Lecture Notes 15 Number systems and logic CSS Data Structures and Object-Oriented Programming Professor Clark F. Olson

Size: px
Start display at page:

Download "Lecture Notes 15 Number systems and logic CSS Data Structures and Object-Oriented Programming Professor Clark F. Olson"

Transcription

1 Lecture Notes 15 Number systems and logic CSS Data Structures and Object-Oriented Programming Professor Clark F. Olson Number systems The use of alternative number systems is important in computer science. Computers don t use base 10 when they process numbers and code; they use binary bits, which can only be 0 or 1, instead of 0 through 10 in the decimal system that we are used to. To understand how other number systems work, let s first look at how the decimal system works. If I write 1234, we understand that this means one thousand, two hundred, and thirty-four. Why? This number can be thought of as a sequence of digits. For convenience, we will start at the rightmost digit, so 1234 can be thought of as the sequence s 0 =4, s 1 =3, s 2 =2, s 3 =1. This is converted into a number by taking each digit and multiplying it by a power of 10. If n is the number of digits in our number, then we can compute the number from the sequence s using: n 1 s i i 0 10 i Working in another number system is the same, except we use a different base for the exponent. In binary, we would write: So, (base 2) is 1 + 1*4 + 1*8 + 1*32 = 45. How do we write 21 in binary? First, we have to find the largest digit. We find the largest power of 2 that is smaller than (or equal to) the number. 2 4 = 16 is smaller than 21, but 2 5 is not. This means that our number with have 5 digits. In binary, the digit can only be 1 or 0, so in this way it is a little easier than decimal (or other number systems). The first digit is, of course, 1. We then remove 16 from the number to get 5 and go to the next digit. The next digit is for 8s. There is no 8 left in the number, so the next digit is 0. At the 4s spot, we have a 1, since 5 is larger than 4, leaving 1 after removing the four. There is a 0 at the 2s positions and a 1 at the final position, so the result is: Adding in binary is similar to adding in decimal. We carry a digit if we get a result greater than 1 (instead of greater than 9) Hexadecimal (base 16) is also commonly used, since it can abbreviate binary numbers. To write a number in hexadecimal, we use: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Converting from binary to hexadecimal is easy, because we can just group each four digits (starting from the right and convert it into a hex value): = 35D2 Of course, we can add and subtract in hexadecimal. 84F 3C9 + 42EA - 4D 4B39 37C n 1 s i i 0 2 i

2 A useful method to convert to from decimal to any number system is to repeated divide the number by the base of the new number system. The remainders form the digits of the new number from right to left. For example, what is 32 in base 3? = / 3 = 10 with remainder 2 10 / 3 = 3 with remainder 1 3 / 3 = 1 with remainder 0 1 / 3 = 0 with remainder 1 We can write code to convert from base 10 to any base between 2 and 36 as follows: string convertbase(int n, int base) { string result = ""; while (n > 0) { int digit = n % base; n = n / base; if (digit < 10) { result = char('0' + digit) + result; else { result = char('a' + digit - 10) + result; return result; Logic In the rest of this lecture, we are going to talk mostly about logic and proofs. We won t discuss programming or code at all. This will be the case in several other lectures this quarter, also. A large part of this class has to do with the mathematical foundations that are used in computer science. Logic is extremely important. Every time you use an if-then statement, you are using logic to determine the outcome of your program. However, it goes much deeper than this. Logic is the study of reasoning - of determining whether statements are true or false. If you don t have a good foundation in logic and logical reasoning, then it is difficult to reason effectively about your programs. Logic is also used to prove that programs do what you claim that they do. If you give someone a program to accomplish some task, what reason do they have to believe that the program works correctly? Even if they verify that, it works correctly on 1000 different inputs, that doesn t mean it works correctly on all inputs. You have to use logic to demonstrate that the program is always correct. Propositions Logic deals with statements that are either true or false. These statements are called propositions. They do not need to be true to reason about them. The following are propositions: Starbucks sells coffee in Seattle. Slayer plays easy listening music. The Seahawks will win the Super Bowl this year. (True or false, we just don t know which!) Are these statements true or false? Questions and commands are not propositions: Do I own any cats? Finish your programming assignment. For the most part, we won t pay much attention to what the particular propositions mean. We will give them abbreviated names (lower-case letters) to represent them and reason about them using their abbreviations. So, a could represent the proposition My car is black and b could represent the proposition My car is a Ferrari. To write the conjunction (logical and) of two propositions we write: a^b.

3 This is true if and only if both a and b are true. We write the disjunction (logical or) of two propositions as: a b. This is true if either a or b is true. For any particular operator, such as conjunction or disjunction, we can define it using a truth table that says what the value is for any possible combination of inputs: a b a^b a b (I will use 0 for false and 1 for true in these notes.) We can also take the negation of a statement. The negation of a is written a. Negation has the following truth table: a a Let s consider the following propositions: a: A New Hope is Star Wars episode IV. b: Hoth is a desert planet. c: Darth Vader is Princess Leia s father. How would we represent the statement: `A New Hope is not Star Wars episode IV or Darth Vader is Princess Leia s father, and Hoth is a desert planet. ( a c)^b Is this a true statement? Conditional propositions are like if-then statements in programming. If a and b are propositions, then: if a then b is also a proposition (a conditional proposition). In logic, this is usually written a b, sometimes this is pronounced a implies b. The proposition a b is true if b is true whenever a is true. The truth table is: a b a b b a a b (biconditional) Note that the proposition b a is logically equivalent to a b, they both have the same outcome, no matter what a and b are. Some other propositions that are logically equivalent: (a b) a^ b (a^b) a b (These two are known as De Morgan s laws) (a b) a^ b a b (a b)^(b a) Let a = This class starts at 6:00pm and b = My name is Clark. Is a b true? What if a = This class starts at 8:00pm? The order of precedence of the operators is:, ^,,

4 Quantifiers So far we are only able to write propositions without any variables (a and b were abbreviations for known statements). x=2y+1 is not a proposition (if x and y are unknown variables) since it is not either true or false (it depends on x and y). However, we would like to be able to create propositions that have variables in them. To do this, we use quantifiers. Let P(x) be a statement involving the variable x and D be a set (the domain of x). P is a propositional function if, for every x in D, P(x) is a proposition. Given a propositional function, we can create a proposition using either of two quantifiers: Existential quantifier: x P(x) There exists x such that P(x) is true. Universal quantifier: x P(x) For all x, P(x) is true. Using the set of integers as our domain D, some propositions using these quantifiers are: x, x = 5 y, y = y + 2 x, 10x > x x, x² 0 The first and last are true, the middle two are false. We can build up propositions with multiple variables. Example: x y z x + y + z = 0 To determine if propositions like this are true or false, you play a logic game. You play against an adversary that tries to make the statement false, while you try to make the statement true. Starting with the quantifier that is the farthest to the left in the statement, either you or your adversary picks a value for the variable. If the quantifier is universal (for all), then your adversary picks the value. If the quantifier is existential (there exists), you get to pick the value. If you opponent is able to choose values for the universally quantified variables, such that you cannot choose values for the others that make the statement true, you lose (the statement is false). If you can choose values that make the statement true, no matter what values your opponent chooses, then you win (the statement is true). This is sometimes called an adversary argument or adversary proof. If you are my adversary, you cannot choose values for x and y such that I cannot make the statement above true. Not matter what you choose, I can pick z = x y and the proposition will be true. Proofs A theorem is a proposition that has been proven to be true. An example is the proposition from the previous section: x y z, x + y + z = 0 A proof is an argument that establishes the truth of a proposition (or theorem). A common type of proposition looks like this: For all x1, x2,, xn, if p(x1, x2,, xn), then q(x1, x2,, xn) A direct proof of such a theorem assumes that p(x1, x2,, xn) is true and shows that q(x1, x2,, xn) is true. Let s prove that: For all x, y, if x = 2y, then (x + 1)² = 4y² + 4y + 1 Assuming that x = 2y, we can replace x with 2y in the second proposition, yielding: (2y + 1)² = 4y² + 4y + 1 An indirect proof, assumes that p is true and q is false and derives a contradiction. This also proves the theorem, since if p then q is equivalent to p q and also q p. Example: For all integers, x and y, if x + y > 0 then x > 0 or y > 0. Assume x + y > 0, x <= 0, y <= 0. The second two combined imply that x + y <= 0, which contradicts the first statement.

5 One way of reasoning about propositions is to construct arguments. In this context, argument has a very specific meaning. An argument is a proposition of the form: If p1 and p2 and and pn, then q. Note that an argument (like any other proposition) can be either true or false. Arguments of this form are commonly written like this: p 1 p 2 p n Δq This is the same as p1 ^ p2 ^ ^ pn q. One way to prove an argument is to use a truth table. A proof using a truth table is constructed by trying every possible combination of values for the variables in the argument. Let s try: a a b b a b a b a^( a b) (a^( a b)) b This argument is proven true, since it is true for any possible combination of true and false for a and b. Practice problem: write a truth table for ( x ^ y) z. Resolution (optional) Another way of proving arguments is using a technique called resolution. The basic rule of resolution says: If p q and p r are both true, then q r is true. Formally, resolution can be written as follows: (p q)^( p r) (q r) Here is a truth table that proves this is true: p q r p (p q) ( p r) (p q)^( p r) (q r) ((p q)^( p r)) (q r) So, ((p q)^( p r)) (q r) is true for every possible combination of p, q, and r. We can use this rule to prove various arguments. Here is a simple example: a b a c Δb c This follows directly from the resolution rule. Another example, with more clauses: a b b c a d Δc d (from these two we get a c) (from these we get c d)

6 We can also prove arguments that don t look like they fit the definition of resolution: a (this is the same as a false) a c (using resolution this yields c false, which is the same as c) Δc Finally, a (b^c) this is (a b)^(a c) a from this we get b Δb Practice problems (optional): Write the truth table for: (y^ z) (x ^ y) Convert to binary. (Hint: first convert it to decimal)

CS Bootcamp Boolean Logic Autumn 2015 A B A B T T T T F F F T F F F F T T T T F T F T T F F F

CS Bootcamp Boolean Logic Autumn 2015 A B A B T T T T F F F T F F F F T T T T F T F T T F F F 1 Logical Operations 1.1 And The and operator is a binary operator, denoted as, &,, or sometimes by just concatenating symbols, is true only if both parameters are true. A B A B F T F F F F The expression

More information

(a) (4 pts) Prove that if a and b are rational, then ab is rational. Since a and b are rational they can be written as the ratio of integers a 1

(a) (4 pts) Prove that if a and b are rational, then ab is rational. Since a and b are rational they can be written as the ratio of integers a 1 CS 70 Discrete Mathematics for CS Fall 2000 Wagner MT1 Sol Solutions to Midterm 1 1. (16 pts.) Theorems and proofs (a) (4 pts) Prove that if a and b are rational, then ab is rational. Since a and b are

More information

CSL105: Discrete Mathematical Structures. Ragesh Jaiswal, CSE, IIT Delhi

CSL105: Discrete Mathematical Structures. Ragesh Jaiswal, CSE, IIT Delhi is another way of showing that an argument is correct. Definitions: Literal: A variable or a negation of a variable is called a literal. Sum and Product: A disjunction of literals is called a sum and a

More information

CS 3512, Spring Instructor: Doug Dunham. Textbook: James L. Hein, Discrete Structures, Logic, and Computability, 3rd Ed. Jones and Barlett, 2010

CS 3512, Spring Instructor: Doug Dunham. Textbook: James L. Hein, Discrete Structures, Logic, and Computability, 3rd Ed. Jones and Barlett, 2010 CS 3512, Spring 2011 Instructor: Doug Dunham Textbook: James L. Hein, Discrete Structures, Logic, and Computability, 3rd Ed. Jones and Barlett, 2010 Prerequisites: Calc I, CS2511 Rough course outline:

More information

Bits, Words, and Integers

Bits, Words, and Integers Computer Science 52 Bits, Words, and Integers Spring Semester, 2017 In this document, we look at how bits are organized into meaningful data. In particular, we will see the details of how integers are

More information

CSE101: Design and Analysis of Algorithms. Ragesh Jaiswal, CSE, UCSD

CSE101: Design and Analysis of Algorithms. Ragesh Jaiswal, CSE, UCSD Recap. Growth rates: Arrange the following functions in ascending order of growth rate: n 2 log n n log n 2 log n n/ log n n n Introduction Algorithm: A step-by-step way of solving a problem. Design of

More information

Section 2.2: Introduction to the Logic of Quantified Statements

Section 2.2: Introduction to the Logic of Quantified Statements Section 2.2: Introduction to the Logic of Quantified Statements In this section, we shall continue to examine some of the fundamentals of predicate calculus. Specifically, we shall look at the negations

More information

CSE 20 DISCRETE MATH. Fall

CSE 20 DISCRETE MATH. Fall CSE 20 DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Final exam The final exam is Saturday December 16 11:30am-2:30pm. Lecture A will take the exam in Lecture B will take the exam

More information

Lecture 6,

Lecture 6, Lecture 6, 4.16.2009 Today: Review: Basic Set Operation: Recall the basic set operator,!. From this operator come other set quantifiers and operations:!,!,!,! \ Set difference (sometimes denoted, a minus

More information

Fall Recursion and induction. Stephen Brookes. Lecture 4

Fall Recursion and induction. Stephen Brookes. Lecture 4 15-150 Fall 2018 Stephen Brookes Lecture 4 Recursion and induction Last time Specification format for a function F type assumption guarantee (REQUIRES) (ENSURES) For all (properly typed) x satisfying the

More information

AXIOMS FOR THE INTEGERS

AXIOMS FOR THE INTEGERS AXIOMS FOR THE INTEGERS BRIAN OSSERMAN We describe the set of axioms for the integers which we will use in the class. The axioms are almost the same as what is presented in Appendix A of the textbook,

More information

Notes. Notes. Introduction. Notes. Propositional Functions. Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry.

Notes. Notes. Introduction. Notes. Propositional Functions. Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry. Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry Spring 2006 1 / 1 Computer Science & Engineering 235 Introduction to Discrete Mathematics Sections 1.3 1.4 of Rosen cse235@cse.unl.edu Introduction

More information

To prove something about all Boolean expressions, we will need the following induction principle: Axiom 7.1 (Induction over Boolean expressions):

To prove something about all Boolean expressions, we will need the following induction principle: Axiom 7.1 (Induction over Boolean expressions): CS 70 Discrete Mathematics for CS Fall 2003 Wagner Lecture 7 This lecture returns to the topic of propositional logic. Whereas in Lecture 1 we studied this topic as a way of understanding proper reasoning

More information

Chapter 6 Primitive types

Chapter 6 Primitive types Chapter 6 Primitive types Lesson page 6-1. Primitive types Question 1. There are an infinite number of integers, so it would be too ineffient to have a type integer that would contain all of them. Question

More information

To prove something about all Boolean expressions, we will need the following induction principle: Axiom 7.1 (Induction over Boolean expressions):

To prove something about all Boolean expressions, we will need the following induction principle: Axiom 7.1 (Induction over Boolean expressions): CS 70 Discrete Mathematics for CS Spring 2005 Clancy/Wagner Notes 7 This lecture returns to the topic of propositional logic. Whereas in Lecture Notes 1 we studied this topic as a way of understanding

More information

CSE 311: Foundations of Computing. Lecture 8: Predicate Logic Proofs

CSE 311: Foundations of Computing. Lecture 8: Predicate Logic Proofs CSE 311: Foundations of Computing Lecture 8: Predicate Logic Proofs Last class: Propositional Inference Rules Two inference rules per binary connective, one to eliminate it and one to introduce it Elim

More information

Mathematical Logic Prof. Arindama Singh Department of Mathematics Indian Institute of Technology, Madras. Lecture - 9 Normal Forms

Mathematical Logic Prof. Arindama Singh Department of Mathematics Indian Institute of Technology, Madras. Lecture - 9 Normal Forms Mathematical Logic Prof. Arindama Singh Department of Mathematics Indian Institute of Technology, Madras Lecture - 9 Normal Forms In the last class we have seen some consequences and some equivalences,

More information

Program Verification & Testing; Review of Propositional Logic

Program Verification & Testing; Review of Propositional Logic 8/24: p.1, solved; 9/20: p.5 Program Verification & Testing; Review of Propositional Logic CS 536: Science of Programming, Fall 2018 A. Why Course guidelines are important. Active learning is the style

More information

University of Illinois at Chicago Department of Computer Science. Final Examination. CS 151 Mathematical Foundations of Computer Science Fall 2012

University of Illinois at Chicago Department of Computer Science. Final Examination. CS 151 Mathematical Foundations of Computer Science Fall 2012 University of Illinois at Chicago Department of Computer Science Final Examination CS 151 Mathematical Foundations of Computer Science Fall 2012 Thursday, October 18, 2012 Name: Email: Print your name

More information

CPSC 121: Models of Computation Assignment #4, due Thursday, March 16 th,2017at16:00

CPSC 121: Models of Computation Assignment #4, due Thursday, March 16 th,2017at16:00 CPSC 121: Models of Computation Assignment #4, due Thursday, March 16 th,2017at16:00 [18] 1. Consider the following predicate logic statement: 9x 2 A, 8y 2 B,9z 2 C, P(x, y, z)! Q(x, y, z), where A, B,

More information

CMPSCI 250: Introduction to Computation. Lecture #7: Quantifiers and Languages 6 February 2012

CMPSCI 250: Introduction to Computation. Lecture #7: Quantifiers and Languages 6 February 2012 CMPSCI 250: Introduction to Computation Lecture #7: Quantifiers and Languages 6 February 2012 Quantifiers and Languages Quantifier Definitions Translating Quantifiers Types and the Universe of Discourse

More information

Divisibility Rules and Their Explanations

Divisibility Rules and Their Explanations Divisibility Rules and Their Explanations Increase Your Number Sense These divisibility rules apply to determining the divisibility of a positive integer (1, 2, 3, ) by another positive integer or 0 (although

More information

Summary of Course Coverage

Summary of Course Coverage CS-227, Discrete Structures I Spring 2006 Semester Summary of Course Coverage 1) Propositional Calculus a) Negation (logical NOT) b) Conjunction (logical AND) c) Disjunction (logical inclusive-or) d) Inequalities

More information

CPSC 121: Models of Computation. Module 6: Rewriting predicate logic statements

CPSC 121: Models of Computation. Module 6: Rewriting predicate logic statements CPSC 121: Models of Computation Module 6: Rewriting predicate logic statements Module 6: Rewriting predicate logic statements Pre-class quiz #7 is due March 1st at 19:00. Assigned reading for the quiz:

More information

Chapter 3. Set Theory. 3.1 What is a Set?

Chapter 3. Set Theory. 3.1 What is a Set? Chapter 3 Set Theory 3.1 What is a Set? A set is a well-defined collection of objects called elements or members of the set. Here, well-defined means accurately and unambiguously stated or described. Any

More information

[Ch 6] Set Theory. 1. Basic Concepts and Definitions. 400 lecture note #4. 1) Basics

[Ch 6] Set Theory. 1. Basic Concepts and Definitions. 400 lecture note #4. 1) Basics 400 lecture note #4 [Ch 6] Set Theory 1. Basic Concepts and Definitions 1) Basics Element: ; A is a set consisting of elements x which is in a/another set S such that P(x) is true. Empty set: notated {

More information

The set consisting of all natural numbers that are in A and are in B is the set f1; 3; 5g;

The set consisting of all natural numbers that are in A and are in B is the set f1; 3; 5g; Chapter 5 Set Theory 5.1 Sets and Operations on Sets Preview Activity 1 (Set Operations) Before beginning this section, it would be a good idea to review sets and set notation, including the roster method

More information

Propositional Logic Formal Syntax and Semantics. Computability and Logic

Propositional Logic Formal Syntax and Semantics. Computability and Logic Propositional Logic Formal Syntax and Semantics Computability and Logic Syntax and Semantics Syntax: The study of how expressions are structured (think: grammar) Semantics: The study of the relationship

More information

Geometry Note-Sheet Overview

Geometry Note-Sheet Overview Geometry Note-Sheet Overview 1. Logic a. A mathematical sentence is a sentence that states a fact or contains a complete idea. Open sentence it is blue x+3 Contains variables Cannot assign a truth variable

More information

Number Systems. Binary Numbers. Appendix. Decimal notation represents numbers as powers of 10, for example

Number Systems. Binary Numbers. Appendix. Decimal notation represents numbers as powers of 10, for example Appendix F Number Systems Binary Numbers Decimal notation represents numbers as powers of 10, for example 1729 1 103 7 102 2 101 9 100 decimal = + + + There is no particular reason for the choice of 10,

More information

COMP combinational logic 1 Jan. 18, 2016

COMP combinational logic 1 Jan. 18, 2016 In lectures 1 and 2, we looked at representations of numbers. For the case of integers, we saw that we could perform addition of two numbers using a binary representation and using the same algorithm that

More information

1 Definition of Reduction

1 Definition of Reduction 1 Definition of Reduction Problem A is reducible, or more technically Turing reducible, to problem B, denoted A B if there a main program M to solve problem A that lacks only a procedure to solve problem

More information

CSE 20 DISCRETE MATH. Winter

CSE 20 DISCRETE MATH. Winter CSE 20 DISCRETE MATH Winter 2017 http://cseweb.ucsd.edu/classes/wi17/cse20-ab/ Final exam The final exam is Saturday March 18 8am-11am. Lecture A will take the exam in GH 242 Lecture B will take the exam

More information

Excerpt from "Art of Problem Solving Volume 1: the Basics" 2014 AoPS Inc.

Excerpt from Art of Problem Solving Volume 1: the Basics 2014 AoPS Inc. Chapter 5 Using the Integers In spite of their being a rather restricted class of numbers, the integers have a lot of interesting properties and uses. Math which involves the properties of integers is

More information

2. BOOLEAN ALGEBRA 2.1 INTRODUCTION

2. BOOLEAN ALGEBRA 2.1 INTRODUCTION 2. BOOLEAN ALGEBRA 2.1 INTRODUCTION In the previous chapter, we introduced binary numbers and binary arithmetic. As you saw in binary arithmetic and in the handling of floating-point numbers, there is

More information

Proofwriting Checklist

Proofwriting Checklist CS103 Winter 2019 Proofwriting Checklist Cynthia Lee Keith Schwarz Over the years, we ve found many common proofwriting errors that can easily be spotted once you know how to look for them. In this handout,

More information

Solutions to Selected Exercises

Solutions to Selected Exercises Chapter 1 Solutions to Selected Exercises Section 1.1 2. {2, 4} 3. {7, 10} 5. {2, 3, 5, 6, 8, 9} 6. {1, 3, 5, 7, 9, 10} 8. A 9. 11. B 12. {1, 4} 14. {1} 15. {2, 3, 4, 5, 6, 7, 8, 9, 10} 18. 1 19. 3 22.

More information

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF CHAPTER 4 ELEMENTARY NUMBER THEORY AND METHODS OF PROOF Copyright Cengage Learning. All rights reserved. SECTION 4.2 Direct Proof and Counterexample II: Rational Numbers Copyright Cengage Learning. All

More information

Introduction to Programming, Aug-Dec 2008

Introduction to Programming, Aug-Dec 2008 Introduction to Programming, Aug-Dec 2008 Lecture 1, Monday 4 Aug 2008 Administrative matters Resource material Textbooks and other resource material for the course: The Craft of Functional Programming

More information

Reductions and Satisfiability

Reductions and Satisfiability Reductions and Satisfiability 1 Polynomial-Time Reductions reformulating problems reformulating a problem in polynomial time independent set and vertex cover reducing vertex cover to set cover 2 The Satisfiability

More information

CPSC 121 Some Sample Questions for the Final Exam Tuesday, April 15, 2014, 8:30AM

CPSC 121 Some Sample Questions for the Final Exam Tuesday, April 15, 2014, 8:30AM CPSC 121 Some Sample Questions for the Final Exam Tuesday, April 15, 2014, 8:30AM Name: Student ID: Signature: Section (circle one): George Steve Your signature acknowledges your understanding of and agreement

More information

Bulgarian Math Olympiads with a Challenge Twist

Bulgarian Math Olympiads with a Challenge Twist Bulgarian Math Olympiads with a Challenge Twist by Zvezdelina Stankova Berkeley Math Circle Beginners Group September 0, 03 Tasks throughout this session. Harder versions of problems from last time appear

More information

Section 2.4: Arguments with Quantified Statements

Section 2.4: Arguments with Quantified Statements Section 2.4: Arguments with Quantified Statements In this section, we shall generalize the ideas we developed in Section 1.3 to arguments which involve quantified statements. Most of the concepts we shall

More information

for all x, the assertion P(x) is false. there exists x, for which the assertion P(x) is true.

for all x, the assertion P(x) is false. there exists x, for which the assertion P(x) is true. You can t prove a predicate is true because a predicate is not an assertion, you can t prove it is valid as it is not a deduction! If someone asks you to prove P(x), it is not totally clear what they mean.

More information

CSE 215: Foundations of Computer Science Recitation Exercises Set #4 Stony Brook University. Name: ID#: Section #: Score: / 4

CSE 215: Foundations of Computer Science Recitation Exercises Set #4 Stony Brook University. Name: ID#: Section #: Score: / 4 CSE 215: Foundations of Computer Science Recitation Exercises Set #4 Stony Brook University Name: ID#: Section #: Score: / 4 Unit 7: Direct Proof Introduction 1. The statement below is true. Rewrite the

More information

The. Binary. Number System

The. Binary. Number System The Binary Number System Why is Binary important? Everything on a computer (or other digital device) is represented by Binary Numbers One to Five in various systems 1 2 3 4 5 I II III IV V 1 10 11 100

More information

Lecture 5. Logic I. Statement Logic

Lecture 5. Logic I. Statement Logic Ling 726: Mathematical Linguistics, Logic. Statement Logic V. Borschev and B. Partee, September 27, 2 p. Lecture 5. Logic I. Statement Logic. Statement Logic...... Goals..... Syntax of Statement Logic....2.

More information

C++ Data Types. 1 Simple C++ Data Types 2. 3 Numeric Types Integers (whole numbers) Decimal Numbers... 5

C++ Data Types. 1 Simple C++ Data Types 2. 3 Numeric Types Integers (whole numbers) Decimal Numbers... 5 C++ Data Types Contents 1 Simple C++ Data Types 2 2 Quick Note About Representations 3 3 Numeric Types 4 3.1 Integers (whole numbers)............................................ 4 3.2 Decimal Numbers.................................................

More information

9/19/12. Why Study Discrete Math? What is discrete? Sets (Rosen, Chapter 2) can be described by discrete math TOPICS

9/19/12. Why Study Discrete Math? What is discrete? Sets (Rosen, Chapter 2) can be described by discrete math TOPICS What is discrete? Sets (Rosen, Chapter 2) TOPICS Discrete math Set Definition Set Operations Tuples Consisting of distinct or unconnected elements, not continuous (calculus) Helps us in Computer Science

More information

Zero-Knowledge Proofs. Zero-Knowledge Proofs. Slides from a Talk by Eric Postpischil

Zero-Knowledge Proofs. Zero-Knowledge Proofs. Slides from a Talk by Eric Postpischil Slides from a Talk by Eric Postpischil Goals Alice wants to prove to Bob that she knows an identifying number X. Bob should not be able to figure out X. Dave observes all communications between Alice and

More information

The type of all data used in a C++ program must be specified

The type of all data used in a C++ program must be specified The type of all data used in a C++ program must be specified A data type is a description of the data being represented That is, a set of possible values and a set of operations on those values There are

More information

CS & IT Conversions. Magnitude 10,000 1,

CS & IT Conversions. Magnitude 10,000 1, CS & IT Conversions There are several number systems that you will use when working with computers. These include decimal, binary, octal, and hexadecimal. Knowing how to convert between these number systems

More information

Chapter 1 Operations With Numbers

Chapter 1 Operations With Numbers Chapter 1 Operations With Numbers Part I Negative Numbers You may already know what negative numbers are, but even if you don t, then you have probably seen them several times over the past few days. If

More information

Formal Methods of Software Design, Eric Hehner, segment 1 page 1 out of 5

Formal Methods of Software Design, Eric Hehner, segment 1 page 1 out of 5 Formal Methods of Software Design, Eric Hehner, segment 1 page 1 out of 5 [talking head] Formal Methods of Software Engineering means the use of mathematics as an aid to writing programs. Before we can

More information

Hexadecimal Numbers. Journal: If you were to extend our numbering system to more digits, what digits would you use? Why those?

Hexadecimal Numbers. Journal: If you were to extend our numbering system to more digits, what digits would you use? Why those? 9/10/18 1 Binary and Journal: If you were to extend our numbering system to more digits, what digits would you use? Why those? Hexadecimal Numbers Check Homework 3 Binary Numbers A binary (base-two) number

More information

Number Systems Using and Converting Between Decimal, Binary, Octal and Hexadecimal Number Systems

Number Systems Using and Converting Between Decimal, Binary, Octal and Hexadecimal Number Systems Number Systems Using and Converting Between Decimal, Binary, Octal and Hexadecimal Number Systems In everyday life, we humans most often count using decimal or base-10 numbers. In computer science, it

More information

Chomp the Graph. Research. treet. road. Sam Magura, Vitchyr Pong, Elliot Cartee, Kevin Valakuzhy. Scientific

Chomp the Graph. Research. treet. road. Sam Magura, Vitchyr Pong, Elliot Cartee, Kevin Valakuzhy. Scientific Chomp the Graph am Magura, Vitchyr Pong, Elliot Cartee, Kevin Valakuzhy Introduction Chomp the Graph is a two player game played on a finite graph G=(V,E) On a player s turn, they remove part of the graph,

More information

Introduction to Boolean Algebra

Introduction to Boolean Algebra Introduction to Boolean Algebra Boolean algebra which deals with two-valued (true / false or and ) variables and functions find its use in modern digital computers since they too use two-level systems

More information

Maximal Monochromatic Geodesics in an Antipodal Coloring of Hypercube

Maximal Monochromatic Geodesics in an Antipodal Coloring of Hypercube Maximal Monochromatic Geodesics in an Antipodal Coloring of Hypercube Kavish Gandhi April 4, 2015 Abstract A geodesic in the hypercube is the shortest possible path between two vertices. Leader and Long

More information

Practice Problems: All Computer Science majors are people. Some computer science majors are logical thinkers. Some people are logical thinkers.

Practice Problems: All Computer Science majors are people. Some computer science majors are logical thinkers. Some people are logical thinkers. CSE 240, Fall, 2013 Homework 2 Due, Tuesday September 17. Can turn in class, at the beginning of class, or earlier in the mailbox labelled Pless in Bryan Hall, room 509c. Practice Problems: 1. Consider

More information

DLD VIDYA SAGAR P. potharajuvidyasagar.wordpress.com. Vignana Bharathi Institute of Technology UNIT 1 DLD P VIDYA SAGAR

DLD VIDYA SAGAR P. potharajuvidyasagar.wordpress.com. Vignana Bharathi Institute of Technology UNIT 1 DLD P VIDYA SAGAR UNIT I Digital Systems: Binary Numbers, Octal, Hexa Decimal and other base numbers, Number base conversions, complements, signed binary numbers, Floating point number representation, binary codes, error

More information

Homework 1 CS 1050 A Due:

Homework 1 CS 1050 A Due: 9-4-08 Homework 1 CS 1050 A Due: 9-11-08 Every assignment will be due at the beginning of class. Recall that you can collaborate in groups and/or use external references, but you must acknowledge the group/references

More information

Introduction to Boolean Algebra

Introduction to Boolean Algebra Introduction to Boolean Algebra Boolean algebra which deals with two-valued (true / false or and ) variables and functions find its use in modern digital computers since they too use two-level systems

More information

Predicate Logic CHAPTER What This Chapter Is About

Predicate Logic CHAPTER What This Chapter Is About CHAPTER 14 Predicate Logic We now turn our attention to a generalization of propositional logic, called predicate, or first-order, logic. Predicates are functions of zero or more variables that return

More information

Propositional Calculus. Math Foundations of Computer Science

Propositional Calculus. Math Foundations of Computer Science Propositional Calculus Math Foundations of Computer Science Propositional Calculus Objective: To provide students with the concepts and techniques from propositional calculus so that they can use it to

More information

How invariants help writing loops Author: Sander Kooijmans Document version: 1.0

How invariants help writing loops Author: Sander Kooijmans Document version: 1.0 How invariants help writing loops Author: Sander Kooijmans Document version: 1.0 Why this document? Did you ever feel frustrated because of a nasty bug in your code? Did you spend hours looking at the

More information

CS103 Spring 2018 Mathematical Vocabulary

CS103 Spring 2018 Mathematical Vocabulary CS103 Spring 2018 Mathematical Vocabulary You keep using that word. I do not think it means what you think it means. - Inigo Montoya, from The Princess Bride Consider the humble while loop in most programming

More information

Chapter 1.3 Quantifiers, Predicates, and Validity. Reading: 1.3 Next Class: 1.4. Motivation

Chapter 1.3 Quantifiers, Predicates, and Validity. Reading: 1.3 Next Class: 1.4. Motivation Chapter 1.3 Quantifiers, Predicates, and Validity Reading: 1.3 Next Class: 1.4 1 Motivation Propositional logic allows to translate and prove certain arguments from natural language If John s wallet was

More information

(Refer Slide Time 6:48)

(Refer Slide Time 6:48) Digital Circuits and Systems Prof. S. Srinivasan Department of Electrical Engineering Indian Institute of Technology Madras Lecture - 8 Karnaugh Map Minimization using Maxterms We have been taking about

More information

Interpretations and Models. Chapter Axiomatic Systems and Incidence Geometry

Interpretations and Models. Chapter Axiomatic Systems and Incidence Geometry Interpretations and Models Chapter 2.1-2.4 - Axiomatic Systems and Incidence Geometry Axiomatic Systems in Mathematics The gold standard for rigor in an area of mathematics Not fully achieved in most areas

More information

Slide Set 1. for ENEL 339 Fall 2014 Lecture Section 02. Steve Norman, PhD, PEng

Slide Set 1. for ENEL 339 Fall 2014 Lecture Section 02. Steve Norman, PhD, PEng Slide Set 1 for ENEL 339 Fall 2014 Lecture Section 02 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary Fall Term, 2014 ENEL 353 F14 Section

More information

4.1 Review - the DPLL procedure

4.1 Review - the DPLL procedure Applied Logic Lecture 4: Efficient SAT solving CS 4860 Spring 2009 Thursday, January 29, 2009 The main purpose of these notes is to help me organize the material that I used to teach today s lecture. They

More information

Answer Key #1 Phil 414 JL Shaheen Fall 2010

Answer Key #1 Phil 414 JL Shaheen Fall 2010 Answer Key #1 Phil 414 JL Shaheen Fall 2010 1. 1.42(a) B is equivalent to B, and so also to C, where C is a DNF formula equivalent to B. (By Prop 1.5, there is such a C.) Negated DNF meets de Morgan s

More information

Propositional Calculus. CS 270: Mathematical Foundations of Computer Science Jeremy Johnson

Propositional Calculus. CS 270: Mathematical Foundations of Computer Science Jeremy Johnson Propositional Calculus CS 270: Mathematical Foundations of Computer Science Jeremy Johnson Propositional Calculus Objective: To provide students with the concepts and techniques from propositional calculus

More information

4&5 Binary Operations and Relations. The Integers. (part I)

4&5 Binary Operations and Relations. The Integers. (part I) c Oksana Shatalov, Spring 2016 1 4&5 Binary Operations and Relations. The Integers. (part I) 4.1: Binary Operations DEFINITION 1. A binary operation on a nonempty set A is a function from A A to A. Addition,

More information

LECTURE 2 An Introduction to Boolean Algebra

LECTURE 2 An Introduction to Boolean Algebra IST 210: Boot Camp Ritendra Datta LECTURE 2 An Introduction to Boolean Algebra 2.1. Outline of Lecture Fundamentals Negation, Conjunction, and Disjunction Laws of Boolean Algebra Constructing Truth Tables

More information

Goals of this Lecture

Goals of this Lecture C Pointers Goals of this Lecture Help you learn about: Pointers and application Pointer variables Operators & relation to arrays 2 Pointer Variables The first step in understanding pointers is visualizing

More information

Propositional Calculus: Boolean Functions and Expressions. CS 270: Mathematical Foundations of Computer Science Jeremy Johnson

Propositional Calculus: Boolean Functions and Expressions. CS 270: Mathematical Foundations of Computer Science Jeremy Johnson Propositional Calculus: Boolean Functions and Expressions CS 270: Mathematical Foundations of Computer Science Jeremy Johnson Propositional Calculus Objective: To provide students with the concepts and

More information

Digital Logic. The Binary System is a way of writing numbers using only the digits 0 and 1. This is the method used by the (digital) computer.

Digital Logic. The Binary System is a way of writing numbers using only the digits 0 and 1. This is the method used by the (digital) computer. Digital Logic 1 Data Representations 1.1 The Binary System The Binary System is a way of writing numbers using only the digits 0 and 1. This is the method used by the (digital) computer. The system we

More information

BOOLEAN ALGEBRA AND CIRCUITS

BOOLEAN ALGEBRA AND CIRCUITS UNIT 3 Structure BOOLEAN ALGEBRA AND CIRCUITS Boolean Algebra and 3. Introduction 3. Objectives 3.2 Boolean Algebras 3.3 Logic 3.4 Boolean Functions 3.5 Summary 3.6 Solutions/ Answers 3. INTRODUCTION This

More information

1. NUMBER SYSTEMS USED IN COMPUTING: THE BINARY NUMBER SYSTEM

1. NUMBER SYSTEMS USED IN COMPUTING: THE BINARY NUMBER SYSTEM 1. NUMBER SYSTEMS USED IN COMPUTING: THE BINARY NUMBER SYSTEM 1.1 Introduction Given that digital logic and memory devices are based on two electrical states (on and off), it is natural to use a number

More information

Concepts Review. 2. A program is the implementation of an algorithm in a particular computer language, like C and C++.

Concepts Review. 2. A program is the implementation of an algorithm in a particular computer language, like C and C++. Concepts Review 1. An algorithm is a sequence of steps to solve a problem. 2. A program is the implementation of an algorithm in a particular computer language, like C and C++. 3. A flowchart is the graphical

More information

Definition: A context-free grammar (CFG) is a 4- tuple. variables = nonterminals, terminals, rules = productions,,

Definition: A context-free grammar (CFG) is a 4- tuple. variables = nonterminals, terminals, rules = productions,, CMPSCI 601: Recall From Last Time Lecture 5 Definition: A context-free grammar (CFG) is a 4- tuple, variables = nonterminals, terminals, rules = productions,,, are all finite. 1 ( ) $ Pumping Lemma for

More information

The Satisfiability Problem [HMU06,Chp.10b] Satisfiability (SAT) Problem Cook s Theorem: An NP-Complete Problem Restricted SAT: CSAT, k-sat, 3SAT

The Satisfiability Problem [HMU06,Chp.10b] Satisfiability (SAT) Problem Cook s Theorem: An NP-Complete Problem Restricted SAT: CSAT, k-sat, 3SAT The Satisfiability Problem [HMU06,Chp.10b] Satisfiability (SAT) Problem Cook s Theorem: An NP-Complete Problem Restricted SAT: CSAT, k-sat, 3SAT 1 Satisfiability (SAT) Problem 2 Boolean Expressions Boolean,

More information

Boolean Algebra A B A AND B = A*B A B A OR B = A+B

Boolean Algebra A B A AND B = A*B A B A OR B = A+B Boolean Algebra Algebra is the branch of mathematics that deals with variables. Variables represent unknown values and usually can stand for any real number. Because computers use only 2 numbers as we

More information

Data Representation 1

Data Representation 1 1 Data Representation Outline Binary Numbers Adding Binary Numbers Negative Integers Other Operations with Binary Numbers Floating Point Numbers Character Representation Image Representation Sound Representation

More information

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF CHAPTER 4 ELEMENTARY NUMBER THEORY AND METHODS OF PROOF Copyright Cengage Learning. All rights reserved. SECTION 4.3 Direct Proof and Counterexample III: Divisibility Copyright Cengage Learning. All rights

More information

Harvard School of Engineering and Applied Sciences CS 152: Programming Languages

Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Lecture 19 Tuesday, April 3, 2018 1 Introduction to axiomatic semantics The idea in axiomatic semantics is to give specifications

More information

Chapter 2: Number Systems

Chapter 2: Number Systems Chapter 2: Number Systems Logic circuits are used to generate and transmit 1s and 0s to compute and convey information. This two-valued number system is called binary. As presented earlier, there are many

More information

Introduction. Following are the types of operators: Unary requires a single operand Binary requires two operands Ternary requires three operands

Introduction. Following are the types of operators: Unary requires a single operand Binary requires two operands Ternary requires three operands Introduction Operators are the symbols which operates on value or a variable. It tells the compiler to perform certain mathematical or logical manipulations. Can be of following categories: Unary requires

More information

Computational Complexity and Implications for Security DRAFT Notes on Infeasible Computation for MA/CS 109 Leo Reyzin with the help of Nick Benes

Computational Complexity and Implications for Security DRAFT Notes on Infeasible Computation for MA/CS 109 Leo Reyzin with the help of Nick Benes Computational Complexity and Implications for Security DRAFT Notes on Infeasible Computation for MA/CS 109 Leo Reyzin with the help of Nick Benes The Study of Computational Complexity Let s summarize what

More information

Mathematical Logic Part Two

Mathematical Logic Part Two Mathematical Logic Part Two Recap from Last Time Recap So Far A propositional variable is a variable that is either true or false. The propositional connectives are as follows: Negation: p Conjunction:

More information

BINARY SYSTEM. Binary system is used in digital systems because it is:

BINARY SYSTEM. Binary system is used in digital systems because it is: CHAPTER 2 CHAPTER CONTENTS 2.1 Binary System 2.2 Binary Arithmetic Operation 2.3 Signed & Unsigned Numbers 2.4 Arithmetic Operations of Signed Numbers 2.5 Hexadecimal Number System 2.6 Octal Number System

More information

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF CHAPTER 4 ELEMENTARY NUMBER THEORY AND METHODS OF PROOF Copyright Cengage Learning. All rights reserved. SECTION 4.3 Direct Proof and Counterexample III: Divisibility Copyright Cengage Learning. All rights

More information

Lecture Notes on Induction and Recursion

Lecture Notes on Induction and Recursion Lecture Notes on Induction and Recursion 15-317: Constructive Logic Frank Pfenning Lecture 7 September 19, 2017 1 Introduction At this point in the course we have developed a good formal understanding

More information

Proof Techniques Alphabets, Strings, and Languages. Foundations of Computer Science Theory

Proof Techniques Alphabets, Strings, and Languages. Foundations of Computer Science Theory Proof Techniques Alphabets, Strings, and Languages Foundations of Computer Science Theory Proof By Case Enumeration Sometimes the most straightforward way to prove that a property holds for all elements

More information

Description Hex M E V smallest value > largest denormalized negative infinity number with hex representation 3BB0 ---

Description Hex M E V smallest value > largest denormalized negative infinity number with hex representation 3BB0 --- CSE2421 HOMEWORK #2 DUE DATE: MONDAY 11/5 11:59pm PROBLEM 2.84 Given a floating-point format with a k-bit exponent and an n-bit fraction, write formulas for the exponent E, significand M, the fraction

More information

Operators. Lecture 3 COP 3014 Spring January 16, 2018

Operators. Lecture 3 COP 3014 Spring January 16, 2018 Operators Lecture 3 COP 3014 Spring 2018 January 16, 2018 Operators Special built-in symbols that have functionality, and work on operands operand an input to an operator Arity - how many operands an operator

More information

Introduction to Informatics

Introduction to Informatics Introduction to Informatics Lecture : Encoding Numbers (Part II) Readings until now Lecture notes Posted online @ http://informatics.indiana.edu/rocha/i The Nature of Information Technology Modeling the

More information

Level ISA3: Information Representation

Level ISA3: Information Representation Level ISA3: Information Representation 1 Information as electrical current At the lowest level, each storage unit in a computer s memory is equipped to contain either a high or low voltage signal Each

More information