CS241 Computer Organization Spring

Size: px
Start display at page:

Download "CS241 Computer Organization Spring"

Transcription

1 CS241 Computer Organization Spring 2015 Prof. Searleman

2 ! Name (as you like to be called)! Major! Graduating Year! Hometown! Programming & Computer Experience! Something about yourself! Goals for this course

3 Overview! Introduction and course goals! Administrivia! Organization and Anatomy of a Computer Reading: CSAPP2, Chapter 1 & Chapter 2, section 2.1 if you have K&R, do the tutorial in Chapter 1

4 Course Objectives!To learn low-level representation of data and data structures in memory!to learn how a high-level language program is implemented in machine code, and how to interpret and debug assembly language programs!to learn how a modern computer operates at the level of the processor and the memory hierarchy!to learn about techniques used to maximize the performance of programs!to become familiar with the C programming language

5 What are Machine Structures? Software Hardware Application (Firefox) Compiler Assembler Processor Memory Digital Design Circuit Design transistors Operating System (Windows 7) Datapath & Control I/O system Instruction Set Architecture CS241!Coordination of many levels of abstraction

6 Levels of Representation High Level Language Program (e.g., C) Compiler Assembly Language Program Assembler Machine Language Program CS241 temp = v[k]; v[k] = v[k+1]; v[k+1] = temp; lw $to, 0($2) lw $t1, 4($2) sw $t1, 0($2) sw $t0, 4($2) Machine Interpretation Control Signal Specification

7 Anatomy: 5 components of any Computer Personal Computer Computer Processor (active) Control ( brain ) Datapath ( brawn ) Memory (passive) (where programs & data live when running) Devices Input Output Keyboard, Mouse Disk (where programs & data live when not running) Display, Printer

8 What is Computer Architecture Computer Architecture = Instruction Set Architecture + Machine Organization

9 CS241: So what's in it for me?! Computer Organization from a programmer's point of view What the programmer writes How it is converted to something the computer understands How the computer interprets the program What makes programs go slow

10 CS241: So what's in it for me?! Learn big ideas in CS and engineering 5 classic components of a Computer Data can be anything (integers, floating point, characters): a program determines what it is Stored program concept: instructions just data Principle of abstraction, used to build systems as layers

11 C What 241 is not C++! Becoming an expert at C If you know one, you should be able to learn another programming language on your own Given that you know C++ and/or Java, should be easy to pick up its ancestor, C! Hardware design Java Hardware at abstract level, with only a little bit of physical logic to give things perspective

12 Administrivia!course webpage: info: SC375, x2377, hours: check webpage!schedule: check frequently!

13 Textbooks Required:! Computer Systems: A Programmer s Perspective (CS:APP), second edition Recommended: a good C reference; one possibility is:! The C Programming Language, ANSI C, Second Edition, by Kernighan & Ritchie, Prentice Hall, 1988, ISBN

14 Grading Policy 2 Midterm Exams 30% Final Exam: 35% Quizzes 5% HW Assignments & Labs 30% Tentative dates for the exams are: February 24 th and April 14 th These exam dates are somewhat flexible, and may be modified two weeks in advance of the tentative date, based on the exam schedules of students in the class.

15 Labs: provide in-depth understanding of systems!data Lab bit-level representation of C datatypes and behavior of operations on the data!bomb Lab defuse a binary bomb by disassembling and reverse engineering a program!buffer Lab modify the run-time behavior of a binary executable by exploiting a buffer overflow bug!performance Lab: optimize the performance of an application function

16 Course Theme: Abstraction Is Good But Don t Forget Reality! Many CS courses emphasize abstraction Abstract data types Asymptotic analysis! These abstractions have limits Especially in the presence of bugs Need to understand details of underlying implementations

17 Course Theme: (cont.) Abstraction is Good But Don t Forget Reality! Useful outcomes Become more effective programmers Able to find and eliminate bugs efficiently Able to understand and tune for program performance Prepare for later systems classes in CS & ECE Compilers, Operating Systems, Networks, Computer Architecture, Embedded Systems

18 Great Reality #1: Int s are not Integers, Float s are not Reals! Example 1: Is x 2 0? Float s: Yes! Int s: * > * >??! Example 2: Is (x + y) + z = x + (y + z)? Unsigned & Signed Int s: Yes! Float s: (1e e20) > e20 + (-1e ) -->??

19 Code Security Example /* Kernel memory region holding user-accessible data */ #define KSIZE 1024 char kbuf[ksize]; /* Copy at most maxlen bytes from kernel region to user buffer */ int copy_from_kernel(void *user_dest, int maxlen) { /* Byte count len is minimum of buffer size & maxlen */ int len = KSIZE < maxlen? KSIZE : maxlen; memcpy(user_dest, kbuf, len); return len; }! Similar to code found in FreeBSD s implementation of getpeername! There are legions of smart people trying to find vulnerabilities in programs

20 Typical Usage #define MSIZE 528 void getstuff() { char mybuf[msize]; copy_from_kernel(mybuf, MSIZE); printf( %s\n, mybuf); } /* Kernel memory region holding user-accessible data */ #define KSIZE 1024 char kbuf[ksize]; /* Copy at most maxlen bytes from kernel region to user buffer */ int copy_from_kernel(void *user_dest, int maxlen) { /* Byte count len is minimum of buffer size and maxlen */ int len = KSIZE < maxlen? KSIZE : maxlen; memcpy(user_dest, kbuf, len); return len; }

21 Malicious Usage #define MSIZE 528 void getstuff() { char mybuf[msize]; copy_from_kernel(mybuf, -MSIZE);... } /* Kernel memory region holding user-accessible data */ #define KSIZE 1024 char kbuf[ksize]; /* Copy at most maxlen bytes from kernel region to user buffer */ int copy_from_kernel(void *user_dest, int maxlen) { /* Byte count len is minimum of buffer size and maxlen */ int len = KSIZE < maxlen? KSIZE : maxlen; memcpy(user_dest, kbuf, len); return len; }

22 Computer Arithmetic! Does not generate random values Arithmetic operations have important mathematical properties! Cannot assume all usual mathematical properties Due to finiteness of representations Integer operations satisfy ring properties Commutativity, associativity, distributivity Floating point operations satisfy ordering properties Monotonicity, values of signs

23 Computer Arithmetic (continued)! Observation Need to understand which abstractions apply in which contexts Important issues for compiler writers and serious application programmers

24 Great Reality #2: You ve Got to Know Assembly! Chances are, you ll never write program in assembly Compilers are much better & more patient than you are! But, understanding assembly key to machine-level execution model Behavior of programs in presence of bugs High-level language model breaks down Tuning program performance Understand optimizations done/not done by the compiler

25 Great Reality #2: (continued) You ve Got to Know Assembly! Understanding assembly key to machine-level execution model (continued) Implementing system software Compiler has machine code as target Operating systems must manage process state Creating / fighting malware x86 assembly is the language of choice!

26 Assembly Code Example!Time Stamp Counter Special 64-bit register in Intel-compatible machines Incremented every clock cycle Read with rdtsc instruction! Application Measure time (in clock cycles) required by procedure double t; start_counter(); P(); t = get_counter(); printf("p required %f clock cycles\n", t);

27 Code to Read Counter!Write small amount of assembly code using GCC s asm facility!inserts assembly code into machine code generated by compiler static unsigned cyc_hi = 0; static unsigned cyc_lo = 0; /* Set *hi and *lo to the high and low order bits of the cycle counter. */ void access_counter(unsigned *hi, unsigned *lo) { asm("rdtsc; movl %%edx,%0; movl %%eax,%1" : "=r" (*hi), "=r" (*lo) : : "%edx", "%eax"); }

28 Great Reality #3: Memory Matters Random Access Memory Is an Unphysical Abstraction! Memory is not unbounded It must be allocated and managed Many applications are memory dominated! Memory referencing bugs especially pernicious Effects are distant in both time and space! Memory performance is not uniform Cache and virtual memory effects can greatly affect program performance Adapting program to characteristics of memory system can lead to major speed improvements

29 Memory Referencing Bug Example double fun(int i) { volatile double d[1] = {3.14}; volatile long int a[2]; a[i] = ; /* Possibly out of bounds */ return d[0]; } fun(0) > 3.14 fun(1) > 3.14 fun(2) > fun(3) > fun(4) > 3.14, then segmentation fault

30 Memory Referencing Bug Example double fun(int i) { volatile double d[1] = {3.14}; volatile long int a[2]; a[i] = ; /*?*/ return d[0]; } fun(0) > 3.14 fun(1) > 3.14 fun(2) > fun(3) > fun(4) > 3.14, then segmentation fault Explanation: Saved State d7 d4 d3 d0 a[1] a[0] Location accessed by fun(i)

31 Memory Referencing Errors! C and C++ do not provide any memory protection Out of bounds array references Invalid pointer values Abuses of malloc/free! Can lead to nasty bugs Whether or not bug has any effect depends on system and compiler Action at a distance Corrupted object logically unrelated to one being accessed

32 Memory Referencing Errors (continued)! How can I deal with this? Program in Java or ML Understand what possible interactions may occur Use or develop tools to detect referencing errors

33 Memory System Performance Example void copyij( int src[2048][2048], int dst[2048][2048]) { int i,j; for (i = 0; i<2048; i++) for (j = 0; j<2048; j++) dst[i][j] = src[i][j]; } void copyji( int src[2048][2048], int dst[2048][2048]) { int i,j; for (j = 0; j<2048; j++) for (i = 0; i<2048; i++) dst[i][j] = src[i][j]; }! Hierarchical memory organization! Performance depends on access patterns Including how to step through a multi-dimensional array 21 times slower (Pentium 4)

34 Great Reality #4: There s more to performance than asymptotic complexity! Constant factors matter too!! And even exact op count does not predict performance Easily see 10:1 performance range depending on how code written Must optimize at multiple levels: algorithm, data representations, procedures, and loops

35 Great Reality #4: (cont) There s more to performance than asymptotic complexity! Must understand system to optimize performance How programs compiled and executed How to measure program performance and identify bottlenecks How to improve performance without destroying code modularity and generality

36 Example Matrix Multiplication Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision) Gflop/s Best code (K. Goto) x Triple loop 0 2,250 4,500 6,750 9,000 matrix size!standard desktop computer, vendor compiler, using optimization flags!both implementations have exactly the same operations count (2n 3 ) What is going on?

37 MMM Plot: Analysis Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz Gflop/s Multiple threads: 4x Vector instructions: 4x Memory hierarchy and other optimizations: 20x 0 2,250 4,500 6,750 9,000 matrix size Reason for 20x: Blocking or tiling, loop unrolling, array scalarization, instruction scheduling, search to find best choice Effect: less register spills, less L1/L2 cache misses, less TLB misses

38 Great Reality #5: Computers do more than execute programs! They need to get data in and out I/O system critical to program reliability and performance! They communicate with each other over networks Many system-level issues arise in presence of network Concurrent operations by autonomous processes Coping with unreliable media Cross platform compatibility Complex performance issues

39 Course Perspective! Most Systems Courses are Builder-Centric Computer Architecture Design pipelined processor in Verilog Operating Systems Implement large portions of operating system Compilers Write compiler for simple language Networking Implement and simulate network protocols

40 Course Perspective (Cont.)! This Course is Programmer-Centric Purpose is to show how by knowing more about the underlying system, one can be more effective as a programmer Enable you to Write programs that are more reliable and efficient Incorporate features that require hooks into OS, e.g., concurrency, signal handlers Not just a course for dedicated hackers We bring out the hidden hacker in everyone Covers material in this course that you won t see elsewhere

41 And in Conclusion...!14 weeks to learn big ideas in CS&E Principle of abstraction, used to build systems as layers Pliable Data: a program determines what it is Stored program concept: instructions are just data Principle of Locality, exploited via a memory hierarchy (cache) Greater performance Compilation v. interpretation to move down layers of system Principles/Pitfalls of Performance Measurement

42 And in Conclusion...!Continued rapid improvement in Computing 2X every 1.5 years in processor speed; every 2.0 years in memory size; every 1.0 year in disk capacity; Moore s Law enables processor, memory (2X transistors/chip/ ~1.5 yrs)!5 classic components of all computers Control + Datapath Memory Input Output Processor

43 CS241: Computer Organization Have Fun!

44 HelloWorld in C HelloWorld.c 1. #include <stdio.h> 2. int main() 3. { 4. printf( hello, world\n ); 5. return 0; 6. }

Course Overview. Jo, Heeseung

Course Overview. Jo, Heeseung Course Overview Jo, Heeseung Course Theme: Abstraction Is Good But Don't Forget Reality Most CS and CE courses emphasize abstraction Abstract data types Asymptotic analysis These abstractions have limits

More information

Course Overview. CSCI 224 / ECE 317: Computer Architecture. Instructors: Prof. Jason Fritts. Slides adapted from Bryant & O Hallaron s slides

Course Overview. CSCI 224 / ECE 317: Computer Architecture. Instructors: Prof. Jason Fritts. Slides adapted from Bryant & O Hallaron s slides Course Overview CSCI 224 / ECE 317: Computer Architecture Instructors: Prof. Jason Fritts Slides adapted from Bryant & O Hallaron s slides 1 Overview Course theme Five realities Logistics 2 Course Theme:

More information

Course Overview CSCE 312. Instructor: Daniel A. Jiménez. Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition

Course Overview CSCE 312. Instructor: Daniel A. Jiménez. Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition Course Overview CSCE 312 Instructor: Daniel A. Jiménez 1 Overview Course theme Five realities How the course fits into the CS/ECE curriculum Academic integrity 2 Course Theme: Abstraction Is Good But Don

More information

Great Reality #2: You ve Got to Know Assembly Does not generate random values Arithmetic operations have important mathematical properties

Great Reality #2: You ve Got to Know Assembly Does not generate random values Arithmetic operations have important mathematical properties Overview Course Overview Course theme Five realities Computer Systems 1 2 Course Theme: Abstraction Is Good But Don t Forget Reality Most CS courses emphasize abstraction Abstract data types Asymptotic

More information

Computer Organization - Overview

Computer Organization - Overview Computer Organization - Overview Hyunyoung Lee CSCE 312 1 Course Overview Topics: Theme Five great realities of computer systems Computer system overview Summary NOTE: Most slides are from the textbook

More information

Introduction to Computer Systems

Introduction to Computer Systems CSCE 230J Computer Organization Introduction to Computer Systems Dr. Steve Goddard goddard@cse.unl.edu http://cse.unl.edu/~goddard/courses/csce230j Giving credit where credit is due Most of slides for

More information

Introduction to Computer Systems

Introduction to Computer Systems CSCE 230J Computer Organization Introduction to Computer Systems Dr. Steve Goddard goddard@cse.unl.edu Giving credit where credit is due Most of slides for this lecture are based on slides created by Drs.

More information

Introduction to Computer Systems: Semester 1 Computer Architecture

Introduction to Computer Systems: Semester 1 Computer Architecture Introduction to Computer Systems: Semester 1 Computer Architecture Fall 2003 William J. Taffe using modified lecture slides of Randal E. Bryant Topics: Theme Five great realities of computer systems How

More information

Overview. Course Overview and Introduction

Overview. Course Overview and Introduction Here early? Try going to http://chimein.cla.umn.edu/ and see if you can answer an ice cream question Course Overview and Introduction CSci 2021: Machine Architecture and Organization Lecture #1, September

More information

Introduction to Computer Architecture. Meet your Colleagues. Course Theme CISC Michela Taufer September 4, 2008

Introduction to Computer Architecture. Meet your Colleagues. Course Theme CISC Michela Taufer September 4, 2008 CISC 360-010 Introduction to Computer Architecture Michela Taufer September 4, 2008 Topics: Course policies and overview Theme Five great realities of computer systems Powerpoint Lecture Notes for Computer

More information

ABSTRACTION ISN T THE ENTIRE STORY

ABSTRACTION ISN T THE ENTIRE STORY ABSTRACTION ISN T THE ENTIRE STORY CS 045 Computer Organization and Architecture Prof. Donald J. Patterson Adapted from Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition

More information

Systems Programming and Computer Architecture ( )

Systems Programming and Computer Architecture ( ) (252-0061-00) Timothy Roscoe Herbstsemester 2013 Systems Group Department of Computer Science ETH Zürich 1 1: Introduction 252-0061-00, Herbstsemester 2013 Timothy Roscoe 2 This course covers in depth

More information

Digital Systems. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

Digital Systems. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University Digital Systems Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu SSE2030: Introduction to Computer Systems, Spring 2018, Jinkyu Jeong (jinkyu@skku.edu)

More information

Lecture 1: Course Overview

Lecture 1: Course Overview Lecture 1: Course Overview Computer Systems Organization (Spring 2017) CSCI-UA 201, Section 3 Instructor: Joanna Klukowska Slides adapted from Randal E. Bryant and David R. O Hallaron (CMU) Mohamed Zahran

More information

Systems Programming and Computer Architecture ( )

Systems Programming and Computer Architecture ( ) Systems Group Department of Computer Science ETH Zürich Systems Programming and Computer Architecture (252-0061-00) Timothy Roscoe Herbstsemester 2016 1 1: Introduction Systems Programming and Computer

More information

Introduction to Computer Systems

Introduction to Computer Systems CS-213 Introduction to Computer Systems Yan Chen Topics: Staff, text, and policies Lecture topics and assignments Lab rationale CS 213 F 06 Teaching staff Instructor TA Prof. Yan Chen (Thu 2-4pm, Tech

More information

Introduction to Computer Systems /18 243, Spring st Lecture, Aug. 25 th. The course that gives CMU its Zip!

Introduction to Computer Systems /18 243, Spring st Lecture, Aug. 25 th. The course that gives CMU its Zip! Introduction to Computer Systems 15 213/18 243, Spring 2009 1 st Lecture, Aug. 25 th Instructors: Roger Dannenberg and Greg Ganger The course that gives CMU its Zip! Overview Course role and theme Five

More information

The Hardware/Software Interface CSE351 Spring 2013 (spring has sprung!)

The Hardware/Software Interface CSE351 Spring 2013 (spring has sprung!) The Hardware/Software Interface CSE351 Spring 2013 (spring has sprung!) Instructor: Luis Ceze Teaching Assistants: Katelin Bailey, Jeremy Lee, Jake Sanders, Rachel Sobel 1 Who is Luis? PhD in architecture,

More information

Introduction to Computer Systems

Introduction to Computer Systems Introduction to Computer Systems Today: Welcome to EECS 213 Lecture topics and assignments Next time: Bits & bytes and some Boolean algebra Fabián E. Bustamante, Spring 2010 Welcome to Intro. to Computer

More information

1/%*2.&34.&%56+74.&%*8"(%&,.9%*!"#$%&'()*)+,'-.&.' & /* '012*)314'-5'"16*1+713'

1/%*2.&34.&%56+74.&%*8(%&,.9%*!#$%&'()*)+,'-.&.' & /* '012*)314'-5'16*1+713' 1/%*2.&34.&%56+74.&%*8"(%&,.9%*!"#$%&'()*)+,'-.&.' & /* '012*)314'-5'"16*1+713' 8"'(&:9(+&;'' 89:';13

More information

Introduction to Computer Systems

Introduction to Computer Systems Introduction to Computer Systems Today:! Welcome to EECS 213! Lecture topics and assignments Next time:! Bits & bytes! and some Boolean algebra Fabián E. Bustamante, 2007 Welcome to Intro. to Computer

More information

Overview of the ECE Computer Software Curriculum. David O Hallaron Associate Professor of ECE and CS Carnegie Mellon University

Overview of the ECE Computer Software Curriculum. David O Hallaron Associate Professor of ECE and CS Carnegie Mellon University Overview of the ECE Computer Software Curriculum David O Hallaron Associate Professor of ECE and CS Carnegie Mellon University The Fundamental Idea of Abstraction Human beings Applications Software systems

More information

Chris Riesbeck, Fall Introduction to Computer Systems

Chris Riesbeck, Fall Introduction to Computer Systems Chris Riesbeck, Fall 2011 Introduction to Computer Systems Welcome to Intro. to Computer Systems Everything you need to know http://www.cs.northwestern.edu/academics/courses/213/ Instructor: Chris Riesbeck

More information

Introduction Presentation A

Introduction Presentation A CSE 2421/5042: Systems I Low-Level Programming and Computer Organization Introduction Presentation A Read carefully: Bryant Chapter 1 Study: Reek Chapter 2 Skim: Reek Chapter 1 08/22/2018 Gojko Babić Some

More information

CS430 - Computer Architecture William J. Taffe Fall 2002 using slides from. CS61C - Machine Structures Dave Patterson Fall 2000

CS430 - Computer Architecture William J. Taffe Fall 2002 using slides from. CS61C - Machine Structures Dave Patterson Fall 2000 CS430 - Computer Architecture William J. Taffe Fall 2002 using slides from CS61C - Machine Structures Dave Patterson Fall 2000 CS 430 Intro.1 WJ Taffe, Fall 2002 Overview Intro to Machine Structures Organization

More information

Systems Programming and Computer Architecture ( )

Systems Programming and Computer Architecture ( ) Systems Group Department of Computer Science ETH Zürich Systems Programming and Computer Architecture (252-0061-00) Timothy Roscoe Herbstsemester 2016 1 3: Integers in C Computer Architecture and Systems

More information

Computer Systems CEN591(502) Fall 2011

Computer Systems CEN591(502) Fall 2011 Computer Systems CEN591(502) Fall 2011 Sandeep K. S. Gupta Arizona State University 4 th lecture Data representation in computer systems (Slides adapted from CSAPP book) Announcements Programming assignment

More information

The Hardware/Software Interface CSE351 Spring 2015

The Hardware/Software Interface CSE351 Spring 2015 The Hardware/Software Interface CSE351 Spring 2015 Instructor: Katelin Bailey Teaching Assistants: Kaleo Brandt, Dylan Johnson, Luke Nelson, Alfian Rizqi, Kritin Vij, David Wong, and Shan Yang Who are

More information

CS61C Machine Structures. Lecture 1 Introduction. 8/27/2006 John Wawrzynek (Warzneck)

CS61C Machine Structures. Lecture 1 Introduction. 8/27/2006 John Wawrzynek (Warzneck) CS61C Machine Structures Lecture 1 Introduction 8/27/2006 John Wawrzynek (Warzneck) (http://www.cs.berkeley.edu/~johnw/) http://www-inst.eecs.berkeley.edu/~cs61c/ CS 61C L01 Introduction (1) What are Machine

More information

CS61C Machine Structures. Lecture 1 Introduction. 8/25/2003 Brian Harvey. John Wawrzynek (Warznek) www-inst.eecs.berkeley.

CS61C Machine Structures. Lecture 1 Introduction. 8/25/2003 Brian Harvey. John Wawrzynek (Warznek) www-inst.eecs.berkeley. CS61C Machine Structures Lecture 1 Introduction 8/25/2003 Brian Harvey (www.cs.berkeley.edu/~bh) John Wawrzynek (Warznek) (www.cs.berkeley.edu/~johnw) www-inst.eecs.berkeley.edu/~cs61c/ CS 61C L01 Introduction

More information

CS140 Lecture 08: Data Representation: Bits and Ints. John Magee 13 February 2017

CS140 Lecture 08: Data Representation: Bits and Ints. John Magee 13 February 2017 CS140 Lecture 08: Data Representation: Bits and Ints John Magee 13 February 2017 Material From Computer Systems: A Programmer's Perspective, 3/E (CS:APP3e) Randal E. Bryant and David R. O'Hallaron, Carnegie

More information

: Computer Architecture

: Computer Architecture Jin-Soo Kim (jinsoo.kim@snu.ac.kr) Systems Software & Architecture Lab. Seoul National University 4190.308: Computer Architecture Fall 2018 Schedule 9:30 10:45 (Tuesday & Thursday) Lecture room: Engineering

More information

ECE 15B COMPUTER ORGANIZATION

ECE 15B COMPUTER ORGANIZATION ECE 15B COMPUTER ORGANIZATION What are Computing Systems? CMOS Camera (courtesy of Samsung Electronics Co., Ltd) Lecture 1 Introduction Dr. Rahul Singh UCLA Gonda Robotic Surgery Center da Vinci surgical

More information

CS 110 Computer Architecture. Lecture 2: Introduction to C, Part I. Instructor: Sören Schwertfeger.

CS 110 Computer Architecture. Lecture 2: Introduction to C, Part I. Instructor: Sören Schwertfeger. CS 110 Computer Architecture Lecture 2: Introduction to C, Part I Instructor: Sören Schwertfeger http://shtech.org/courses/ca/ School of Information Science and Technology SIST ShanghaiTech University

More information

Time Measurement. CS 201 Gerson Robboy Portland State University. Topics. Time scales Interval counting Cycle counters K-best measurement scheme

Time Measurement. CS 201 Gerson Robboy Portland State University. Topics. Time scales Interval counting Cycle counters K-best measurement scheme Time Measurement CS 201 Gerson Robboy Portland State University Topics Time scales Interval counting Cycle counters K-best measurement scheme Computer Time Scales Microscopic Time Scale (1 Ghz Machine)

More information

CS61C C/Assembler Operators and Operands Lecture 2 January 22, 1999 Dave Patterson (http.cs.berkeley.edu/~patterson)

CS61C C/Assembler Operators and Operands Lecture 2 January 22, 1999 Dave Patterson (http.cs.berkeley.edu/~patterson) CS61C C/Assembler Operators and Operands Lecture 2 January 22, 1999 Dave Patterson (http.cs.berkeley.edu/~patterson) www-inst.eecs.berkeley.edu/~cs61c/schedule.html cs 61C L2 Asm Ops.1 Machine Structures

More information

Representa7on of integers: unsigned and signed Conversion, cas7ng Expanding, trunca7ng Addi7on, nega7on, mul7plica7on, shiaing

Representa7on of integers: unsigned and signed Conversion, cas7ng Expanding, trunca7ng Addi7on, nega7on, mul7plica7on, shiaing Today s Topics Representa7on of integers: unsigned and signed Conversion, cas7ng Expanding, trunca7ng Addi7on, nega7on, mul7plica7on, shiaing CSE351 Inaugural Edi7on Spring 2010 1 Encoding Integers C short

More information

Introduction to System Programming Course 2015 Spring Euiseong Seo

Introduction to System Programming Course 2015 Spring Euiseong Seo Introduction to System Programming Course 2015 Spring Euiseong Seo (euiseong@skku.edu) 1 Overview What this course is about Who teaches this course Why you have to take this course What you will learn

More information

Agenda. Peer Instruction Question 1. Peer Instruction Answer 1. Peer Instruction Question 2 6/22/2011

Agenda. Peer Instruction Question 1. Peer Instruction Answer 1. Peer Instruction Question 2 6/22/2011 CS 61C: Great Ideas in Computer Architecture (Machine Structures) Introduction to C (Part II) Instructors: Randy H. Katz David A. Patterson http://inst.eecs.berkeley.edu/~cs61c/sp11 Spring 2011 -- Lecture

More information

Course Overview Computer Science 104: Machine Organiza;on and Programming. Overview 1/12/11

Course Overview Computer Science 104: Machine Organiza;on and Programming. Overview 1/12/11 Course Overview Computer Science 104: Machine Organiza;on and Programming Instructor: Alvin R. Lebeck Overview Administrivia Machine/system overview Course theme Five reali;es 2 1 Staff Informa;on Instructor:

More information

Computer Systems Organization

Computer Systems Organization Carnegie Mellon Computer Systems Organization Shuai Mu Slides are based on Tiger Wang s and Jinyang Li s class Why study CSO? The path of your next few years graduation interview programmer The path of

More information

CS 110 Computer Architecture. Lecture 2: Introduction to C, Part I. Instructor: Sören Schwertfeger.

CS 110 Computer Architecture. Lecture 2: Introduction to C, Part I. Instructor: Sören Schwertfeger. CS 110 Computer Architecture Lecture 2: Introduction to C, Part I Instructor: Sören Schwertfeger http://shtech.org/courses/ca/ School of Information Science and Technology SIST ShanghaiTech University

More information

CPS104 Computer Organization Lecture 1. CPS104: Computer Organization. Meat of the Course. Robert Wagner

CPS104 Computer Organization Lecture 1. CPS104: Computer Organization. Meat of the Course. Robert Wagner CPS104 Computer Organization Lecture 1 Robert Wagner Slides available on: http://www.cs.duke.edu/~raw/cps104/lectures 1 CPS104: Computer Organization Instructor: Robert Wagner Office: LSRC D336, 660-6536

More information

CPS104 Computer Organization Lecture 1

CPS104 Computer Organization Lecture 1 CPS104 Computer Organization Lecture 1 Robert Wagner Slides available on: http://www.cs.duke.edu/~raw/cps104/lectures 1 CPS104: Computer Organization Instructor: Robert Wagner Office: LSRC D336, 660-6536

More information

Two s Complement Review. Two s Complement Review. Agenda. Agenda 6/21/2011

Two s Complement Review. Two s Complement Review. Agenda. Agenda 6/21/2011 Two s Complement Review CS 61C: Great Ideas in Computer Architecture (Machine Structures) Introduction to C (Part I) Instructor: Michael Greenbaum http://inst.eecs.berkeley.edu/~cs61c/su11 Suppose we had

More information

Intro to Math 230 Assembly Language Programming. Lecture # 01 01/15/08

Intro to Math 230 Assembly Language Programming. Lecture # 01 01/15/08 Intro to Math 230 Assembly Language Programming Lecture # 01 01/15/08 Lecture Overview Course Overview Short history of industry trends and motivation for course need Lab: command line environment review

More information

Introduction to Embedded Systems

Introduction to Embedded Systems Introduction to Embedded Systems Edward A. Lee & Sanjit A. Seshia UC Berkeley EECS 124 Spring 2008 Copyright 2008, Edward A. Lee & Sanjit A. Seshia, All rights reserved Lecture 19: Execution Time Analysis

More information

Time Measurement Nov 4, 2009"

Time Measurement Nov 4, 2009 Time Measurement Nov 4, 2009" Reminder" 2! Computer Time Scales" Microscopic Time Scale (1 Ghz Machine) Macroscopic Integer Add FP Multiply FP Divide Keystroke Interrupt Handler Disk Access Screen Refresh

More information

Review: Performance Latency vs. Throughput. Time (seconds/program) is performance measure Instructions Clock cycles Seconds.

Review: Performance Latency vs. Throughput. Time (seconds/program) is performance measure Instructions Clock cycles Seconds. Performance 980 98 982 983 984 985 986 987 988 989 990 99 992 993 994 995 996 997 998 999 2000 7/4/20 CS 6C: Great Ideas in Computer Architecture (Machine Structures) Caches Instructor: Michael Greenbaum

More information

Introduction to Computer Systems

Introduction to Computer Systems 15-213 The Class That Gives CMU Its Zip! Introduction to Computer Systems David O Hallaron August 27, 2002 Topics: Staff, text, and policies Lecture topics and assignments Lab rationale class01b.ppt CS

More information

The course that gives CMU its Zip! Time Measurement Oct. 24, 2002

The course that gives CMU its Zip! Time Measurement Oct. 24, 2002 15-213 The course that gives CMU its Zip! Time Measurement Oct. 24, 2002 Topics Time scales Interval counting Cycle counters K-best measurement scheme class18.ppt Computer Time Scales Microscopic Time

More information

Introduction to Computer Systems

Introduction to Computer Systems Introduction to Computer Systems Syllabus Web Page http://www.cs.northwestern.edu/~pdinda/icsclass Instructor Peter A. Dinda 1890 Maple Avenue, Room 338 847-467-7859 pdinda@cs.northwestern.edu Office hours:

More information

CS 61C: Great Ideas in Computer Architecture. C Arrays, Strings, More Pointers

CS 61C: Great Ideas in Computer Architecture. C Arrays, Strings, More Pointers CS 61C: Great Ideas in Computer Architecture C Arrays, Strings, More Pointers Instructor: Justin Hsia 6/20/2012 Summer 2012 Lecture #3 1 Review of Last Lecture C Basics Variables, Functions, Flow Control,

More information

CS 61c: Great Ideas in Computer Architecture

CS 61c: Great Ideas in Computer Architecture Arrays, Strings, and Some More Pointers June 24, 2014 Review of Last Lecture C Basics Variables, functioss, control flow, types, structs Only 0 and NULL evaluate to false Pointers hold addresses Address

More information

UCB CS61C : Machine Structures

UCB CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 12 Caches I Lecturer SOE Dan Garcia Midterm exam in 3 weeks! A Mountain View startup promises to do Dropbox one better. 10GB free storage,

More information

14:332:331. Lecture 1

14:332:331. Lecture 1 14:332:331 Computer Architecture and Assembly Language Fall 2003 Lecture 1 [Adapted from Dave Patterson s UCB CS152 slides and Mary Jane Irwin s PSU CSE331 slides] 331 W01.1 Course Administration Instructor:

More information

CS 61C: Great Ideas in Computer Architecture. Lecture 2: Numbers & C Language. Krste Asanović & Randy Katz

CS 61C: Great Ideas in Computer Architecture. Lecture 2: Numbers & C Language. Krste Asanović & Randy Katz CS 61C: Great Ideas in Computer Architecture Lecture 2: Numbers & C Language Krste Asanović & Randy Katz http://inst.eecs.berkeley.edu/~cs61c Numbers wrap-up This is not on the exam! Break C Primer Administrivia,

More information

Agenda. CS 61C: Great Ideas in Computer Architecture. Lecture 2: Numbers & C Language 8/29/17. Recap: Binary Number Conversion

Agenda. CS 61C: Great Ideas in Computer Architecture. Lecture 2: Numbers & C Language 8/29/17. Recap: Binary Number Conversion CS 61C: Great Ideas in Computer Architecture Lecture 2: Numbers & C Language Krste Asanović & Randy Katz http://inst.eecs.berkeley.edu/~cs61c Numbers wrap-up This is not on the exam! Break C Primer Administrivia,

More information

CS 61C: Great Ideas in Computer Architecture Lecture 2: Introduction to C, Part I

CS 61C: Great Ideas in Computer Architecture Lecture 2: Introduction to C, Part I CS 61C: Great Ideas in Computer Architecture Lecture 2: Introduction to C, Part I Instructors: Vladimir Stojanovic & Nicholas Weaver http://inst.eecs.berkeley.edu/~cs61c/ 1 Agenda Everything is a Number

More information

CS241 Computer Organization Spring Introduction to Assembly

CS241 Computer Organization Spring Introduction to Assembly CS241 Computer Organization Spring 2015 Introduction to Assembly 2-05 2015 Outline! Rounding floats: round-to-even! Introduction to Assembly (IA32) move instruction (mov) memory address computation arithmetic

More information

Operating Systems (ECS 150) Spring 2011

Operating Systems (ECS 150) Spring 2011 Operating Systems (ECS 150) Spring 2011 Raju Pandey Department of Computer Science University of California, Davis CA 95616 pandey@cs.ucdavis.edu http://www.cs.ucdavis.edu/~pandey Course Objectives After

More information

Memory hierarchies: caches and their impact on the running time

Memory hierarchies: caches and their impact on the running time Memory hierarchies: caches and their impact on the running time Irene Finocchi Dept. of Computer and Science Sapienza University of Rome A happy coincidence A fundamental property of hardware Different

More information

Computer Organization: A Programmer's Perspective

Computer Organization: A Programmer's Perspective A Programmer's Perspective Bits, Bytes, Nibbles, Words and Strings Gal A. Kaminka galk@cs.biu.ac.il Topics Why bits? Why 0/1? Basic terms: Bits, Bytes, Nibbles, Words Representing information as bits Characters

More information

CS Programming In C

CS Programming In C CS 24000 - Programming In C Week Two: Basic C Program Organization and Data Types Zhiyuan Li Department of Computer Science Purdue University, USA 2 int main() { } return 0; The Simplest C Program C programs

More information

מבנה מחשבים Amar Lior Based on lectures notes from Arie Schlesinger

מבנה מחשבים Amar Lior Based on lectures notes from Arie Schlesinger מבנה מחשבים 2006 Amar Lior Based on lectures notes from Arie Schlesinger (aries@cs.columbia.edu) Adapted from Computer Organization&Design, H/S interface, Patterson Hennessy@UCB,1999 1 Administration Course

More information

Computer Time Scales Time Measurement Oct. 24, Measurement Challenge. Time on a Computer System. The course that gives CMU its Zip!

Computer Time Scales Time Measurement Oct. 24, Measurement Challenge. Time on a Computer System. The course that gives CMU its Zip! 5-23 The course that gives CMU its Zip! Computer Time Scales Microscopic Time Scale ( Ghz Machine) Macroscopic class8.ppt Topics Time Measurement Oct. 24, 2002! Time scales! Interval counting! Cycle counters!

More information

Computer Architecture. Fall Dongkun Shin, SKKU

Computer Architecture. Fall Dongkun Shin, SKKU Computer Architecture Fall 2018 1 Syllabus Instructors: Dongkun Shin Office : Room 85470 E-mail : dongkun@skku.edu Office Hours: Wed. 15:00-17:30 or by appointment Lecture notes nyx.skku.ac.kr Courses

More information

What is This Course About? CS 356 Unit 0. Today's Digital Environment. Why is System Knowledge Important?

What is This Course About? CS 356 Unit 0. Today's Digital Environment. Why is System Knowledge Important? 0.1 What is This Course About? 0.2 CS 356 Unit 0 Class Introduction Basic Hardware Organization Introduction to Computer Systems a.k.a. Computer Organization or Architecture Filling in the "systems" details

More information

HW1 due Monday by 9:30am Assignment online, submission details to come

HW1 due Monday by 9:30am Assignment online, submission details to come inst.eecs.berkeley.edu/~cs61c CS61CL : Machine Structures Lecture #2 - C Pointers and Arrays Administrivia Buggy Start Lab schedule, lab machines, HW0 due tomorrow in lab 2009-06-24 HW1 due Monday by 9:30am

More information

EE108B Lecture 2 MIPS Assembly Language I. Christos Kozyrakis Stanford University

EE108B Lecture 2 MIPS Assembly Language I. Christos Kozyrakis Stanford University EE108B Lecture 2 MIPS Assembly Language I Christos Kozyrakis Stanford University http://eeclass.stanford.edu/ee108b 1 Announcements EE undergrads: EE108A and CS106B Everybody else: E40 and CS106B (or equivalent)

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #18 Introduction to CPU Design 2007-7-25 Scott Beamer, Instructor CS61C L18 Introduction to CPU Design (1) What about overflow? Consider

More information

CS 61c: Great Ideas in Computer Architecture

CS 61c: Great Ideas in Computer Architecture Introduction to C, Pointers June 24, 2014 Review of Last Lecture Six Great Ideas in Computer Architecture Number Representation Bits can represent anything! n bits can represent up to 2 n things Unsigned,

More information

CS 3330 Introduction. Daniel and Charles. CS 3330 Computer Architecture 1

CS 3330 Introduction. Daniel and Charles. CS 3330 Computer Architecture 1 CS 3330 Introduction Daniel and Charles CS 3330 Computer Architecture 1 lecturers Charles and I will be splitting lectures same(ish) lecture in each section Grading Take Home Quizzes: 10% (10% dropped)

More information

EECE 321: Computer Organization

EECE 321: Computer Organization EECE 321: Computer Organization Mohammad M. Mansour Dept. of Electrical and Compute Engineering American University of Beirut Lecture 1: Introduction Administrative Instructor Dr. Mohammad M. Mansour,

More information

CS 61C: Great Ideas in Computer Architecture C Pointers. Instructors: Vladimir Stojanovic & Nicholas Weaver

CS 61C: Great Ideas in Computer Architecture C Pointers. Instructors: Vladimir Stojanovic & Nicholas Weaver CS 61C: Great Ideas in Computer Architecture C Pointers Instructors: Vladimir Stojanovic & Nicholas Weaver http://inst.eecs.berkeley.edu/~cs61c/sp16 1 Agenda Pointers Arrays in C 2 Address vs. Value Consider

More information

Lecture 1: CS/ECE 3810 Introduction

Lecture 1: CS/ECE 3810 Introduction Lecture 1: CS/ECE 3810 Introduction Today s topics: Why computer organization is important Logistics Modern trends 1 Why Computer Organization 2 Image credits: uber, extremetech, anandtech Why Computer

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 4 C Pointers 2004-09-08 Lecturer PSOE Dan Garcia www.cs.berkeley.edu/~ddgarcia Cal flies over Air Force We re ranked 13 th in the US and

More information

Anupam Gupta, Braydon Hall, Eugene Oh, Savanna Yee. Steve Jobs custom Apple I and other historic machines are on display at Seattle museum

Anupam Gupta, Braydon Hall, Eugene Oh, Savanna Yee. Steve Jobs custom Apple I and other historic machines are on display at Seattle museum Computers CSE 120 Spring 2017 Instructor: Justin Hsia Teaching Assistants: Anupam Gupta, Braydon Hall, Eugene Oh, Savanna Yee Steve Jobs custom Apple I and other historic machines are on display at Seattle

More information

Code Optimization April 6, 2000

Code Optimization April 6, 2000 15-213 Code Optimization April 6, 2000 Topics Machine-Independent Optimizations Code motion Reduction in strength Common subexpression sharing Machine-Dependent Optimizations Pointer code Unrolling Enabling

More information

Review : Pipelining. Memory Hierarchy

Review : Pipelining. Memory Hierarchy CS61C L11 Caches (1) CS61CL : Machine Structures Review : Pipelining The Big Picture Lecture #11 Caches 2009-07-29 Jeremy Huddleston!! Pipeline challenge is hazards "! Forwarding helps w/many data hazards

More information

How to Write Fast Code , spring st Lecture, Jan. 14 th

How to Write Fast Code , spring st Lecture, Jan. 14 th How to Write Fast Code 18-645, spring 2008 1 st Lecture, Jan. 14 th Instructor: Markus Püschel TAs: Srinivas Chellappa (Vas) and Frédéric de Mesmay (Fred) Today Motivation and idea behind this course Technicalities

More information

CS64 Computer Organization

CS64 Computer Organization CS64 Computer Organization Lecture 1 Prof. Heather Zheng (1) Your computer never complains about the # of languages you use.. 1 (2) The same program runs on almost all the computers? 2 How Computer Operates

More information

CS241 Computer Organization Spring Principle of Locality

CS241 Computer Organization Spring Principle of Locality CS241 Computer Organization Spring 2015 Principle of Locality 4-21 2015 Outline! Optimization! Memory Hierarchy Locality temporal spatial Cache Readings: CSAPP2: Chapter 5, sections 5.1-5.6; 5.13 CSAPP2:

More information

Computer Systems A Programmer s Perspective 1 (Beta Draft)

Computer Systems A Programmer s Perspective 1 (Beta Draft) Computer Systems A Programmer s Perspective 1 (Beta Draft) Randal E. Bryant David R. O Hallaron August 1, 2001 1 Copyright c 2001, R. E. Bryant, D. R. O Hallaron. All rights reserved. 2 Contents Preface

More information

Processor. Lecture #2 Number Rep & Intro to C classic components of all computers Control Datapath Memory Input Output

Processor. Lecture #2 Number Rep & Intro to C classic components of all computers Control Datapath Memory Input Output CS61C L2 Number Representation & Introduction to C (1) insteecsberkeleyedu/~cs61c CS61C : Machine Structures Lecture #2 Number Rep & Intro to C Scott Beamer Instructor 2007-06-26 Review Continued rapid

More information

Introduction to Computer Systems

Introduction to Computer Systems Introduction to Computer Systems Web Page http://pdinda.org/ics Syllabus See the web page for more information. Class discussions are on Piazza We will make only minimal use of Canvas (grade reports, perhaps

More information

Math 230 Assembly Programming (AKA Computer Organization) Spring MIPS Intro

Math 230 Assembly Programming (AKA Computer Organization) Spring MIPS Intro Math 230 Assembly Programming (AKA Computer Organization) Spring 2008 MIPS Intro Adapted from slides developed for: Mary J. Irwin PSU CSE331 Dave Patterson s UCB CS152 M230 L09.1 Smith Spring 2008 MIPS

More information

CSE 240 Introduction to Computer Architecture

CSE 240 Introduction to Computer Architecture What s All About?! Introduction to Computer Architecture The new CSE240: Not at 9am!!! New approach (bottom up) New textbook New instructor Well integrated into curriculum Cooler assignments (demo coming

More information

Computer Systems Architecture I. CSE 560M Lecture 3 Prof. Patrick Crowley

Computer Systems Architecture I. CSE 560M Lecture 3 Prof. Patrick Crowley Computer Systems Architecture I CSE 560M Lecture 3 Prof. Patrick Crowley Plan for Today Announcements Readings are extremely important! No class meeting next Monday Questions Commentaries A few remaining

More information

High Performance Computing MPI and C-Language Seminars 2009

High Performance Computing MPI and C-Language Seminars 2009 High Performance Computing - Seminar Plan Welcome to the High Performance Computing seminars for 2009. Aims: Introduce the C Programming Language. Basic coverage of C and programming techniques needed

More information

UNIT- 5. Chapter 12 Processor Structure and Function

UNIT- 5. Chapter 12 Processor Structure and Function UNIT- 5 Chapter 12 Processor Structure and Function CPU Structure CPU must: Fetch instructions Interpret instructions Fetch data Process data Write data CPU With Systems Bus CPU Internal Structure Registers

More information

Intro to x86 Binaries. From ASM to exploit

Intro to x86 Binaries. From ASM to exploit Intro to x86 Binaries From ASM to exploit Intro to x86 Binaries I lied lets do a quick ctf team thing Organization Ideas? Do we need to a real structure right now? Mailing list is OTW How do we get more

More information

What is a Compiler? Compiler Construction SMD163. Why Translation is Needed: Know your Target: Lecture 8: Introduction to code generation

What is a Compiler? Compiler Construction SMD163. Why Translation is Needed: Know your Target: Lecture 8: Introduction to code generation Compiler Construction SMD163 Lecture 8: Introduction to code generation Viktor Leijon & Peter Jonsson with slides by Johan Nordlander Contains material generously provided by Mark P. Jones What is a Compiler?

More information

ECE232: Hardware Organization and Design

ECE232: Hardware Organization and Design ECE232: Hardware Organization and Design Lecture 2: Hardware/Software Interface Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Overview Basic computer components How does a microprocessor

More information

378: Machine Organization and Assembly Language

378: Machine Organization and Assembly Language 378: Machine Organization and Assembly Language Spring 2010 Luis Ceze Slides adapted from: UIUC, Luis Ceze, Larry Snyder, Hal Perkins 1 What is computer architecture about? Computer architecture is the

More information

CSE 401/M501 Compilers

CSE 401/M501 Compilers CSE 401/M501 Compilers Code Shape I Basic Constructs Hal Perkins Autumn 2018 UW CSE 401/M501 Autumn 2018 K-1 Administrivia Semantics/type check due next Thur. 11/15 How s it going? Be sure to (re-)read

More information

BLM2031 Structured Programming. Zeyneb KURT

BLM2031 Structured Programming. Zeyneb KURT BLM2031 Structured Programming Zeyneb KURT 1 Contact Contact info office : D-219 e-mail zeynebkurt@gmail.com, zeyneb@ce.yildiz.edu.tr When to contact e-mail first, take an appointment What to expect help

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #1 Introduction & Numbers 2005-06-20 Andy Carle CS 61C L01 Introduction + Numbers (1) Are Computers Smart? To a programmer: Very complex

More information

Chapter 1. Computer Abstractions and Technology

Chapter 1. Computer Abstractions and Technology Chapter 1 Computer Abstractions and Technology The Computer Revolution Progress in computer technology Underpinned by Moore s Law Makes novel applications feasible Computers in automobiles Cell phones

More information

Course Outline. Overview 1. I. Introduction II. Performance Evaluation III. Processor Design and Analysis. IV. Memory Design and Analysis

Course Outline. Overview 1. I. Introduction II. Performance Evaluation III. Processor Design and Analysis. IV. Memory Design and Analysis Course Outline Overview 1 I. Introduction II. Performance Evaluation III. Processor Design and Analysis I. Single-cycle implementation II. Multi-cycle implementation III. Pipelined implementation IV. Hazards

More information