PARALLEL AND DISTRIBUTED COMPUTING

Size: px
Start display at page:

Download "PARALLEL AND DISTRIBUTED COMPUTING"

Transcription

1 PARALLEL AND DISTRIBUTED COMPUTING 2013/ st Semester 1 st Exam January 7, 2014 Duration: 2h00 - No extra material allowed. This includes notes, scratch paper, calculator, etc. - Give your answers in the available space after each question. You can use either Portuguese or English. - Be sure to write your name and number on all pages, non-identified pages will not be graded! - Justify all your answers. - Don t hurry, you should have plenty of time to finish this exam. Skip questions that you find less comfortable with and come back to them later on. I. (1, ,5 = 5 val.) 1. The following program is running on a machine with 3 SMP processors. int function (int *a, int N, int value) { int retval = 0; int i; #pragma omp parallel for for (i = 0; i < N; i++) { if (a[i] == value) retval = 1; } return retval; } Re-write the loop above so that we compute the number of array elements equal to value. IST ID: Name: 1/8

2 2. By default, the #pragma omp parallel for splits the iterations of a for loop in blocks. a) Indicate, using OpenMP directives, how to make an interleaved distribution of the iterations across threads. b) Assume you have dynamic scheduling with i iterations and t threads. Present an argument in favor of choosing larger blocks and an argument in favor of picking smaller blocks. 3. Cache coherence is an issue in both shared-memory systems (UMA) and Distributed Shared Memory (DSM) systems. Describe how cache coherence can be implemented in each of these two types of systems, explaining why they typically use different solutions. IST ID: Name: 2/8

3 II. ( = 5 val.) 1. The MPI_Scatter uses the following parameters: MPI_Scatter(void *sendbuf, int sendcnt, MPI_Datatype sendtype, void *recvbuf, int recvcnt, MPI_Datatype recvtype, int root, MPI_Comm comm) a) Write the most trivial implementation of MPI_Scatter routine in C. Use only MPI_Send and MPI_Recv as communication functions. Routines that may be useful: int MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest, int tag, MPI_Comm comm) int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source, int tag, MPI_Comm comm, MPI_Status *status) int MPI_Comm_size( MPI_Comm comm, int *size) int MPI_Type_size(MPI_Datatype datatype, int *size) void *memcpy(void *dst, const void *restrict src, size_t n) IST ID: Name: 3/8

4 b) Let: x: represent the time to set up a message y: represent the time required to send one byte of data P : represent the number of processors N: represent the size of the data in bytes The best MPI_Scatter implementation runs in Θ(x log P + N P y). If the time to set up the message, x, is neglible, how much faster is this when compared to your previous solution. 2. When does a call to the function MPI_Irecv return? IST ID: Name: 4/8

5 III. ( ,5 + 1,5 = 5 val.) 1. Consider that it has been determined that 10% of the execution time of a sequential program is not amenable to parallelization. a) Compute the absolute maximum speedup achievable by parallelizing this program. b) What is the serial fraction of this program when running on a system with p = 9 processors? IST ID: Name: 5/8

6 2. Consider that for p = 8 processors the experimentally determined serial fraction evaluated to 0,2. Is it reasonable to expect that for p = 16 it evaluates to 0,1? If so, what does it mean? If not, justify. 3. The scalability function of a parallel application has been determined to be M(f(p)) p = p log p. Is this a good or bad indicator? Give a careful justification in terms of the definition of the scalability function. IST ID: Name: 6/8

7 IV. (1 + 1, ,5 = 5 val.) 1. In the Backtrack Search algorithm a depth-first search on a tree is used. In a parallel implementation, in general, all tasks perform the expansion of the first levels of the tree, which constitute redundant operations. Explain what is being addressed by this wasteful computation. What is the compromise being targeted? 2. Explain the limitation of Hyperquicksort that the Parallel Sorting by Regular Sampling algorithm tries to solve. How do these two algorithms compare in terms of scalability? IST ID: Name: 7/8

8 3. In class, we discussed the problem of the parallel implementation of a 2D heat distribution problem, analyzing both row-wise and checkerboard decompositions. In this context, we also introduced the concept of ghostpoints. a) Explain what are ghostpoints. b) Discuss the tradeoff of having more ghostpoints than the strictly necessary. Clearly state the gains and costs. c) In the rowwise decomposition, if we have k ghostpoints that need to be exchanged, we can simply add multiple of k ghostpoints to achieve the objective of the previous question. However, for the checkerboard decomposition we need more than that. Why? How many more? IST ID: Name: 8/8

PARALLEL AND DISTRIBUTED COMPUTING

PARALLEL AND DISTRIBUTED COMPUTING PARALLEL AND DISTRIBUTED COMPUTING 2013/2014 1 st Semester 2 nd Exam January 29, 2014 Duration: 2h00 - No extra material allowed. This includes notes, scratch paper, calculator, etc. - Give your answers

More information

PARALLEL AND DISTRIBUTED COMPUTING

PARALLEL AND DISTRIBUTED COMPUTING PARALLEL AND DISTRIBUTED COMPUTING 2010/2011 1 st Semester Recovery Exam February 2, 2011 Duration: 2h00 - No extra material allowed. This includes notes, scratch paper, calculator, etc. - Give your answers

More information

Message Passing Interface. most of the slides taken from Hanjun Kim

Message Passing Interface. most of the slides taken from Hanjun Kim Message Passing Interface most of the slides taken from Hanjun Kim Message Passing Pros Scalable, Flexible Cons Someone says it s more difficult than DSM MPI (Message Passing Interface) A standard message

More information

UNIVERSITY OF MORATUWA

UNIVERSITY OF MORATUWA UNIVERSITY OF MORATUWA FACULTY OF ENGINEERING DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING B.Sc. Engineering 2012 Intake Semester 8 Examination CS4532 CONCURRENT PROGRAMMING Time allowed: 2 Hours March

More information

Message Passing Interface

Message Passing Interface Message Passing Interface DPHPC15 TA: Salvatore Di Girolamo DSM (Distributed Shared Memory) Message Passing MPI (Message Passing Interface) A message passing specification implemented

More information

HPC Parallel Programing Multi-node Computation with MPI - I

HPC Parallel Programing Multi-node Computation with MPI - I HPC Parallel Programing Multi-node Computation with MPI - I Parallelization and Optimization Group TATA Consultancy Services, Sahyadri Park Pune, India TCS all rights reserved April 29, 2013 Copyright

More information

Basic MPI Communications. Basic MPI Communications (cont d)

Basic MPI Communications. Basic MPI Communications (cont d) Basic MPI Communications MPI provides two non-blocking routines: MPI_Isend(buf,cnt,type,dst,tag,comm,reqHandle) buf: source of data to be sent cnt: number of data elements to be sent type: type of each

More information

Non-Blocking Communications

Non-Blocking Communications Non-Blocking Communications Deadlock 1 5 2 3 4 Communicator 0 2 Completion The mode of a communication determines when its constituent operations complete. - i.e. synchronous / asynchronous The form of

More information

High-Performance Computing: MPI (ctd)

High-Performance Computing: MPI (ctd) High-Performance Computing: MPI (ctd) Adrian F. Clark: alien@essex.ac.uk 2015 16 Adrian F. Clark: alien@essex.ac.uk High-Performance Computing: MPI (ctd) 2015 16 1 / 22 A reminder Last time, we started

More information

Non-Blocking Communications

Non-Blocking Communications Non-Blocking Communications Reusing this material This work is licensed under a Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License. http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_us

More information

CSE 613: Parallel Programming. Lecture 21 ( The Message Passing Interface )

CSE 613: Parallel Programming. Lecture 21 ( The Message Passing Interface ) CSE 613: Parallel Programming Lecture 21 ( The Message Passing Interface ) Jesmin Jahan Tithi Department of Computer Science SUNY Stony Brook Fall 2013 ( Slides from Rezaul A. Chowdhury ) Principles of

More information

Parallel programming MPI

Parallel programming MPI Parallel programming MPI Distributed memory Each unit has its own memory space If a unit needs data in some other memory space, explicit communication (often through network) is required Point-to-point

More information

Outline. Communication modes MPI Message Passing Interface Standard

Outline. Communication modes MPI Message Passing Interface Standard MPI THOAI NAM Outline Communication modes MPI Message Passing Interface Standard TERMs (1) Blocking If return from the procedure indicates the user is allowed to reuse resources specified in the call Non-blocking

More information

Parallel Programming with MPI and OpenMP

Parallel Programming with MPI and OpenMP Parallel Programming with MPI and OpenMP Michael J. Quinn Chapter 6 Floyd s Algorithm Chapter Objectives Creating 2-D arrays Thinking about grain size Introducing point-to-point communications Reading

More information

a. Assuming a perfect balance of FMUL and FADD instructions and no pipeline stalls, what would be the FLOPS rate of the FPU?

a. Assuming a perfect balance of FMUL and FADD instructions and no pipeline stalls, what would be the FLOPS rate of the FPU? CPS 540 Fall 204 Shirley Moore, Instructor Test November 9, 204 Answers Please show all your work.. Draw a sketch of the extended von Neumann architecture for a 4-core multicore processor with three levels

More information

MPI. (message passing, MIMD)

MPI. (message passing, MIMD) MPI (message passing, MIMD) What is MPI? a message-passing library specification extension of C/C++ (and Fortran) message passing for distributed memory parallel programming Features of MPI Point-to-point

More information

Message Passing Interface

Message Passing Interface MPSoC Architectures MPI Alberto Bosio, Associate Professor UM Microelectronic Departement bosio@lirmm.fr Message Passing Interface API for distributed-memory programming parallel code that runs across

More information

MA471. Lecture 5. Collective MPI Communication

MA471. Lecture 5. Collective MPI Communication MA471 Lecture 5 Collective MPI Communication Today: When all the processes want to send, receive or both Excellent website for MPI command syntax available at: http://www-unix.mcs.anl.gov/mpi/www/ 9/10/2003

More information

Distributed Memory Programming with MPI

Distributed Memory Programming with MPI Distributed Memory Programming with MPI Moreno Marzolla Dip. di Informatica Scienza e Ingegneria (DISI) Università di Bologna moreno.marzolla@unibo.it Algoritmi Avanzati--modulo 2 2 Credits Peter Pacheco,

More information

CS 179: GPU Programming. Lecture 14: Inter-process Communication

CS 179: GPU Programming. Lecture 14: Inter-process Communication CS 179: GPU Programming Lecture 14: Inter-process Communication The Problem What if we want to use GPUs across a distributed system? GPU cluster, CSIRO Distributed System A collection of computers Each

More information

L15: Putting it together: N-body (Ch. 6)!

L15: Putting it together: N-body (Ch. 6)! Outline L15: Putting it together: N-body (Ch. 6)! October 30, 2012! Review MPI Communication - Blocking - Non-Blocking - One-Sided - Point-to-Point vs. Collective Chapter 6 shows two algorithms (N-body

More information

Distributed Memory Systems: Part IV

Distributed Memory Systems: Part IV Chapter 5 Distributed Memory Systems: Part IV Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 293/342 The Message Passing Interface is a standard for creation of parallel programs using

More information

High Performance Computing

High Performance Computing High Performance Computing Course Notes 2009-2010 2010 Message Passing Programming II 1 Communications Point-to-point communications: involving exact two processes, one sender and one receiver For example,

More information

Introduction to MPI Part II Collective Communications and communicators

Introduction to MPI Part II Collective Communications and communicators Introduction to MPI Part II Collective Communications and communicators Andrew Emerson, Fabio Affinito {a.emerson,f.affinito}@cineca.it SuperComputing Applications and Innovation Department Collective

More information

Standard MPI - Message Passing Interface

Standard MPI - Message Passing Interface c Ewa Szynkiewicz, 2007 1 Standard MPI - Message Passing Interface The message-passing paradigm is one of the oldest and most widely used approaches for programming parallel machines, especially those

More information

Recap of Parallelism & MPI

Recap of Parallelism & MPI Recap of Parallelism & MPI Chris Brady Heather Ratcliffe The Angry Penguin, used under creative commons licence from Swantje Hess and Jannis Pohlmann. Warwick RSE 13/12/2017 Parallel programming Break

More information

All-Pairs Shortest Paths - Floyd s Algorithm

All-Pairs Shortest Paths - Floyd s Algorithm All-Pairs Shortest Paths - Floyd s Algorithm Parallel and Distributed Computing Department of Computer Science and Engineering (DEI) Instituto Superior Técnico October 31, 2011 CPD (DEI / IST) Parallel

More information

COMP 322: Fundamentals of Parallel Programming

COMP 322: Fundamentals of Parallel Programming COMP 322: Fundamentals of Parallel Programming https://wiki.rice.edu/confluence/display/parprog/comp322 Lecture 37: Introduction to MPI (contd) Vivek Sarkar Department of Computer Science Rice University

More information

Topics. Lecture 7. Review. Other MPI collective functions. Collective Communication (cont d) MPI Programming (III)

Topics. Lecture 7. Review. Other MPI collective functions. Collective Communication (cont d) MPI Programming (III) Topics Lecture 7 MPI Programming (III) Collective communication (cont d) Point-to-point communication Basic point-to-point communication Non-blocking point-to-point communication Four modes of blocking

More information

Outline. Communication modes MPI Message Passing Interface Standard. Khoa Coâng Ngheä Thoâng Tin Ñaïi Hoïc Baùch Khoa Tp.HCM

Outline. Communication modes MPI Message Passing Interface Standard. Khoa Coâng Ngheä Thoâng Tin Ñaïi Hoïc Baùch Khoa Tp.HCM THOAI NAM Outline Communication modes MPI Message Passing Interface Standard TERMs (1) Blocking If return from the procedure indicates the user is allowed to reuse resources specified in the call Non-blocking

More information

Introduction to parallel computing concepts and technics

Introduction to parallel computing concepts and technics Introduction to parallel computing concepts and technics Paschalis Korosoglou (support@grid.auth.gr) User and Application Support Unit Scientific Computing Center @ AUTH Overview of Parallel computing

More information

Lecture 6: Message Passing Interface

Lecture 6: Message Passing Interface Lecture 6: Message Passing Interface Introduction The basics of MPI Some simple problems More advanced functions of MPI A few more examples CA463D Lecture Notes (Martin Crane 2013) 50 When is Parallel

More information

Bryan Carpenter, School of Computing

Bryan Carpenter, School of Computing Bryan Carpenter, School of Computing 1 Plan Brief reprise of parallel computers and programming models Overview of MPI, with illustrative example. Brief comparison with OpenMP Use of MPI in GADGET 2 2

More information

Scientific Computing

Scientific Computing Lecture on Scientific Computing Dr. Kersten Schmidt Lecture 21 Technische Universität Berlin Institut für Mathematik Wintersemester 2014/2015 Syllabus Linear Regression, Fast Fourier transform Modelling

More information

First day. Basics of parallel programming. RIKEN CCS HPC Summer School Hiroya Matsuba, RIKEN CCS

First day. Basics of parallel programming. RIKEN CCS HPC Summer School Hiroya Matsuba, RIKEN CCS First day Basics of parallel programming RIKEN CCS HPC Summer School Hiroya Matsuba, RIKEN CCS Today s schedule: Basics of parallel programming 7/22 AM: Lecture Goals Understand the design of typical parallel

More information

Parallel Programming in C with MPI and OpenMP

Parallel Programming in C with MPI and OpenMP Parallel Programming in C with MPI and OpenMP Michael J. Quinn Chapter 8 Matrix-vector Multiplication Chapter Objectives Review matrix-vector multiplication Propose replication of vectors Develop three

More information

For developers. If you do need to have all processes write e.g. debug messages, you d then use channel 12 (see below).

For developers. If you do need to have all processes write e.g. debug messages, you d then use channel 12 (see below). For developers A. I/O channels in SELFE You need to exercise caution when dealing with parallel I/O especially for writing. For writing outputs, you d generally let only 1 process do the job, e.g. if(myrank==0)

More information

Parallel Programming, MPI Lecture 2

Parallel Programming, MPI Lecture 2 Parallel Programming, MPI Lecture 2 Ehsan Nedaaee Oskoee 1 1 Department of Physics IASBS IPM Grid and HPC workshop IV, 2011 Outline 1 Point-to-Point Communication Non Blocking PTP Communication 2 Collective

More information

Lecture 7: More about MPI programming. Lecture 7: More about MPI programming p. 1

Lecture 7: More about MPI programming. Lecture 7: More about MPI programming p. 1 Lecture 7: More about MPI programming Lecture 7: More about MPI programming p. 1 Some recaps (1) One way of categorizing parallel computers is by looking at the memory configuration: In shared-memory systems

More information

Collective Communications II

Collective Communications II Collective Communications II Ned Nedialkov McMaster University Canada SE/CS 4F03 January 2014 Outline Scatter Example: parallel A b Distributing a matrix Gather Serial A b Parallel A b Allocating memory

More information

MPI point-to-point communication

MPI point-to-point communication MPI point-to-point communication Slides Sebastian von Alfthan CSC Tieteen tietotekniikan keskus Oy CSC IT Center for Science Ltd. Introduction MPI processes are independent, they communicate to coordinate

More information

15-440: Recitation 8

15-440: Recitation 8 15-440: Recitation 8 School of Computer Science Carnegie Mellon University, Qatar Fall 2013 Date: Oct 31, 2013 I- Intended Learning Outcome (ILO): The ILO of this recitation is: Apply parallel programs

More information

Parallel Programming. Matrix Decomposition Options (Matrix-Vector Product)

Parallel Programming. Matrix Decomposition Options (Matrix-Vector Product) Parallel Programming Matrix Decomposition Options (Matrix-Vector Product) Matrix Decomposition Sequential algorithm and its complexity Design, analysis, and implementation of three parallel programs using

More information

NUMERICAL PARALLEL COMPUTING

NUMERICAL PARALLEL COMPUTING Lecture 5, March 23, 2012: The Message Passing Interface http://people.inf.ethz.ch/iyves/pnc12/ Peter Arbenz, Andreas Adelmann Computer Science Dept, ETH Zürich E-mail: arbenz@inf.ethz.ch Paul Scherrer

More information

L19: Putting it together: N-body (Ch. 6)!

L19: Putting it together: N-body (Ch. 6)! Administrative L19: Putting it together: N-body (Ch. 6)! November 22, 2011! Project sign off due today, about a third of you are done (will accept it tomorrow, otherwise 5% loss on project grade) Next

More information

In the simplest sense, parallel computing is the simultaneous use of multiple computing resources to solve a problem.

In the simplest sense, parallel computing is the simultaneous use of multiple computing resources to solve a problem. 1. Introduction to Parallel Processing In the simplest sense, parallel computing is the simultaneous use of multiple computing resources to solve a problem. a) Types of machines and computation. A conventional

More information

Programming Scalable Systems with MPI. Clemens Grelck, University of Amsterdam

Programming Scalable Systems with MPI. Clemens Grelck, University of Amsterdam Clemens Grelck University of Amsterdam UvA / SurfSARA High Performance Computing and Big Data Course June 2014 Parallel Programming with Compiler Directives: OpenMP Message Passing Gentle Introduction

More information

CS 470 Spring Mike Lam, Professor. Distributed Programming & MPI

CS 470 Spring Mike Lam, Professor. Distributed Programming & MPI CS 470 Spring 2017 Mike Lam, Professor Distributed Programming & MPI MPI paradigm Single program, multiple data (SPMD) One program, multiple processes (ranks) Processes communicate via messages An MPI

More information

Data parallelism. [ any app performing the *same* operation across a data stream ]

Data parallelism. [ any app performing the *same* operation across a data stream ] Data parallelism [ any app performing the *same* operation across a data stream ] Contrast stretching: Version Cores Time (secs) Speedup while (step < NumSteps &&!converged) { step++; diffs = 0; foreach

More information

PCAP Assignment I. 1. A. Why is there a large performance gap between many-core GPUs and generalpurpose multicore CPUs. Discuss in detail.

PCAP Assignment I. 1. A. Why is there a large performance gap between many-core GPUs and generalpurpose multicore CPUs. Discuss in detail. PCAP Assignment I 1. A. Why is there a large performance gap between many-core GPUs and generalpurpose multicore CPUs. Discuss in detail. The multicore CPUs are designed to maximize the execution speed

More information

Matrix-vector Multiplication

Matrix-vector Multiplication Matrix-vector Multiplication Review matrix-vector multiplication Propose replication of vectors Develop three parallel programs, each based on a different data decomposition Outline Sequential algorithm

More information

CS 470 Spring Mike Lam, Professor. Distributed Programming & MPI

CS 470 Spring Mike Lam, Professor. Distributed Programming & MPI CS 470 Spring 2018 Mike Lam, Professor Distributed Programming & MPI MPI paradigm Single program, multiple data (SPMD) One program, multiple processes (ranks) Processes communicate via messages An MPI

More information

Point-to-Point Communication. Reference:

Point-to-Point Communication. Reference: Point-to-Point Communication Reference: http://foxtrot.ncsa.uiuc.edu:8900/public/mpi/ Introduction Point-to-point communication is the fundamental communication facility provided by the MPI library. Point-to-point

More information

Working with IITJ HPC Environment

Working with IITJ HPC Environment Working with IITJ HPC Environment by Training Agenda for 23 Dec 2011 1. Understanding Directory structure of IITJ HPC 2. User vs root 3. What is bash_profile 4. How to install any source code in your user

More information

More MPI. Bryan Mills, PhD. Spring 2017

More MPI. Bryan Mills, PhD. Spring 2017 More MPI Bryan Mills, PhD Spring 2017 MPI So Far Communicators Blocking Point- to- Point MPI_Send MPI_Recv CollecEve CommunicaEons MPI_Bcast MPI_Barrier MPI_Reduce MPI_Allreduce Non-blocking Send int MPI_Isend(

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 8

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 8 Chapter 8 Matrix-vector Multiplication Chapter Objectives Review matrix-vector multiplicaiton Propose replication of vectors Develop three parallel programs, each based on a different data decomposition

More information

Programming with MPI Collectives

Programming with MPI Collectives Programming with MPI Collectives Jan Thorbecke Type to enter text Delft University of Technology Challenge the future Collectives Classes Communication types exercise: BroadcastBarrier Gather Scatter exercise:

More information

Introduction to the Message Passing Interface (MPI)

Introduction to the Message Passing Interface (MPI) Introduction to the Message Passing Interface (MPI) CPS343 Parallel and High Performance Computing Spring 2018 CPS343 (Parallel and HPC) Introduction to the Message Passing Interface (MPI) Spring 2018

More information

CSE 160 Lecture 23. Matrix Multiplication Continued Managing communicators Gather and Scatter (Collectives)

CSE 160 Lecture 23. Matrix Multiplication Continued Managing communicators Gather and Scatter (Collectives) CS 160 Lecture 23 Matrix Multiplication Continued Managing communicators Gather and Scatter (Collectives) Today s lecture All to all communication Application to Parallel Sorting Blocking for cache 2013

More information

The MPI Message-passing Standard Practical use and implementation (V) SPD Course 6/03/2017 Massimo Coppola

The MPI Message-passing Standard Practical use and implementation (V) SPD Course 6/03/2017 Massimo Coppola The MPI Message-passing Standard Practical use and implementation (V) SPD Course 6/03/2017 Massimo Coppola Intracommunicators COLLECTIVE COMMUNICATIONS SPD - MPI Standard Use and Implementation (5) 2 Collectives

More information

MPI 5. CSCI 4850/5850 High-Performance Computing Spring 2018

MPI 5. CSCI 4850/5850 High-Performance Computing Spring 2018 MPI 5 CSCI 4850/5850 High-Performance Computing Spring 2018 Tae-Hyuk (Ted) Ahn Department of Computer Science Program of Bioinformatics and Computational Biology Saint Louis University Learning Objectives

More information

Introduction to Parallel and Distributed Systems - INZ0277Wcl 5 ECTS. Teacher: Jan Kwiatkowski, Office 201/15, D-2

Introduction to Parallel and Distributed Systems - INZ0277Wcl 5 ECTS. Teacher: Jan Kwiatkowski, Office 201/15, D-2 Introduction to Parallel and Distributed Systems - INZ0277Wcl 5 ECTS Teacher: Jan Kwiatkowski, Office 201/15, D-2 COMMUNICATION For questions, email to jan.kwiatkowski@pwr.edu.pl with 'Subject=your name.

More information

Programming Scalable Systems with MPI. UvA / SURFsara High Performance Computing and Big Data. Clemens Grelck, University of Amsterdam

Programming Scalable Systems with MPI. UvA / SURFsara High Performance Computing and Big Data. Clemens Grelck, University of Amsterdam Clemens Grelck University of Amsterdam UvA / SURFsara High Performance Computing and Big Data Message Passing as a Programming Paradigm Gentle Introduction to MPI Point-to-point Communication Message Passing

More information

O.I. Streltsova, D.V. Podgainy, M.V. Bashashin, M.I.Zuev

O.I. Streltsova, D.V. Podgainy, M.V. Bashashin, M.I.Zuev High Performance Computing Technologies Lecture, Practical training 9 Parallel Computing with MPI: parallel algorithm for linear algebra https://indico-hlit.jinr.ru/event/120/ O.I. Streltsova, D.V. Podgainy,

More information

Improving the interoperability between MPI and OmpSs-2

Improving the interoperability between MPI and OmpSs-2 Improving the interoperability between MPI and OmpSs-2 Vicenç Beltran Querol vbeltran@bsc.es 19/04/2018 INTERTWinE Exascale Application Workshop, Edinburgh Why hybrid MPI+OmpSs-2 programming? Gauss-Seidel

More information

Parallel Computing. Distributed memory model MPI. Leopold Grinberg T. J. Watson IBM Research Center, USA. Instructor: Leopold Grinberg

Parallel Computing. Distributed memory model MPI. Leopold Grinberg T. J. Watson IBM Research Center, USA. Instructor: Leopold Grinberg Parallel Computing Distributed memory model MPI Leopold Grinberg T. J. Watson IBM Research Center, USA Why do we need to compute in parallel large problem size - memory constraints computation on a single

More information

A message contains a number of elements of some particular datatype. MPI datatypes:

A message contains a number of elements of some particular datatype. MPI datatypes: Messages Messages A message contains a number of elements of some particular datatype. MPI datatypes: Basic types. Derived types. Derived types can be built up from basic types. C types are different from

More information

Today's agenda. Parallel Programming for Multicore Machines Using OpenMP and MPI

Today's agenda. Parallel Programming for Multicore Machines Using OpenMP and MPI Today's agenda Homework discussion Bandwidth and latency in theory and in practice Paired and Nonblocking Pt2Pt Communications Other Point to Point routines Collective Communications: One-with-All Collective

More information

Parallel sparse matrix algorithms - for numerical computing Matrix-vector multiplication

Parallel sparse matrix algorithms - for numerical computing Matrix-vector multiplication IIMS Postgraduate Seminar 2009 Parallel sparse matrix algorithms - for numerical computing Matrix-vector multiplication Dakuan CUI Institute of Information & Mathematical Sciences Massey University at

More information

MPI Programming. Henrik R. Nagel Scientific Computing IT Division

MPI Programming. Henrik R. Nagel Scientific Computing IT Division 1 MPI Programming Henrik R. Nagel Scientific Computing IT Division 2 Outline Introduction Basic MPI programming Examples Finite Difference Method Finite Element Method LU Factorization Monte Carlo Method

More information

AgentTeamwork Programming Manual

AgentTeamwork Programming Manual AgentTeamwork Programming Manual Munehiro Fukuda Miriam Wallace Computing and Software Systems, University of Washington, Bothell AgentTeamwork Programming Manual Table of Contents Table of Contents..2

More information

Basic Communication Operations (Chapter 4)

Basic Communication Operations (Chapter 4) Basic Communication Operations (Chapter 4) Vivek Sarkar Department of Computer Science Rice University vsarkar@cs.rice.edu COMP 422 Lecture 17 13 March 2008 Review of Midterm Exam Outline MPI Example Program:

More information

Cluster Computing MPI. Industrial Standard Message Passing

Cluster Computing MPI. Industrial Standard Message Passing MPI Industrial Standard Message Passing MPI Features Industrial Standard Highly portable Widely available SPMD programming model Synchronous execution MPI Outer scope int MPI_Init( int *argc, char ** argv)

More information

Reusing this material

Reusing this material Messages Reusing this material This work is licensed under a Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License. http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_us

More information

Discussion: MPI Basic Point to Point Communication I. Table of Contents. Cornell Theory Center

Discussion: MPI Basic Point to Point Communication I. Table of Contents. Cornell Theory Center 1 of 14 11/1/2006 3:58 PM Cornell Theory Center Discussion: MPI Point to Point Communication I This is the in-depth discussion layer of a two-part module. For an explanation of the layers and how to navigate

More information

ECE 563 Second Exam, Spring 2014

ECE 563 Second Exam, Spring 2014 ECE 563 Second Exam, Spring 2014 Don t start working on this until I say so Your exam should have 8 pages total (including this cover sheet) and 11 questions. Each questions is worth 9 points. Please let

More information

Lecture 7: Distributed memory

Lecture 7: Distributed memory Lecture 7: Distributed memory David Bindel 15 Feb 2010 Logistics HW 1 due Wednesday: See wiki for notes on: Bottom-up strategy and debugging Matrix allocation issues Using SSE and alignment comments Timing

More information

Intermediate MPI features

Intermediate MPI features Intermediate MPI features Advanced message passing Collective communication Topologies Group communication Forms of message passing (1) Communication modes: Standard: system decides whether message is

More information

CS 426. Building and Running a Parallel Application

CS 426. Building and Running a Parallel Application CS 426 Building and Running a Parallel Application 1 Task/Channel Model Design Efficient Parallel Programs (or Algorithms) Mainly for distributed memory systems (e.g. Clusters) Break Parallel Computations

More information

High performance computing. Message Passing Interface

High performance computing. Message Passing Interface High performance computing Message Passing Interface send-receive paradigm sending the message: send (target, id, data) receiving the message: receive (source, id, data) Versatility of the model High efficiency

More information

Distributed Systems + Middleware Advanced Message Passing with MPI

Distributed Systems + Middleware Advanced Message Passing with MPI Distributed Systems + Middleware Advanced Message Passing with MPI Gianpaolo Cugola Dipartimento di Elettronica e Informazione Politecnico, Italy cugola@elet.polimi.it http://home.dei.polimi.it/cugola

More information

Masterpraktikum - Scientific Computing, High Performance Computing

Masterpraktikum - Scientific Computing, High Performance Computing Masterpraktikum - Scientific Computing, High Performance Computing Message Passing Interface (MPI) and CG-method Michael Bader Alexander Heinecke Technische Universität München, Germany Outline MPI Hello

More information

Advanced MPI. Andrew Emerson

Advanced MPI. Andrew Emerson Advanced MPI Andrew Emerson (a.emerson@cineca.it) Agenda 1. One sided Communications (MPI-2) 2. Dynamic processes (MPI-2) 3. Profiling MPI and tracing 4. MPI-I/O 5. MPI-3 11/12/2015 Advanced MPI 2 One

More information

Document Classification

Document Classification Document Classification Introduction Search engine on web Search directories, subdirectories for documents Search for documents with extensions.html,.txt, and.tex Using a dictionary of key words, create

More information

Introduction to MPI: Part II

Introduction to MPI: Part II Introduction to MPI: Part II Pawel Pomorski, University of Waterloo, SHARCNET ppomorsk@sharcnetca November 25, 2015 Summary of Part I: To write working MPI (Message Passing Interface) parallel programs

More information

MPI - The Message Passing Interface

MPI - The Message Passing Interface MPI - The Message Passing Interface The Message Passing Interface (MPI) was first standardized in 1994. De facto standard for distributed memory machines. All Top500 machines (http://www.top500.org) are

More information

CSCE 5160 Parallel Processing. CSCE 5160 Parallel Processing

CSCE 5160 Parallel Processing. CSCE 5160 Parallel Processing HW #9 10., 10.3, 10.7 Due April 17 { } Review Completing Graph Algorithms Maximal Independent Set Johnson s shortest path algorithm using adjacency lists Q= V; for all v in Q l[v] = infinity; l[s] = 0;

More information

Parallel Programming

Parallel Programming Parallel Programming Point-to-point communication Prof. Paolo Bientinesi pauldj@aices.rwth-aachen.de WS 18/19 Scenario Process P i owns matrix A i, with i = 0,..., p 1. Objective { Even(i) : compute Ti

More information

Topics. Lecture 6. Point-to-point Communication. Point-to-point Communication. Broadcast. Basic Point-to-point communication. MPI Programming (III)

Topics. Lecture 6. Point-to-point Communication. Point-to-point Communication. Broadcast. Basic Point-to-point communication. MPI Programming (III) Topics Lecture 6 MPI Programming (III) Point-to-point communication Basic point-to-point communication Non-blocking point-to-point communication Four modes of blocking communication Manager-Worker Programming

More information

LOAD BALANCING DISTRIBUTED OPERATING SYSTEMS, SCALABILITY, SS Hermann Härtig

LOAD BALANCING DISTRIBUTED OPERATING SYSTEMS, SCALABILITY, SS Hermann Härtig LOAD BALANCING DISTRIBUTED OPERATING SYSTEMS, SCALABILITY, SS 2016 Hermann Härtig LECTURE OBJECTIVES starting points independent Unix processes and block synchronous execution which component (point in

More information

CME 194 Introduc0on to MPI

CME 194 Introduc0on to MPI CME 194 Introduc0on to MPI Inchoare Commercio & Rebus Iniuriam h;p://cme194.stanford.edu Point to Point Communica0on Last class: Saw the Basics Solve problems with ideal parallelism (massively parallel

More information

An Introduction to Parallel Programming

An Introduction to Parallel Programming Guide 48 Version 2 An Introduction to Parallel Programming Document code: Guide 48 Title: An Introduction to Parallel Programming Version: 2 Date: 31/01/2011 Produced by: University of Durham Information

More information

Masterpraktikum - Scientific Computing, High Performance Computing

Masterpraktikum - Scientific Computing, High Performance Computing Masterpraktikum - Scientific Computing, High Performance Computing Message Passing Interface (MPI) Thomas Auckenthaler Wolfgang Eckhardt Technische Universität München, Germany Outline Hello World P2P

More information

Intermediate MPI (Message-Passing Interface) 1/11

Intermediate MPI (Message-Passing Interface) 1/11 Intermediate MPI (Message-Passing Interface) 1/11 What happens when a process sends a message? Suppose process 0 wants to send a message to process 1. Three possibilities: Process 0 can stop and wait until

More information

High Performance Computing Course Notes Message Passing Programming I

High Performance Computing Course Notes Message Passing Programming I High Performance Computing Course Notes 2008-2009 2009 Message Passing Programming I Message Passing Programming Message Passing is the most widely used parallel programming model Message passing works

More information

COSC 6374 Parallel Computation. Message Passing Interface (MPI ) I Introduction. Distributed memory machines

COSC 6374 Parallel Computation. Message Passing Interface (MPI ) I Introduction. Distributed memory machines Network card Network card 1 COSC 6374 Parallel Computation Message Passing Interface (MPI ) I Introduction Edgar Gabriel Fall 015 Distributed memory machines Each compute node represents an independent

More information

More about MPI programming. More about MPI programming p. 1

More about MPI programming. More about MPI programming p. 1 More about MPI programming More about MPI programming p. 1 Some recaps (1) One way of categorizing parallel computers is by looking at the memory configuration: In shared-memory systems, the CPUs share

More information

Parallel Programming. Using MPI (Message Passing Interface)

Parallel Programming. Using MPI (Message Passing Interface) Parallel Programming Using MPI (Message Passing Interface) Message Passing Model Simple implementation of the task/channel model Task Process Channel Message Suitable for a multicomputer Number of processes

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 8

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 8 Chapter 8 Matrix-vector Multiplication Chapter Objectives Review matrix-vector multiplication Propose replication of vectors Develop three parallel programs, each based on a different data decomposition

More information

Intermediate MPI (Message-Passing Interface) 1/11

Intermediate MPI (Message-Passing Interface) 1/11 Intermediate MPI (Message-Passing Interface) 1/11 What happens when a process sends a message? Suppose process 0 wants to send a message to process 1. Three possibilities: Process 0 can stop and wait until

More information