: lects

More information

A set of nodes (or vertices) with a single starting point

A set of nodes (or vertices) with a single starting point Binary Search Trees Understand tree terminology Understand and implement tree traversals Define the binary search tree property Implement binary search trees Implement the TreeSort algorithm 2 A set of

More information

HEAPS: IMPLEMENTING EFFICIENT PRIORITY QUEUES

HEAPS: IMPLEMENTING EFFICIENT PRIORITY QUEUES HEAPS: IMPLEMENTING EFFICIENT PRIORITY QUEUES 2 5 6 9 7 Presentation for use with the textbook Data Structures and Algorithms in Java, 6 th edition, by M. T. Goodrich, R. Tamassia, and M. H., Wiley, 2014

More information

Algorithms and Theory of Computation. Lecture 7: Priority Queue

Algorithms and Theory of Computation. Lecture 7: Priority Queue Algorithms and Theory of Computation Lecture 7: Priority Queue Xiaohui Bei MAS 714 September 5, 2017 Nanyang Technological University MAS 714 September 5, 2017 1 / 15 Priority Queues Priority Queues Store

More information

Multi-way Search Trees. (Multi-way Search Trees) Data Structures and Programming Spring / 25

Multi-way Search Trees. (Multi-way Search Trees) Data Structures and Programming Spring / 25 Multi-way Search Trees (Multi-way Search Trees) Data Structures and Programming Spring 2017 1 / 25 Multi-way Search Trees Each internal node of a multi-way search tree T: has at least two children contains

More information

Chapter 20: Binary Trees

Chapter 20: Binary Trees Chapter 20: Binary Trees 20.1 Definition and Application of Binary Trees Definition and Application of Binary Trees Binary tree: a nonlinear linked list in which each node may point to 0, 1, or two other

More information

Data Structures Week #6. Special Trees

Data Structures Week #6. Special Trees Data Structures Week #6 Special Trees Outline Adelson-Velskii-Landis (AVL) Trees Splay Trees B-Trees October 5, 2015 Borahan Tümer, Ph.D. 2 AVL Trees October 5, 2015 Borahan Tümer, Ph.D. 3 Motivation for

More information

13.4 Deletion in red-black trees

13.4 Deletion in red-black trees Deletion in a red-black tree is similar to insertion. Apply the deletion algorithm for binary search trees. Apply node color changes and left/right rotations to fix the violations of RBT tree properties.

More information

A Comparison of Data Structures for Dijkstra's Single Source Shortest Path Algorithm. Shane Saunders

A Comparison of Data Structures for Dijkstra's Single Source Shortest Path Algorithm. Shane Saunders A Comparison of Data Structures for Dijkstra's Single Source Shortest Path Algorithm Shane Saunders November 5, 1999 Abstract Dijkstra's algorithm computes the shortest paths between a starting vertex

More information

Sorting and Searching

Sorting and Searching Sorting and Searching Lecture 2: Priority Queues, Heaps, and Heapsort Lecture 2: Priority Queues, Heaps, and Heapsort Sorting and Searching 1 / 24 Priority Queue: Motivating Example 3 jobs have been submitted

More information

COMP Analysis of Algorithms & Data Structures

COMP Analysis of Algorithms & Data Structures COMP 3170 - Analysis of Algorithms & Data Structures Shahin Kamali Binary Search Trees CLRS 12.2, 12.3, 13.2, read problem 13-3 University of Manitoba COMP 3170 - Analysis of Algorithms & Data Structures

More information

Advanced Algorithms and Data Structures

Advanced Algorithms and Data Structures Advanced Algorithms and Data Structures Prof. Tapio Elomaa tapio.elomaa@tut.fi Course Prerequisites A seven credit unit course Replaced OHJ-2156 Analysis of Algorithms We take things a bit further than

More information

Uses for Trees About Trees Binary Trees. Trees. Seth Long. January 31, 2010

Uses for Trees About Trees Binary Trees. Trees. Seth Long. January 31, 2010 Uses for About Binary January 31, 2010 Uses for About Binary Uses for Uses for About Basic Idea Implementing Binary Example: Expression Binary Search Uses for Uses for About Binary Uses for Storage Binary

More information

Binary Heaps in Dynamic Arrays

Binary Heaps in Dynamic Arrays Yufei Tao ITEE University of Queensland We have already learned that the binary heap serves as an efficient implementation of a priority queue. Our previous discussion was based on pointers (for getting

More information

Algorithms. AVL Tree

Algorithms. AVL Tree Algorithms AVL Tree Balanced binary tree The disadvantage of a binary search tree is that its height can be as large as N-1 This means that the time needed to perform insertion and deletion and many other

More information

Lecture: Analysis of Algorithms (CS )

Lecture: Analysis of Algorithms (CS ) Lecture: Analysis of Algorithms (CS583-002) Amarda Shehu Fall 2017 1 Binary Search Trees Traversals, Querying, Insertion, and Deletion Sorting with BSTs 2 Example: Red-black Trees Height of a Red-black

More information

Data Structures Week #6. Special Trees

Data Structures Week #6. Special Trees Data Structures Week #6 Special Trees Outline Adelson-Velskii-Landis (AVL) Trees Splay Trees B-Trees 21.Aralık.2010 Borahan Tümer, Ph.D. 2 AVL Trees 21.Aralık.2010 Borahan Tümer, Ph.D. 3 Motivation for

More information

FINALTERM EXAMINATION Fall 2009 CS301- Data Structures Question No: 1 ( Marks: 1 ) - Please choose one The data of the problem is of 2GB and the hard

FINALTERM EXAMINATION Fall 2009 CS301- Data Structures Question No: 1 ( Marks: 1 ) - Please choose one The data of the problem is of 2GB and the hard FINALTERM EXAMINATION Fall 2009 CS301- Data Structures Question No: 1 The data of the problem is of 2GB and the hard disk is of 1GB capacity, to solve this problem we should Use better data structures

More information

Trees can be used to store entire records from a database, serving as an in-memory representation of the collection of records in a file.

Trees can be used to store entire records from a database, serving as an in-memory representation of the collection of records in a file. Large Trees 1 Trees can be used to store entire records from a database, serving as an in-memory representation of the collection of records in a file. Trees can also be used to store indices of the collection

More information

CS521 \ Notes for the Final Exam

CS521 \ Notes for the Final Exam CS521 \ Notes for final exam 1 Ariel Stolerman Asymptotic Notations: CS521 \ Notes for the Final Exam Notation Definition Limit Big-O ( ) Small-o ( ) Big- ( ) Small- ( ) Big- ( ) Notes: ( ) ( ) ( ) ( )

More information

CSE 214 Computer Science II Introduction to Tree

CSE 214 Computer Science II Introduction to Tree CSE 214 Computer Science II Introduction to Tree Fall 2017 Stony Brook University Instructor: Shebuti Rayana shebuti.rayana@stonybrook.edu http://www3.cs.stonybrook.edu/~cse214/sec02/ Tree Tree is a non-linear

More information

CS251-SE1. Midterm 2. Tuesday 11/1 8:00pm 9:00pm. There are 16 multiple-choice questions and 6 essay questions.

CS251-SE1. Midterm 2. Tuesday 11/1 8:00pm 9:00pm. There are 16 multiple-choice questions and 6 essay questions. CS251-SE1 Midterm 2 Tuesday 11/1 8:00pm 9:00pm There are 16 multiple-choice questions and 6 essay questions. Answer the multiple choice questions on your bubble sheet. Answer the essay questions in the

More information

D. Θ nlogn ( ) D. Ο. ). Which of the following is not necessarily true? . Which of the following cannot be shown as an improvement? D.

D. Θ nlogn ( ) D. Ο. ). Which of the following is not necessarily true? . Which of the following cannot be shown as an improvement? D. CSE 0 Name Test Fall 00 Last Digits of Mav ID # Multiple Choice. Write your answer to the LEFT of each problem. points each. The time to convert an array, with priorities stored at subscripts through n,

More information

Disk Accesses. CS 361, Lecture 25. B-Tree Properties. Outline

Disk Accesses. CS 361, Lecture 25. B-Tree Properties. Outline Disk Accesses CS 361, Lecture 25 Jared Saia University of New Mexico Consider any search tree The number of disk accesses per search will dominate the run time Unless the entire tree is in memory, there

More information

Binary Search Trees Treesort

Binary Search Trees Treesort Treesort CS 311 Data Structures and Algorithms Lecture Slides Friday, November 13, 2009 Glenn G. Chappell Department of Computer Science University of Alaska Fairbanks CHAPPELLG@member.ams.org 2005 2009

More information

Priority Queues. Meld(Q 1,Q 2 ) merge two sets

Priority Queues. Meld(Q 1,Q 2 ) merge two sets Priority Queues MakeQueue Insert(Q,k,p) Delete(Q,k) DeleteMin(Q) Meld(Q 1,Q 2 ) Empty(Q) Size(Q) FindMin(Q) create new empty queue insert key k with priority p delete key k (given a pointer) delete key

More information

Augmenting Data Structures

Augmenting Data Structures Augmenting Data Structures [Not in G &T Text. In CLRS chapter 14.] An AVL tree by itself is not very useful. To support more useful queries we need more structure. General Definition: An augmented data

More information

Chapter 12: Indexing and Hashing. Basic Concepts

Chapter 12: Indexing and Hashing. Basic Concepts Chapter 12: Indexing and Hashing! Basic Concepts! Ordered Indices! B+-Tree Index Files! B-Tree Index Files! Static Hashing! Dynamic Hashing! Comparison of Ordered Indexing and Hashing! Index Definition

More information

l Heaps very popular abstract data structure, where each object has a key value (the priority), and the operations are:

l Heaps very popular abstract data structure, where each object has a key value (the priority), and the operations are: DDS-Heaps 1 Heaps - basics l Heaps very popular abstract data structure, where each object has a key value (the priority), and the operations are: l insert an object, find the object of minimum key (find

More information

Priority Queues and Binary Heaps

Priority Queues and Binary Heaps Yufei Tao ITEE University of Queensland In this lecture, we will learn our first tree data structure called the binary heap which serves as an implementation of the priority queue. Priority Queue A priority

More information

Chapter 12: Indexing and Hashing

Chapter 12: Indexing and Hashing Chapter 12: Indexing and Hashing Basic Concepts Ordered Indices B+-Tree Index Files B-Tree Index Files Static Hashing Dynamic Hashing Comparison of Ordered Indexing and Hashing Index Definition in SQL

More information

9/29/2016. Chapter 4 Trees. Introduction. Terminology. Terminology. Terminology. Terminology

9/29/2016. Chapter 4 Trees. Introduction. Terminology. Terminology. Terminology. Terminology Introduction Chapter 4 Trees for large input, even linear access time may be prohibitive we need data structures that exhibit average running times closer to O(log N) binary search tree 2 Terminology recursive

More information

Chapter 22 Splay Trees

Chapter 22 Splay Trees Chapter 22 Splay Trees Introduction Splay trees support all the operations of binary trees. But they do not guarantee Ο(log N) worst-case performance. Instead, its bounds are amortized, meaning that although

More information

CS F-11 B-Trees 1

CS F-11 B-Trees 1 CS673-2016F-11 B-Trees 1 11-0: Binary Search Trees Binary Tree data structure All values in left subtree< value stored in root All values in the right subtree>value stored in root 11-1: Generalizing BSTs

More information

M-ary Search Tree. B-Trees. B-Trees. Solution: B-Trees. B-Tree: Example. B-Tree Properties. Maximum branching factor of M Complete tree has height =

M-ary Search Tree. B-Trees. B-Trees. Solution: B-Trees. B-Tree: Example. B-Tree Properties. Maximum branching factor of M Complete tree has height = M-ary Search Tree B-Trees Section 4.7 in Weiss Maximum branching factor of M Complete tree has height = # disk accesses for find: Runtime of find: 2 Solution: B-Trees specialized M-ary search trees Each

More information

Laboratory Module X B TREES

Laboratory Module X B TREES Purpose: Purpose 1... Purpose 2 Purpose 3. Laboratory Module X B TREES 1. Preparation Before Lab When working with large sets of data, it is often not possible or desirable to maintain the entire structure

More information

B-trees. It also makes sense to have data structures that use the minimum addressable unit as their base node size.

B-trees. It also makes sense to have data structures that use the minimum addressable unit as their base node size. B-trees Balanced BSTs such as RBTs are great for data structures that can fit into the main memory of the computer. But what happens when we need to use external storage? Here are some approximate speeds

More information

How many leaves on the decision tree? There are n! leaves, because every permutation appears at least once.

How many leaves on the decision tree? There are n! leaves, because every permutation appears at least once. Chapter 8. Sorting in Linear Time Types of Sort Algorithms The only operation that may be used to gain order information about a sequence is comparison of pairs of elements. Quick Sort -- comparison-based

More information