AMS209 Final Project

Size: px
Start display at page:

Download "AMS209 Final Project"

Transcription

1 AMS209 Final Project Xingchen Yu Department of Applied Mathematics and Statistics, University of California, Santa Cruz November Abstract In the project, we explore LU decomposition with or without pivoting to compute systems of linear equations which are fundamental to any linear algebra problems. We used modular programming in Fortran to perform LU decomposition, forward and backward substitution for three different systems of linear equations. We used python to execute Fortran and compare results generated from our Fortran program with that from python Numpy package. As expected, the results are the same for our Fortran program and Numpy package. Lastly, we plot the requested matrix plot using Matplot from python. All of the three systems of equations were automatically executed at once as well and plots. 2 Methods, Results and Discussion In this section, we explain the methods we used for LU decomposition and the correpsonding results. We conclude this section by discussing the results and comparison between Fortran and Python 1

2 2.1 Methods In numerical analysis, LU decomposition factors a matrix as the product of a lower triangular matrix and an upper triangular matrix. The product sometimes includes a permutation matrix as well. The LU decomposition can be viewed as the matrix form of Gaussian elimination. With LU decomposition, systems of linear equations could be solved by simply with forward and backward substitution, providing scalability to solve large systems of equations. Two types of LU decomposition were used in our Fortran program, of which the first one is the LU decomposition without pivoting while its counterpart used pivoting. LU decomposition with pivoting eliminate the problem of dividing a very small value that creates wrong solution to the system of linear equations. Therefore, LU decomposition with pivoting should be preferred over the one without pivoting. In the python implementations, we provide run time parameter to allow users to select the desired method to compute LU decomposition in which 1 indicates for LU decomposition without pivoting and 2 for LU decomposition with pivoting. 2.2 Results In this section, we provide the results generated for each of three systems of linear equations. As stated earlier, the LU decomposition as well as forward and backward substitution were computed in Fortran. We use Python like a bridge program that performs run setup by compiling the makefile; and run scheduling by automatically three systems all in once; and checking results produced by out Fortran program and Numpy package from Python as well as producing three matrix plots. To compare the results between Numpy package and our Fortran implementation, we used a threshold of 1e-14 and compare the it with the sum of the absolute element-wise difference between results from Fortran and Python. 2

3 2.2.1 Case 1 In case 1, we are required to compute the following system of linear equations. The results output to the screen is shown in the following figure. In this problem, we used method 2 which is LU decomposition with pivoting to solve the system of linear equations. Figure 1: Screen Output for Case 1 Based on the screen output, we concludes that the results computed with Python and Fortran are the same, which is expected. The matrix plot for A, X and b are shown as follows respectively. To create these following plots, we need to have a n by n matrix to begin with. Since X and b are 1-D vector, therefore, we created a n by n matrix for them by duplicating itself. 3

4 Figure 2: A(left), X(middle), b(right) Case 2 In case 2, we are required to compute the following system of linear equations. The results output to the screen is shown in the following figure. In this problem, we used method 1 which is the LU decomposition without pivoting to solve the system of linear equations. We want to see if there is potential numerical problem of dividing by zero without pivoting. Figure 3: Screen Output for Case 2 4

5 Based on the screen output, we concludes that the results computed with Python and Fortran are the same, and therefore in this case we didn t encounter the problem of dividing a small value without using pivoting. The matrix plot for A, X and b are shown as follows respectively. Once again, to create these following plots, we need to have a n by n matrix to begin with. Since X and b are 1-D vector, therefore, we created a n by n matrix for them by duplicating itself. Figure 4: A(left), X(middle), b(right) Case 3 In case 3, we are required to compute the following system of linear equations. The results output to the screen is shown in the following figure. In this problem, we used method 2 which is the LU decomposition with pivoting to solve the system of linear equations. 5

6 Figure 5: Screen Output for Case 3 Based on the screen output, again the results from Python and Fortran agrees with each other. The matrix plot for A, X and b are shown as follows respectively. Once again, to create these following plots, we need to have a n by n matrix to begin with. Since X and b are 1-D vector, therefore, we created a n by n matrix for them by duplicating itself. Figure 6: A(left), X(middle), b(right) 2.3 Discussion As illustrated in this section, all the results 3 Conclusion As expected, we have the results from Python Numpy package agreeing with our Fortran implementation. During the construction of the code in Fortran, 6

7 we noticed that the book keeping is very tedious and difficult comparing to Python. However, the debugging flag provided in Fortran is very helpful in terms of quickly find the place of problem. On the other hand, Python is very user friendly and easy to do bookkeeping while having good debugging power as a open source software. Over the course of the this semester, I believe I have gained a fair amount of knowledge especially in Python and Fortran and I would like to express my sincere gratitude to our Professor Dongwook Lee and our TA David Johnes for your help and constructive advice. 7

AMS209 Final Project: Linear Equations System Solver

AMS209 Final Project: Linear Equations System Solver AMS209 Final Project: Linear Equations System Solver Rene Gutierrez Marquez 1 UCSC 1 December 7, 2016 Abstract In this project an implementation of a solver of a system of linear equations is implemented.

More information

Project Report. 1 Abstract. 2 Algorithms. 2.1 Gaussian elimination without partial pivoting. 2.2 Gaussian elimination with partial pivoting

Project Report. 1 Abstract. 2 Algorithms. 2.1 Gaussian elimination without partial pivoting. 2.2 Gaussian elimination with partial pivoting Project Report Bernardo A. Gonzalez Torres beaugonz@ucsc.edu Abstract The final term project consist of two parts: a Fortran implementation of a linear algebra solver and a Python implementation of a run

More information

Computational Methods CMSC/AMSC/MAPL 460. Vectors, Matrices, Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science

Computational Methods CMSC/AMSC/MAPL 460. Vectors, Matrices, Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science Computational Methods CMSC/AMSC/MAPL 460 Vectors, Matrices, Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science Zero elements of first column below 1 st row multiplying 1 st

More information

3. Replace any row by the sum of that row and a constant multiple of any other row.

3. Replace any row by the sum of that row and a constant multiple of any other row. Math Section. Section.: Solving Systems of Linear Equations Using Matrices As you may recall from College Algebra or Section., you can solve a system of linear equations in two variables easily by applying

More information

Numerical Methods 5633

Numerical Methods 5633 Numerical Methods 5633 Lecture 7 Marina Krstic Marinkovic mmarina@maths.tcd.ie School of Mathematics Trinity College Dublin Marina Krstic Marinkovic 1 / 10 5633-Numerical Methods Organisational To appear

More information

Parallel Implementations of Gaussian Elimination

Parallel Implementations of Gaussian Elimination s of Western Michigan University vasilije.perovic@wmich.edu January 27, 2012 CS 6260: in Parallel Linear systems of equations General form of a linear system of equations is given by a 11 x 1 + + a 1n

More information

CE 601: Numerical Methods Lecture 5. Course Coordinator: Dr. Suresh A. Kartha, Associate Professor, Department of Civil Engineering, IIT Guwahati.

CE 601: Numerical Methods Lecture 5. Course Coordinator: Dr. Suresh A. Kartha, Associate Professor, Department of Civil Engineering, IIT Guwahati. CE 601: Numerical Methods Lecture 5 Course Coordinator: Dr. Suresh A. Kartha, Associate Professor, Department of Civil Engineering, IIT Guwahati. Elimination Methods For a system [A]{x} = {b} where [A]

More information

Aim. Structure and matrix sparsity: Part 1 The simplex method: Exploiting sparsity. Structure and matrix sparsity: Overview

Aim. Structure and matrix sparsity: Part 1 The simplex method: Exploiting sparsity. Structure and matrix sparsity: Overview Aim Structure and matrix sparsity: Part 1 The simplex method: Exploiting sparsity Julian Hall School of Mathematics University of Edinburgh jajhall@ed.ac.uk What should a 2-hour PhD lecture on structure

More information

MS6021 Scientific Computing. MatLab and Python for Mathematical Modelling. Aimed at the absolute beginner.

MS6021 Scientific Computing. MatLab and Python for Mathematical Modelling. Aimed at the absolute beginner. MS6021 Scientific Computing MatLab and Python for Mathematical Modelling. Aimed at the absolute beginner. Natalia Kopteva Email: natalia.kopteva@ul.ie Web: http://www.staff.ul.ie/natalia/ Room: B2037 Office

More information

An Improved Measurement Placement Algorithm for Network Observability

An Improved Measurement Placement Algorithm for Network Observability IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 16, NO. 4, NOVEMBER 2001 819 An Improved Measurement Placement Algorithm for Network Observability Bei Gou and Ali Abur, Senior Member, IEEE Abstract This paper

More information

Example 1: Give the coordinates of the points on the graph.

Example 1: Give the coordinates of the points on the graph. Ordered Pairs Often, to get an idea of the behavior of an equation, we will make a picture that represents the solutions to the equation. A graph gives us that picture. The rectangular coordinate plane,

More information

Computational Methods CMSC/AMSC/MAPL 460. Vectors, Matrices, Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science

Computational Methods CMSC/AMSC/MAPL 460. Vectors, Matrices, Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science Computational Methods CMSC/AMSC/MAPL 460 Vectors, Matrices, Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science Some special matrices Matlab code How many operations and memory

More information

Performance of Multicore LUP Decomposition

Performance of Multicore LUP Decomposition Performance of Multicore LUP Decomposition Nathan Beckmann Silas Boyd-Wickizer May 3, 00 ABSTRACT This paper evaluates the performance of four parallel LUP decomposition implementations. The implementations

More information

5. Direct Methods for Solving Systems of Linear Equations. They are all over the place... and may have special needs

5. Direct Methods for Solving Systems of Linear Equations. They are all over the place... and may have special needs 5. Direct Methods for Solving Systems of Linear Equations They are all over the place... and may have special needs They are all over the place... and may have special needs, December 13, 2012 1 5.3. Cholesky

More information

Introduction to Parallel Computing Errata

Introduction to Parallel Computing Errata Introduction to Parallel Computing Errata John C. Kirk 27 November, 2004 Overview Book: Introduction to Parallel Computing, Second Edition, first printing (hardback) ISBN: 0-201-64865-2 Official book website:

More information

F01BSF NAG Fortran Library Routine Document

F01BSF NAG Fortran Library Routine Document F01 Matrix Factorizations F01BSF NAG Fortran Library Routine Document Note. Before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised

More information

A First Course in Statistical Programming with R

A First Course in Statistical Programming with R A First Course in Statistical Programming with R This new, color edition of Braun and Murdoch s bestselling textbook integrates use of the RStudio platform and adds discussion of newer graphics systems,

More information

A Study of Numerical Methods for Simultaneous Equations

A Study of Numerical Methods for Simultaneous Equations A Study of Numerical Methods for Simultaneous Equations Er. Chandan Krishna Mukherjee B.Sc.Engg., ME, MBA Asstt. Prof. ( Mechanical ), SSBT s College of Engg. & Tech., Jalgaon, Maharashtra Abstract: -

More information

LARP / 2018 ACK : 1. Linear Algebra and Its Applications - Gilbert Strang 2. Autar Kaw, Transforming Numerical Methods Education for STEM Graduates

LARP / 2018 ACK : 1. Linear Algebra and Its Applications - Gilbert Strang 2. Autar Kaw, Transforming Numerical Methods Education for STEM Graduates Triangular Factors and Row Exchanges LARP / 28 ACK :. Linear Algebra and Its Applications - Gilbert Strang 2. Autar Kaw, Transforming Numerical Methods Education for STEM Graduates Then there were three

More information

Numerical Linear Algebra

Numerical Linear Algebra Numerical Linear Algebra Probably the simplest kind of problem. Occurs in many contexts, often as part of larger problem. Symbolic manipulation packages can do linear algebra "analytically" (e.g. Mathematica,

More information

1 Introduction: Using a Python script to compile and plot data from Fortran modular program for Newton s method

1 Introduction: Using a Python script to compile and plot data from Fortran modular program for Newton s method 1 Introduction: Using a Python script to compile and plot data from Fortran modular program for Newton s method This week s assignment for AMS209 involves using a Python script that can compile a Fortran

More information

Iterative Refinement on FPGAs

Iterative Refinement on FPGAs Iterative Refinement on FPGAs Tennessee Advanced Computing Laboratory University of Tennessee JunKyu Lee July 19 th 2011 This work was partially supported by the National Science Foundation, grant NSF

More information

Python Scripting for Computational Science

Python Scripting for Computational Science Hans Petter Langtangen Python Scripting for Computational Science Third Edition With 62 Figures 43 Springer Table of Contents 1 Introduction... 1 1.1 Scripting versus Traditional Programming... 1 1.1.1

More information

September, a 11 x 1 +a 12 x a 1n x n =b 1 a 21 x 1 +a 22 x a 2n x n =b 2.. (1) a n 1 x 1 +a n2 x a nn x n = b n.

September, a 11 x 1 +a 12 x a 1n x n =b 1 a 21 x 1 +a 22 x a 2n x n =b 2.. (1) a n 1 x 1 +a n2 x a nn x n = b n. September, 1998 PHY307F/407F - Computational Physics Background Material for the Exercise - Solving Systems of Linear Equations David Harrison This document discusses techniques to solve systems of linear

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 1: Course Overview; Matrix Multiplication Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis I 1 / 21 Outline 1 Course

More information

How to perform HPL on CPU&GPU clusters. Dr.sc. Draško Tomić

How to perform HPL on CPU&GPU clusters. Dr.sc. Draško Tomić How to perform HPL on CPU&GPU clusters Dr.sc. Draško Tomić email: drasko.tomic@hp.com Forecasting is not so easy, HPL benchmarking could be even more difficult Agenda TOP500 GPU trends Some basics about

More information

This document describes how I implement the Newton method using Python and Fortran on the test function f(x) = (x 1) log 10 (x).

This document describes how I implement the Newton method using Python and Fortran on the test function f(x) = (x 1) log 10 (x). AMS 209 Foundations of Scientific Computing Homework 6 November 23, 2015 Cheng-Han Yu This document describes how I implement the Newton method using Python and Fortran on the test function f(x) = (x 1)

More information

AMSC/CMSC 460 Final Exam, Fall 2007

AMSC/CMSC 460 Final Exam, Fall 2007 AMSC/CMSC 460 Final Exam, Fall 2007 Show all work. You may leave arithmetic expressions in any form that a calculator could evaluate. By putting your name on this paper, you agree to abide by the university

More information

Computational Methods CMSC/AMSC/MAPL 460. Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science

Computational Methods CMSC/AMSC/MAPL 460. Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science Computational Methods CMSC/AMSC/MAPL 460 Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science Matrix norms Can be defined using corresponding vector norms Two norm One norm Infinity

More information

Solution of Out-of-Core Lower-Upper Decomposition for Complex Valued Matrices

Solution of Out-of-Core Lower-Upper Decomposition for Complex Valued Matrices Solution of Out-of-Core Lower-Upper Decomposition for Complex Valued Matrices Marianne Spurrier and Joe Swartz, Lockheed Martin Corp. and ruce lack, Cray Inc. ASTRACT: Matrix decomposition and solution

More information

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini DM545 Linear and Integer Programming Lecture 2 The Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. 3. 4. Standard Form Basic Feasible Solutions

More information

Python Scripting for Computational Science

Python Scripting for Computational Science Hans Petter Langtangen Python Scripting for Computational Science Third Edition With 62 Figures Sprin ger Table of Contents 1 Introduction 1 1.1 Scripting versus Traditional Programming 1 1.1.1 Why Scripting

More information

Modular Arithmetic. is just the set of remainders we can get when we divide integers by n

Modular Arithmetic. is just the set of remainders we can get when we divide integers by n 20181004 Modular Arithmetic We are accustomed to performing arithmetic on infinite sets of numbers. But sometimes we need to perform arithmetic on a finite set, and we need it to make sense and be consistent

More information

Assignment #6: Subspaces of R n, Bases, Dimension and Rank. Due date: Wednesday, October 26, 2016 (9:10am) Name: Section Number

Assignment #6: Subspaces of R n, Bases, Dimension and Rank. Due date: Wednesday, October 26, 2016 (9:10am) Name: Section Number Assignment #6: Subspaces of R n, Bases, Dimension and Rank Due date: Wednesday, October 26, 206 (9:0am) Name: Section Number Assignment #6: Subspaces of R n, Bases, Dimension and Rank Due date: Wednesday,

More information

(Creating Arrays & Matrices) Applied Linear Algebra in Geoscience Using MATLAB

(Creating Arrays & Matrices) Applied Linear Algebra in Geoscience Using MATLAB Applied Linear Algebra in Geoscience Using MATLAB (Creating Arrays & Matrices) Contents Getting Started Creating Arrays Mathematical Operations with Arrays Using Script Files and Managing Data Two-Dimensional

More information

Practice Test - Chapter 6

Practice Test - Chapter 6 1. Write each system of equations in triangular form using Gaussian elimination. Then solve the system. Align the variables on the left side of the equal sign. Eliminate the x-term from the 2nd equation.

More information

Semester Final Report

Semester Final Report CSUMS SemesterFinalReport InLaTex AnnKimball 5/20/2009 ThisreportisageneralsummaryoftheaccumulationofknowledgethatIhavegatheredthroughoutthis semester. I was able to get a birds eye view of many different

More information

Honors Precalculus: Solving equations and inequalities graphically and algebraically. Page 1

Honors Precalculus: Solving equations and inequalities graphically and algebraically. Page 1 Solving equations and inequalities graphically and algebraically 1. Plot points on the Cartesian coordinate plane. P.1 2. Represent data graphically using scatter plots, bar graphs, & line graphs. P.1

More information

Chapter 1: Foundations for Algebra

Chapter 1: Foundations for Algebra Chapter 1: Foundations for Algebra Dear Family, The student will follow the order of operations, a set of rules that standardize how to simplify expressions. Order of Operations 1. Perform operations within

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 24

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 24 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Lecture - 24 So in today s class, we will look at quadrilateral elements; and we will

More information

An Introduction to Python (TEJ3M & TEJ4M)

An Introduction to Python (TEJ3M & TEJ4M) An Introduction to Python (TEJ3M & TEJ4M) What is a Programming Language? A high-level language is a programming language that enables a programmer to write programs that are more or less independent of

More information

Getting along and working together. Fortran-Python Interoperability Jacob Wilkins

Getting along and working together. Fortran-Python Interoperability Jacob Wilkins Getting along and working together Fortran-Python Interoperability Jacob Wilkins Fortran AND Python working together? Fortran-Python May 2017 2/19 Two very different philosophies Two very different code-styles

More information

INTRODUCTION TO LINEAR AND NONLINEAR PROGRAMMING

INTRODUCTION TO LINEAR AND NONLINEAR PROGRAMMING INTRODUCTION TO LINEAR AND NONLINEAR PROGRAMMING DAVID G. LUENBERGER Stanford University TT ADDISON-WESLEY PUBLISHING COMPANY Reading, Massachusetts Menlo Park, California London Don Mills, Ontario CONTENTS

More information

Name: Math 310 Fall 2012 Toews EXAM 1. The material we have covered so far has been designed to support the following learning goals:

Name: Math 310 Fall 2012 Toews EXAM 1. The material we have covered so far has been designed to support the following learning goals: Name: Math 310 Fall 2012 Toews EXAM 1 The material we have covered so far has been designed to support the following learning goals: understand sources of error in scientific computing (modeling, measurement,

More information

Lecture 9. Introduction to Numerical Techniques

Lecture 9. Introduction to Numerical Techniques Lecture 9. Introduction to Numerical Techniques Ivan Papusha CDS270 2: Mathematical Methods in Control and System Engineering May 27, 2015 1 / 25 Logistics hw8 (last one) due today. do an easy problem

More information

Computer Vision CSCI-GA Assignment 1.

Computer Vision CSCI-GA Assignment 1. Computer Vision CSCI-GA.2272-001 Assignment 1. September 22, 2017 Introduction This assignment explores various methods for aligning images and feature extraction. There are four parts to the assignment:

More information

Intermediate Mathematics League of Eastern Massachusetts

Intermediate Mathematics League of Eastern Massachusetts Meet # January 010 Intermediate Mathematics League of Eastern Massachusetts Meet # January 010 Category 1 - Mystery Meet #, January 010 1. Of all the number pairs whose sum equals their product, what is

More information

University of Maryland, College Park Department of Civil and Environmental Engineering ENCE 202 Computation Methods in Civil Engineering I

University of Maryland, College Park Department of Civil and Environmental Engineering ENCE 202 Computation Methods in Civil Engineering I University of Maryland, College Park Department of Civil and Environmental Engineering ENCE 202 Computation Methods in Civil Engineering I Final Exam Closed Book & Notes Exam for two hours (120 minutes)

More information

Algebraically Speaking Chalkdust Algebra 1 Fall Semester

Algebraically Speaking Chalkdust Algebra 1 Fall Semester Algebraically Speaking Chalkdust Algebra 1 Fall Semester Homework Assignments: Chapter 1 The Real Number System: Lesson 1.1 - Real Numbers: Order and Absolute Value Do the following problems: # 1 9 Odd,

More information

Uppsala University Department of Information technology. Hands-on 1: Ill-conditioning = x 2

Uppsala University Department of Information technology. Hands-on 1: Ill-conditioning = x 2 Uppsala University Department of Information technology Hands-on : Ill-conditioning Exercise (Ill-conditioned linear systems) Definition A system of linear equations is said to be ill-conditioned when

More information

JES. 4 year BTech New Approved Curricula for Computer Science Engineering wef batch. BTech I semester (B1)

JES. 4 year BTech New Approved Curricula for Computer Science Engineering wef batch. BTech I semester (B1) BTech I semester (B1) 1 PD Professional Dev I 3 3 2 MA Mathematics-I 4 4 3 PH Physics-I 4 4 4 EC Electrical Circuit Analysis 4 4 5 CS Introduction to Computers and 4 4 Programming 6 PH Physics Lab-I 2

More information

Chapter Introduction

Chapter Introduction Chapter 4.1 Introduction After reading this chapter, you should be able to 1. define what a matrix is. 2. identify special types of matrices, and 3. identify when two matrices are equal. What does a matrix

More information

Python for Data Analysis

Python for Data Analysis Python for Data Analysis Wes McKinney O'REILLY 8 Beijing Cambridge Farnham Kb'ln Sebastopol Tokyo Table of Contents Preface xi 1. Preliminaries " 1 What Is This Book About? 1 Why Python for Data Analysis?

More information

Linear systems of equations

Linear systems of equations Linear systems of equations Michael Quinn Parallel Programming with MPI and OpenMP material do autor Terminology Back substitution Gaussian elimination Outline Problem System of linear equations Solve

More information

Chemical Engineering 541

Chemical Engineering 541 Chemical Engineering 541 Computer Aided Design Methods Direct Solution of Linear Systems 1 Outline 2 Gauss Elimination Pivoting Scaling Cost LU Decomposition Thomas Algorithm (Iterative Improvement) Overview

More information

Section 3.1 Gaussian Elimination Method (GEM) Key terms

Section 3.1 Gaussian Elimination Method (GEM) Key terms Section 3.1 Gaussian Elimination Method (GEM) Key terms Rectangular systems Consistent system & Inconsistent systems Rank Types of solution sets RREF Upper triangular form & back substitution Nonsingular

More information

An Integrated Skew Detection And Correction Using Fast Fourier Transform And DCT

An Integrated Skew Detection And Correction Using Fast Fourier Transform And DCT An Integrated Skew Detection And Correction Using Fast Fourier Transform And DCT Mandip Kaur, Simpel Jindal Abstract: Skew detection and correction is very important task before pre-processing of an image

More information

CS 526 Advanced Topics in Compiler Construction. 1 of 12

CS 526 Advanced Topics in Compiler Construction. 1 of 12 CS 526 Advanced Topics in Compiler Construction 1 of 12 Course Organization Instructor: David Padua 3-4223 padua@uiuc.edu Office hours: By appointment Course material: Website Textbook: Randy Allen and

More information

Linear Algebra libraries in Debian. DebConf 10 New York 05/08/2010 Sylvestre

Linear Algebra libraries in Debian. DebConf 10 New York 05/08/2010 Sylvestre Linear Algebra libraries in Debian Who I am? Core developer of Scilab (daily job) Debian Developer Involved in Debian mainly in Science and Java aspects sylvestre.ledru@scilab.org / sylvestre@debian.org

More information

CS 6210 Fall 2016 Bei Wang. Review Lecture What have we learnt in Scientific Computing?

CS 6210 Fall 2016 Bei Wang. Review Lecture What have we learnt in Scientific Computing? CS 6210 Fall 2016 Bei Wang Review Lecture What have we learnt in Scientific Computing? Let s recall the scientific computing pipeline observed phenomenon mathematical model discretization solution algorithm

More information

Addition/Subtraction flops. ... k k + 1, n (n k)(n k) (n k)(n + 1 k) n 1 n, n (1)(1) (1)(2)

Addition/Subtraction flops. ... k k + 1, n (n k)(n k) (n k)(n + 1 k) n 1 n, n (1)(1) (1)(2) 1 CHAPTER 10 101 The flop counts for LU decomposition can be determined in a similar fashion as was done for Gauss elimination The major difference is that the elimination is only implemented for the left-hand

More information

AMS 200: Working on Linux/Unix Machines

AMS 200: Working on Linux/Unix Machines AMS 200, Oct 20, 2014 AMS 200: Working on Linux/Unix Machines Profs. Nic Brummell (brummell@soe.ucsc.edu) & Dongwook Lee (dlee79@ucsc.edu) Department of Applied Mathematics and Statistics University of

More information

Gaussian Elimination 2 5 = 4

Gaussian Elimination 2 5 = 4 Linear Systems Lab Objective: The fundamental problem of linear algebra is solving the linear system Ax = b, given that a solution exists There are many approaches to solving this problem, each with different

More information

Please write your name and username here legibly: C212/A592 6W2 Summer 2017 Early Evaluation Exam: Fundamental Programming Structures in Java

Please write your name and username here legibly: C212/A592 6W2 Summer 2017 Early Evaluation Exam: Fundamental Programming Structures in Java Please write your name and username here legibly: C212/A592 6W2 Summer 2017 Early Evaluation Exam: Fundamental Programming Structures in Java Use BigDecimal (a class defined in package java.math) to write

More information

Lesson 6: Using Matrices to Solve Systems of Equations

Lesson 6: Using Matrices to Solve Systems of Equations Opening Exercise In Module 1, ou learned to solve sstems of equations b graphing, and b the substitution and elimination methods. Sstems of equations can also be solved using matrices. Before we use matrices,

More information

CS Data Structures and Algorithm Analysis

CS Data Structures and Algorithm Analysis CS 483 - Data Structures and Algorithm Analysis Lecture VI: Chapter 5, part 2; Chapter 6, part 1 R. Paul Wiegand George Mason University, Department of Computer Science March 8, 2006 Outline 1 Topological

More information

Midterm CSE 21 Fall 2012

Midterm CSE 21 Fall 2012 Signature Name Student ID Midterm CSE 21 Fall 2012 Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 _ (20 points) _ (15 points) _ (21 points) _ (13 points) _ (9 points) _ (7 points) Total _ (85 points) (80 points

More information

Unlabeled equivalence for matroids representable over finite fields

Unlabeled equivalence for matroids representable over finite fields Unlabeled equivalence for matroids representable over finite fields November 16, 2012 S. R. Kingan Department of Mathematics Brooklyn College, City University of New York 2900 Bedford Avenue Brooklyn,

More information

Integrated Math I. IM1.1.3 Understand and use the distributive, associative, and commutative properties.

Integrated Math I. IM1.1.3 Understand and use the distributive, associative, and commutative properties. Standard 1: Number Sense and Computation Students simplify and compare expressions. They use rational exponents and simplify square roots. IM1.1.1 Compare real number expressions. IM1.1.2 Simplify square

More information

Section 7D Systems of Linear Equations

Section 7D Systems of Linear Equations Section 7D Systems of Linear Equations Companies often look at more than one equation of a line when analyzing how their business is doing. For example a company might look at a cost equation and a profit

More information

NAG at Manchester. Michael Croucher (University of Manchester)

NAG at Manchester. Michael Croucher (University of Manchester) NAG at Manchester Michael Croucher (University of Manchester) Michael.Croucher@manchester.ac.uk www.walkingrandomly.com Twitter: @walkingrandomly My background PhD Computational Physics from Sheffield

More information

The Real Number System

The Real Number System The Real Number System Pi is probably one of the most famous numbers in all of history. As a decimal, it goes on and on forever without repeating. Mathematicians have already calculated trillions of the

More information

Implementation of Arc Consistency

Implementation of Arc Consistency Fall Semester, 2012 CSCE 421/821: Foundations of Constraint Processing B.Y. Choueiry Homework 2 Implementation of Arc Consistency Assigned: Friday, Sep 7, 2012 Due: Monday, Sep 17, 2012 Total value: 100

More information

Student Page. Algebra/ Day #4 90 Minute Class Functions, Patterns and X-Y Tables

Student Page. Algebra/ Day #4 90 Minute Class Functions, Patterns and X-Y Tables Student Page Algebra/ Da #4 90 Minute Class Functions, Patterns and X-Y Tables Definition: A relation is an set of ordered pairs Ex: # {(,), (-7,6), (-,4)} # { (0,8), (-, ), (0,6)} Definition: A function

More information

Sparse Linear Systems

Sparse Linear Systems 1 Sparse Linear Systems Rob H. Bisseling Mathematical Institute, Utrecht University Course Introduction Scientific Computing February 22, 2018 2 Outline Iterative solution methods 3 A perfect bipartite

More information

1 2 (3 + x 3) x 2 = 1 3 (3 + x 1 2x 3 ) 1. 3 ( 1 x 2) (3 + x(0) 3 ) = 1 2 (3 + 0) = 3. 2 (3 + x(0) 1 2x (0) ( ) = 1 ( 1 x(0) 2 ) = 1 3 ) = 1 3

1 2 (3 + x 3) x 2 = 1 3 (3 + x 1 2x 3 ) 1. 3 ( 1 x 2) (3 + x(0) 3 ) = 1 2 (3 + 0) = 3. 2 (3 + x(0) 1 2x (0) ( ) = 1 ( 1 x(0) 2 ) = 1 3 ) = 1 3 6 Iterative Solvers Lab Objective: Many real-world problems of the form Ax = b have tens of thousands of parameters Solving such systems with Gaussian elimination or matrix factorizations could require

More information

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture 32 Multiple Server Queueing Models In this lecture, we continue our discussion

More information

Preface. Features of the Third Edition

Preface. Features of the Third Edition The C++ programming language is derived from the C programming language, with added features to support object-oriented programming through the use of classes and programmerdefined types. The features

More information

Tropical Implicitization

Tropical Implicitization Tropical Implicitization Jan Verschelde University of Illinois at Chicago Department of Mathematics Statistics and Computer Science http://www.math.uic.edu/ jan jan@math.uic.edu Graduate Computational

More information

Introduction to Parallel. Programming

Introduction to Parallel. Programming University of Nizhni Novgorod Faculty of Computational Mathematics & Cybernetics Introduction to Parallel Section 9. Programming Parallel Methods for Solving Linear Systems Gergel V.P., Professor, D.Sc.,

More information

Computers in Engineering. Linear Algebra Michael A. Hawker

Computers in Engineering. Linear Algebra Michael A. Hawker Computers in Engineering COMP 208 Linear Algebra Michael A. Hawker Representing Vectors A vector is a sequence of numbers (the components of the vector) If there are n numbers, the vector is said to be

More information

Computers in Engineering COMP 208. Representing Vectors. Vector Operations 11/29/2007. Scaling. Adding and Subtracting

Computers in Engineering COMP 208. Representing Vectors. Vector Operations 11/29/2007. Scaling. Adding and Subtracting Computers in Engineering COMP 208 Linear Algebra Michael A. Hawker Representing Vectors A vector is a sequence of numbers (the components of the vector) If there are n numbers, the vector is said to be

More information

A New Formulae Method For Solving The Simultaneous Equations

A New Formulae Method For Solving The Simultaneous Equations A New Formulae Method For Solving The Simultaneous Equations Avinash A. Musale, Eknath S. Ugale ABSTRACT: Actually there are too many Methods which are used for solving the various types of equations by

More information

Parallel logic circuits

Parallel logic circuits Computer Mathematics Week 9 Parallel logic circuits College of Information cience and Engineering Ritsumeikan University last week the mathematics of logic circuits the foundation of all digital design

More information

PARALLEL PROGRAMMING MULTI- CORE COMPUTERS

PARALLEL PROGRAMMING MULTI- CORE COMPUTERS 2016 HAWAII UNIVERSITY INTERNATIONAL CONFERENCES SCIENCE, TECHNOLOGY, ENGINEERING, ART, MATH & EDUCATION JUNE 10-12, 2016 HAWAII PRINCE HOTEL WAIKIKI, HONOLULU PARALLEL PROGRAMMING MULTI- CORE COMPUTERS

More information

2.7 Numerical Linear Algebra Software

2.7 Numerical Linear Algebra Software 2.7 Numerical Linear Algebra Software In this section we will discuss three software packages for linear algebra operations: (i) (ii) (iii) Matlab, Basic Linear Algebra Subroutines (BLAS) and LAPACK. There

More information

Classroom Tips and Techniques: Stepwise Solutions in Maple - Part 2 - Linear Algebra

Classroom Tips and Techniques: Stepwise Solutions in Maple - Part 2 - Linear Algebra Introduction Classroom Tips and Techniques: Stepwise Solutions in Maple - Part 2 - Linear Algebra Robert J. Lopez Emeritus Professor of Mathematics and Maple Fellow Maplesoft In the preceding article Stepwise

More information

CE890 / ENE801 Lecture 1 Introduction to MATLAB

CE890 / ENE801 Lecture 1 Introduction to MATLAB CE890 / ENE801 Lecture 1 Introduction to MATLAB CE890: Course Objectives Become familiar with a powerful tool for computations and visualization (MATLAB) Promote problem-solving skills using computers

More information

Python Numpy (1) Intro to multi-dimensional array & numerical linear algebra. Harry Lee January 29, 2018 CEE 696

Python Numpy (1) Intro to multi-dimensional array & numerical linear algebra. Harry Lee January 29, 2018 CEE 696 Python Numpy (1) Intro to multi-dimensional array & numerical linear algebra Harry Lee January 29, 2018 CEE 696 Table of contents 1. Introduction 2. Linear Algebra 1 Introduction From the last lecture

More information

Big Data Analytics Performance for Large Out-Of- Core Matrix Solvers on Advanced Hybrid Architectures

Big Data Analytics Performance for Large Out-Of- Core Matrix Solvers on Advanced Hybrid Architectures Procedia Computer Science Volume 51, 2015, Pages 2774 2778 ICCS 2015 International Conference On Computational Science Big Data Analytics Performance for Large Out-Of- Core Matrix Solvers on Advanced Hybrid

More information

Methods for Enhancing the Speed of Numerical Calculations for the Prediction of the Mechanical Behavior of Parts Made Using Additive Manufacturing

Methods for Enhancing the Speed of Numerical Calculations for the Prediction of the Mechanical Behavior of Parts Made Using Additive Manufacturing Methods for Enhancing the Speed of Numerical Calculations for the Prediction of the Mechanical Behavior of Parts Made Using Additive Manufacturing Mohammad Nikoukar, Nachiket Patil, Deepankar Pal, and

More information

An Introduction to MATLAB See Chapter 1 of Gilat

An Introduction to MATLAB See Chapter 1 of Gilat 1 An Introduction to MATLAB See Chapter 1 of Gilat Kipp Martin University of Chicago Booth School of Business January 25, 2012 Outline The MATLAB IDE MATLAB is an acronym for Matrix Laboratory. It was

More information

COMPUTATIONAL DYNAMICS

COMPUTATIONAL DYNAMICS COMPUTATIONAL DYNAMICS THIRD EDITION AHMED A. SHABANA Richard and Loan Hill Professor of Engineering University of Illinois at Chicago A John Wiley and Sons, Ltd., Publication COMPUTATIONAL DYNAMICS COMPUTATIONAL

More information

spam: a Sparse Matrix R Package

spam: a Sparse Matrix R Package Inlet one: spam: a Sparse Matrix R Package with Emphasis on MCMC Methods for Gaussian Markov Random Fields NCAR August 2008 Reinhard Furrer What is spam? an R package for sparse matrix algebra publicly

More information

on the CM-200. Claus Bendtsen Abstract to implement LAPACK-style routines already developed for other architectures,

on the CM-200. Claus Bendtsen Abstract to implement LAPACK-style routines already developed for other architectures, \Quick" Implementation of Block LU Algorithms on the CM-200. Claus Bendtsen Abstract The CMSSL library only includes a limited amount of mathematical algorithms. Hence, when writing code for the Connection

More information

CS426 Compiler Construction Fall 2006

CS426 Compiler Construction Fall 2006 CS426 Compiler Construction David Padua Department of Computer Science University of Illinois at Urbana-Champaign 0. Course organization 2 of 23 Instructor: David A. Padua 4227 SC, 333-4223 Office Hours:

More information

Exploring Physics Students Difficulties in Solving Symbolic Algebra Problems. Dakota H. King and David E. Meltzer Arizona State University

Exploring Physics Students Difficulties in Solving Symbolic Algebra Problems. Dakota H. King and David E. Meltzer Arizona State University Exploring Physics Students Difficulties in Solving Symbolic Algebra Problems Dakota H. King and David E. Meltzer Arizona State University Supported in part by NSF DUE #1504986 Trigonometry Questions Three

More information

Welcome to Microsoft Excel 2013 p. 1 Customizing the QAT p. 5 Customizing the Ribbon Control p. 6 The Worksheet p. 6 Excel 2013 Specifications and

Welcome to Microsoft Excel 2013 p. 1 Customizing the QAT p. 5 Customizing the Ribbon Control p. 6 The Worksheet p. 6 Excel 2013 Specifications and Preface p. xi Welcome to Microsoft Excel 2013 p. 1 Customizing the QAT p. 5 Customizing the Ribbon Control p. 6 The Worksheet p. 6 Excel 2013 Specifications and Limits p. 9 Compatibility with Other Versions

More information

PARDISO Version Reference Sheet Fortran

PARDISO Version Reference Sheet Fortran PARDISO Version 5.0.0 1 Reference Sheet Fortran CALL PARDISO(PT, MAXFCT, MNUM, MTYPE, PHASE, N, A, IA, JA, 1 PERM, NRHS, IPARM, MSGLVL, B, X, ERROR, DPARM) 1 Please note that this version differs significantly

More information

Exponents. Reteach. Write each expression in exponential form (0.4)

Exponents. Reteach. Write each expression in exponential form (0.4) 9-1 Exponents You can write a number in exponential form to show repeated multiplication. A number written in exponential form has a base and an exponent. The exponent tells you how many times a number,

More information