Section 2.2: Covariance, Correlation, and Least Squares

Size: px
Start display at page:

Download "Section 2.2: Covariance, Correlation, and Least Squares"

Transcription

1 Section 2.2: Covariance, Correlation, and Least Squares Jared S. Murray The University of Texas at Austin McCombs School of Business Suggested reading: OpenIntro Statistics, Chapter 7.1, 7.2 1

2 A Deeper Look at Least Squares Estimates Last time we saw that least squares estimates had some special properties: The fitted values Ŷ and x were very dependent The residuals Y Ŷ and x had no apparent relationship The residuals Y Ŷ had a sample mean of zero What s going on? And what exactly are the least squares estimates? We need to review sample covariance and correlation 2

3 Covariance Measure the direction and strength of the linear relationship between Y and X n i=1 Cov(Y, X) = (Y i Ȳ)(X i X) n 1 (Yi Ȳ )(Xi X) < 0 (Yi Ȳ )(Xi X) > 0 Y Ȳ (Yi Ȳ )(Xi X) > X X (Yi Ȳ )(Xi X) < 0 s y = 15.98, s x = 9.7 Cov(X, Y) = How do we interpret that? 3

4 Correlation Correlation is the standardized covariance: corr(x, Y) = cov(x, Y) s 2 x s2 y = cov(x, Y) s x s y The correlation is scale invariant and the units of measurement don t matter: It is always true that 1 corr(x, Y) 1. This gives the direction (- or +) and strength (0 1) of the linear relationship between X and Y. 4

5 Correlation corr(y, X) = cov(x, Y) s 2 x s2 y = cov(x, Y) s x s y = = X Y (Yi Ȳ )(Xi X) > 0 (Yi Ȳ )(Xi X) < 0 (Yi Ȳ )(Xi X) > 0 (Yi Ȳ )(Xi X) < 0 X Ȳ 5

6 Correlation corr = corr = corr = corr =

7 Correlation Only measures linear relationships: corr(x, Y) = 0 does not mean the variables are not related corr = 0.01 corr = Also be careful with influential observations... 7

8 The Least Squares Estimates The values for b 0 and b 1 that minimize the least squares criterion are: b 1 = r xy s y s x b 0 = Ȳ b 1 X where, X and Ȳ are the sample mean of X and Y corr(x, y) = r xy is the sample correlation s x and s y are the sample standard deviation of X and Y These are the least squares estimates of β 0 and β 1. 8

9 The Least Squares Estimates The values for b 0 and b 1 that minimize the least squares criterion are: b 1 = r xy s y s x b 0 = Ȳ b 1 X How do we interpret these? b 0 ensures the line goes through ( x, ȳ) b 1 scales the correlation to appropriate units by multiplying with s y /s x (what are the units of b 1?) 9

10 # Computing least squares estimates "by hand" y = housing$price; x = housing$size rxy = cor(y, x) sx = sd(x) sy = sd(y) ybar = mean(y) xbar = mean(x) b1 = rxy*sy/sx b0 = ybar - b1*xbar print(b0); print(b1) ## [1] ## [1]

11 # We get the same result as lm() fit = lm(price~size, data=housing) print(fit) ## ## Call: ## lm(formula = Price ~ Size, data = housing) ## ## Coefficients: ## (Intercept) Size ##

12 Properties of Least Squares Estimates Remember from the housing data, we had: corr(ŷ, x) = 1 (a perfect linear relationship) corr(e, x) = 0 (no linear relationship) mean(e) = 0 (sample average of residuals is zero) 12

13 Why? What is the intuition for the relationship between Ŷ and e and X? Lets consider some crazy alternative line: Y Crazy line: X LS line: X X 13

14 Fitted Values and Residuals This is a bad fit We are underestimating the value of small houses and overestimating the value of big houses. Crazy Residuals corr(e, x) = -0.7 mean(e) = Clearly, we have left some predictive ability on the table X 14

15 Summary: LS is the best we can do As long as the correlation between e and X is non-zero, we could always adjust our prediction rule to do better. We need to exploit all of the predictive power in the X values and put this into Ŷ, leaving no Xness in the residuals. In Summary: Y = Ŷ + e where: Ŷ is made from X ; corr(x, Ŷ) = ±1. e is unrelated to X; corr(x, e) = 0. On average, our prediction error is zero: ē = n i=1 e i = 0. 15

16 Decomposing the Variance How well does the least squares line explain variation in Y? Remember that Y = Ŷ + e Since Ŷ and e are uncorrelated, i.e. corr(ŷ, e) = 0, var(y) = var(ŷ + e) = var(ŷ) + var(e) n i=1 (Y i Ȳ) 2 n i=1 = (Ŷ i Ŷ) 2 n i=1 + (e i ē) 2 n 1 n 1 n 1 Given that ē = 0, and the sample mean of the fitted values Ŷ = Ȳ (why?) we get to write: n (Y i Ȳ) 2 = i=1 n (Ŷ i Ȳ) 2 + n i=1 i=1 e 2 i 16

17 Decomposing the Variance SSR: Variation in Y explained by the regression line. SSE: Variation in Y that is left unexplained. SSR = SST perfect fit. Be careful of similar acronyms; e.g. SSR for residual SS. 17

18 Decomposing the Variance (Y i Ȳ) = Ŷ i + e i Ȳ Decomposing the Variance = The (Ŷ i ANOVA Ȳ) + e i Table 18

19 The Coefficient of Determination R 2 The coefficient of determination, denoted by R 2, measures how well the fitted values Ŷ follow Y: R 2 = SSR SST = 1 SSE SST R 2 is the proportion of variance in Y that is explained by the regression line (in the mathematical not scientific sense): R 2 = 1 Var(e)/Var(Y) 0 < R 2 < 1 For simple linear regression, R 2 = rxy 2. Similar caveats to sample correlation apply 19

20 R 2 for the Housing Data summary(fit) ## ## Call: ## lm(formula = Price ~ Size, data = housing) ## ## Residuals: ## Min 1Q Median 3Q Max ## ## ## Coefficients: ## Estimate Std. Error t value Pr(> t ) ## (Intercept) *** ## Size e-06 *** ## --- ## Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: on 13 degrees of freedom ## Multiple R-squared: ,Adjusted R-squared:

21 R 2 for the Housing Data summary(fit) ## ## Call: ## lm(formula = Price ~ Size, data = housing) ## ## Residuals: ## Min 1Q Median 3Q Max ## ## ## Coefficients: ## Estimate Std. Error t value Pr(> t ) ## (Intercept) *** ## Size e-06 *** ## --- ## Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: on 13 degrees of freedom ## Multiple R-squared: , Adjusted R-squared: ## F-statistic: 62 on 1 and 13 DF, p-value: 2.66e-06 21

22 R 2 for the Housing Data anova(fit) ## Analysis of Variance Table ## ## Response: Price ## Df Sum Sq Mean Sq F value Pr(>F) ## Size e-06 *** ## Residuals ## --- ## Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0 R 2 = SSR SST = =

23 Back to Baseball Three very similar, related ways to look at a simple linear regression... with only one X variable, life is easy R 2 corr SSE OBP SLG AVG

Section 2.1: Intro to Simple Linear Regression & Least Squares

Section 2.1: Intro to Simple Linear Regression & Least Squares Section 2.1: Intro to Simple Linear Regression & Least Squares Jared S. Murray The University of Texas at Austin McCombs School of Business Suggested reading: OpenIntro Statistics, Chapter 7.1, 7.2 1 Regression:

More information

Section 2.1: Intro to Simple Linear Regression & Least Squares

Section 2.1: Intro to Simple Linear Regression & Least Squares Section 2.1: Intro to Simple Linear Regression & Least Squares Jared S. Murray The University of Texas at Austin McCombs School of Business Suggested reading: OpenIntro Statistics, Chapter 7.1, 7.2 1 Regression:

More information

Section 2.3: Simple Linear Regression: Predictions and Inference

Section 2.3: Simple Linear Regression: Predictions and Inference Section 2.3: Simple Linear Regression: Predictions and Inference Jared S. Murray The University of Texas at Austin McCombs School of Business Suggested reading: OpenIntro Statistics, Chapter 7.4 1 Simple

More information

Section 3.2: Multiple Linear Regression II. Jared S. Murray The University of Texas at Austin McCombs School of Business

Section 3.2: Multiple Linear Regression II. Jared S. Murray The University of Texas at Austin McCombs School of Business Section 3.2: Multiple Linear Regression II Jared S. Murray The University of Texas at Austin McCombs School of Business 1 Multiple Linear Regression: Inference and Understanding We can answer new questions

More information

Section 3.4: Diagnostics and Transformations. Jared S. Murray The University of Texas at Austin McCombs School of Business

Section 3.4: Diagnostics and Transformations. Jared S. Murray The University of Texas at Austin McCombs School of Business Section 3.4: Diagnostics and Transformations Jared S. Murray The University of Texas at Austin McCombs School of Business 1 Regression Model Assumptions Y i = β 0 + β 1 X i + ɛ Recall the key assumptions

More information

Gelman-Hill Chapter 3

Gelman-Hill Chapter 3 Gelman-Hill Chapter 3 Linear Regression Basics In linear regression with a single independent variable, as we have seen, the fundamental equation is where ŷ bx 1 b0 b b b y 1 yx, 0 y 1 x x Bivariate Normal

More information

Section 4.1: Time Series I. Jared S. Murray The University of Texas at Austin McCombs School of Business

Section 4.1: Time Series I. Jared S. Murray The University of Texas at Austin McCombs School of Business Section 4.1: Time Series I Jared S. Murray The University of Texas at Austin McCombs School of Business 1 Time Series Data and Dependence Time-series data are simply a collection of observations gathered

More information

Regression Analysis and Linear Regression Models

Regression Analysis and Linear Regression Models Regression Analysis and Linear Regression Models University of Trento - FBK 2 March, 2015 (UNITN-FBK) Regression Analysis and Linear Regression Models 2 March, 2015 1 / 33 Relationship between numerical

More information

9.1 Random coefficients models Constructed data Consumer preference mapping of carrots... 10

9.1 Random coefficients models Constructed data Consumer preference mapping of carrots... 10 St@tmaster 02429/MIXED LINEAR MODELS PREPARED BY THE STATISTICS GROUPS AT IMM, DTU AND KU-LIFE Module 9: R 9.1 Random coefficients models...................... 1 9.1.1 Constructed data........................

More information

ST512. Fall Quarter, Exam 1. Directions: Answer questions as directed. Please show work. For true/false questions, circle either true or false.

ST512. Fall Quarter, Exam 1. Directions: Answer questions as directed. Please show work. For true/false questions, circle either true or false. ST512 Fall Quarter, 2005 Exam 1 Name: Directions: Answer questions as directed. Please show work. For true/false questions, circle either true or false. 1. (42 points) A random sample of n = 30 NBA basketball

More information

CDAA No. 4 - Part Two - Multiple Regression - Initial Data Screening

CDAA No. 4 - Part Two - Multiple Regression - Initial Data Screening CDAA No. 4 - Part Two - Multiple Regression - Initial Data Screening Variables Entered/Removed b Variables Entered GPA in other high school, test, Math test, GPA, High school math GPA a Variables Removed

More information

The Coefficient of Determination

The Coefficient of Determination The Coefficient of Determination Lecture 46 Section 13.9 Robb T. Koether Hampden-Sydney College Wed, Apr 17, 2012 Robb T. Koether (Hampden-Sydney College) The Coefficient of Determination Wed, Apr 17,

More information

Statistics Lab #7 ANOVA Part 2 & ANCOVA

Statistics Lab #7 ANOVA Part 2 & ANCOVA Statistics Lab #7 ANOVA Part 2 & ANCOVA PSYCH 710 7 Initialize R Initialize R by entering the following commands at the prompt. You must type the commands exactly as shown. options(contrasts=c("contr.sum","contr.poly")

More information

Model Selection and Inference

Model Selection and Inference Model Selection and Inference Merlise Clyde January 29, 2017 Last Class Model for brain weight as a function of body weight In the model with both response and predictor log transformed, are dinosaurs

More information

Analysis of variance - ANOVA

Analysis of variance - ANOVA Analysis of variance - ANOVA Based on a book by Julian J. Faraway University of Iceland (UI) Estimation 1 / 50 Anova In ANOVAs all predictors are categorical/qualitative. The original thinking was to try

More information

Week 5: Multiple Linear Regression II

Week 5: Multiple Linear Regression II Week 5: Multiple Linear Regression II Marcelo Coca Perraillon University of Colorado Anschutz Medical Campus Health Services Research Methods I HSMP 7607 2017 c 2017 PERRAILLON ARR 1 Outline Adjusted R

More information

610 R12 Prof Colleen F. Moore Analysis of variance for Unbalanced Between Groups designs in R For Psychology 610 University of Wisconsin--Madison

610 R12 Prof Colleen F. Moore Analysis of variance for Unbalanced Between Groups designs in R For Psychology 610 University of Wisconsin--Madison 610 R12 Prof Colleen F. Moore Analysis of variance for Unbalanced Between Groups designs in R For Psychology 610 University of Wisconsin--Madison R is very touchy about unbalanced designs, partly because

More information

Week 4: Simple Linear Regression III

Week 4: Simple Linear Regression III Week 4: Simple Linear Regression III Marcelo Coca Perraillon University of Colorado Anschutz Medical Campus Health Services Research Methods I HSMP 7607 2017 c 2017 PERRAILLON ARR 1 Outline Goodness of

More information

Applied Statistics and Econometrics Lecture 6

Applied Statistics and Econometrics Lecture 6 Applied Statistics and Econometrics Lecture 6 Giuseppe Ragusa Luiss University gragusa@luiss.it http://gragusa.org/ March 6, 2017 Luiss University Empirical application. Data Italian Labour Force Survey,

More information

The linear mixed model: modeling hierarchical and longitudinal data

The linear mixed model: modeling hierarchical and longitudinal data The linear mixed model: modeling hierarchical and longitudinal data Analysis of Experimental Data AED The linear mixed model: modeling hierarchical and longitudinal data 1 of 44 Contents 1 Modeling Hierarchical

More information

Stat 5303 (Oehlert): Response Surfaces 1

Stat 5303 (Oehlert): Response Surfaces 1 Stat 5303 (Oehlert): Response Surfaces 1 > data

More information

22s:152 Applied Linear Regression

22s:152 Applied Linear Regression 22s:152 Applied Linear Regression Chapter 22: Model Selection In model selection, the idea is to find the smallest set of variables which provides an adequate description of the data. We will consider

More information

Regression on the trees data with R

Regression on the trees data with R > trees Girth Height Volume 1 8.3 70 10.3 2 8.6 65 10.3 3 8.8 63 10.2 4 10.5 72 16.4 5 10.7 81 18.8 6 10.8 83 19.7 7 11.0 66 15.6 8 11.0 75 18.2 9 11.1 80 22.6 10 11.2 75 19.9 11 11.3 79 24.2 12 11.4 76

More information

Multiple Regression White paper

Multiple Regression White paper +44 (0) 333 666 7366 Multiple Regression White paper A tool to determine the impact in analysing the effectiveness of advertising spend. Multiple Regression In order to establish if the advertising mechanisms

More information

A. Incorrect! This would be the negative of the range. B. Correct! The range is the maximum data value minus the minimum data value.

A. Incorrect! This would be the negative of the range. B. Correct! The range is the maximum data value minus the minimum data value. AP Statistics - Problem Drill 05: Measures of Variation No. 1 of 10 1. The range is calculated as. (A) The minimum data value minus the maximum data value. (B) The maximum data value minus the minimum

More information

Solution to Bonus Questions

Solution to Bonus Questions Solution to Bonus Questions Q2: (a) The histogram of 1000 sample means and sample variances are plotted below. Both histogram are symmetrically centered around the true lambda value 20. But the sample

More information

A Knitr Demo. Charles J. Geyer. February 8, 2017

A Knitr Demo. Charles J. Geyer. February 8, 2017 A Knitr Demo Charles J. Geyer February 8, 2017 1 Licence This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License http://creativecommons.org/licenses/by-sa/4.0/.

More information

5.5 Regression Estimation

5.5 Regression Estimation 5.5 Regression Estimation Assume a SRS of n pairs (x, y ),..., (x n, y n ) is selected from a population of N pairs of (x, y) data. The goal of regression estimation is to take advantage of a linear relationship

More information

Lab #13 - Resampling Methods Econ 224 October 23rd, 2018

Lab #13 - Resampling Methods Econ 224 October 23rd, 2018 Lab #13 - Resampling Methods Econ 224 October 23rd, 2018 Introduction In this lab you will work through Section 5.3 of ISL and record your code and results in an RMarkdown document. I have added section

More information

Regression Lab 1. The data set cholesterol.txt available on your thumb drive contains the following variables:

Regression Lab 1. The data set cholesterol.txt available on your thumb drive contains the following variables: Regression Lab The data set cholesterol.txt available on your thumb drive contains the following variables: Field Descriptions ID: Subject ID sex: Sex: 0 = male, = female age: Age in years chol: Serum

More information

14.2 The Regression Equation

14.2 The Regression Equation 14.2 The Regression Equation Tom Lewis Fall Term 2009 Tom Lewis () 14.2 The Regression Equation Fall Term 2009 1 / 12 Outline 1 Exact and inexact linear relationships 2 Fitting lines to data 3 Formulas

More information

Week 4: Simple Linear Regression II

Week 4: Simple Linear Regression II Week 4: Simple Linear Regression II Marcelo Coca Perraillon University of Colorado Anschutz Medical Campus Health Services Research Methods I HSMP 7607 2017 c 2017 PERRAILLON ARR 1 Outline Algebraic properties

More information

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008 MIT OpenCourseWare http://ocw.mit.edu.83j / 6.78J / ESD.63J Control of Manufacturing Processes (SMA 633) Spring 8 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Module 25.1: nag lin reg Regression Analysis. Contents

Module 25.1: nag lin reg Regression Analysis. Contents Correlation and Regression Analysis Module Contents Module 25.1: nag lin reg Regression Analysis nag lin reg contains procedures that perform a simple or multiple linear regression analysis. Contents Introduction...

More information

One Factor Experiments

One Factor Experiments One Factor Experiments 20-1 Overview Computation of Effects Estimating Experimental Errors Allocation of Variation ANOVA Table and F-Test Visual Diagnostic Tests Confidence Intervals For Effects Unequal

More information

Multiple Linear Regression: Global tests and Multiple Testing

Multiple Linear Regression: Global tests and Multiple Testing Multiple Linear Regression: Global tests and Multiple Testing Author: Nicholas G Reich, Jeff Goldsmith This material is part of the statsteachr project Made available under the Creative Commons Attribution-ShareAlike

More information

1 Lab 1. Graphics and Checking Residuals

1 Lab 1. Graphics and Checking Residuals R is an object oriented language. We will use R for statistical analysis in FIN 504/ORF 504. To download R, go to CRAN (the Comprehensive R Archive Network) at http://cran.r-project.org Versions for Windows

More information

Orange Juice data. Emanuele Taufer. 4/12/2018 Orange Juice data (1)

Orange Juice data. Emanuele Taufer. 4/12/2018 Orange Juice data (1) Orange Juice data Emanuele Taufer file:///c:/users/emanuele.taufer/google%20drive/2%20corsi/5%20qmma%20-%20mim/0%20labs/l10-oj-data.html#(1) 1/31 Orange Juice Data The data contain weekly sales of refrigerated

More information

PSY 9556B (Feb 5) Latent Growth Modeling

PSY 9556B (Feb 5) Latent Growth Modeling PSY 9556B (Feb 5) Latent Growth Modeling Fixed and random word confusion Simplest LGM knowing how to calculate dfs How many time points needed? Power, sample size Nonlinear growth quadratic Nonlinear growth

More information

A (very) brief introduction to R

A (very) brief introduction to R A (very) brief introduction to R You typically start R at the command line prompt in a command line interface (CLI) mode. It is not a graphical user interface (GUI) although there are some efforts to produce

More information

22s:152 Applied Linear Regression

22s:152 Applied Linear Regression 22s:152 Applied Linear Regression Chapter 22: Model Selection In model selection, the idea is to find the smallest set of variables which provides an adequate description of the data. We will consider

More information

Recall the expression for the minimum significant difference (w) used in the Tukey fixed-range method for means separation:

Recall the expression for the minimum significant difference (w) used in the Tukey fixed-range method for means separation: Topic 11. Unbalanced Designs [ST&D section 9.6, page 219; chapter 18] 11.1 Definition of missing data Accidents often result in loss of data. Crops are destroyed in some plots, plants and animals die,

More information

Practice in R. 1 Sivan s practice. 2 Hetroskadasticity. January 28, (pdf version)

Practice in R. 1 Sivan s practice. 2 Hetroskadasticity. January 28, (pdf version) Practice in R January 28, 2010 (pdf version) 1 Sivan s practice Her practice file should be (here), or check the web for a more useful pointer. 2 Hetroskadasticity ˆ Let s make some hetroskadastic data:

More information

THE UNIVERSITY OF BRITISH COLUMBIA FORESTRY 430 and 533. Time: 50 minutes 40 Marks FRST Marks FRST 533 (extra questions)

THE UNIVERSITY OF BRITISH COLUMBIA FORESTRY 430 and 533. Time: 50 minutes 40 Marks FRST Marks FRST 533 (extra questions) THE UNIVERSITY OF BRITISH COLUMBIA FORESTRY 430 and 533 MIDTERM EXAMINATION: October 14, 2005 Instructor: Val LeMay Time: 50 minutes 40 Marks FRST 430 50 Marks FRST 533 (extra questions) This examination

More information

Statistics & Curve Fitting Tool

Statistics & Curve Fitting Tool Statistics & Curve Fitting Tool This tool allows you to store or edit a list of X and Y data pairs to statistically analyze it. Many statistic figures can be calculated and four models of curve-fitting

More information

The Statistical Sleuth in R: Chapter 10

The Statistical Sleuth in R: Chapter 10 The Statistical Sleuth in R: Chapter 10 Kate Aloisio Ruobing Zhang Nicholas J. Horton September 28, 2013 Contents 1 Introduction 1 2 Galileo s data on the motion of falling bodies 2 2.1 Data coding, summary

More information

Regression. Dr. G. Bharadwaja Kumar VIT Chennai

Regression. Dr. G. Bharadwaja Kumar VIT Chennai Regression Dr. G. Bharadwaja Kumar VIT Chennai Introduction Statistical models normally specify how one set of variables, called dependent variables, functionally depend on another set of variables, called

More information

STAT 2607 REVIEW PROBLEMS Word problems must be answered in words of the problem.

STAT 2607 REVIEW PROBLEMS Word problems must be answered in words of the problem. STAT 2607 REVIEW PROBLEMS 1 REMINDER: On the final exam 1. Word problems must be answered in words of the problem. 2. "Test" means that you must carry out a formal hypothesis testing procedure with H0,

More information

Resources for statistical assistance. Quantitative covariates and regression analysis. Methods for predicting continuous outcomes.

Resources for statistical assistance. Quantitative covariates and regression analysis. Methods for predicting continuous outcomes. Resources for statistical assistance Quantitative covariates and regression analysis Carolyn Taylor Applied Statistics and Data Science Group (ASDa) Department of Statistics, UBC January 24, 2017 Department

More information

Bernt Arne Ødegaard. 15 November 2018

Bernt Arne Ødegaard. 15 November 2018 R Bernt Arne Ødegaard 15 November 2018 To R is Human 1 R R is a computing environment specially made for doing statistics/econometrics. It is becoming the standard for advanced dealing with empirical data,

More information

Exercise 2.23 Villanova MAT 8406 September 7, 2015

Exercise 2.23 Villanova MAT 8406 September 7, 2015 Exercise 2.23 Villanova MAT 8406 September 7, 2015 Step 1: Understand the Question Consider the simple linear regression model y = 50 + 10x + ε where ε is NID(0, 16). Suppose that n = 20 pairs of observations

More information

36-402/608 HW #1 Solutions 1/21/2010

36-402/608 HW #1 Solutions 1/21/2010 36-402/608 HW #1 Solutions 1/21/2010 1. t-test (20 points) Use fullbumpus.r to set up the data from fullbumpus.txt (both at Blackboard/Assignments). For this problem, analyze the full dataset together

More information

Chapter 4: Analyzing Bivariate Data with Fathom

Chapter 4: Analyzing Bivariate Data with Fathom Chapter 4: Analyzing Bivariate Data with Fathom Summary: Building from ideas introduced in Chapter 3, teachers continue to analyze automobile data using Fathom to look for relationships between two quantitative

More information

Linear Methods for Regression and Shrinkage Methods

Linear Methods for Regression and Shrinkage Methods Linear Methods for Regression and Shrinkage Methods Reference: The Elements of Statistical Learning, by T. Hastie, R. Tibshirani, J. Friedman, Springer 1 Linear Regression Models Least Squares Input vectors

More information

The lmekin function. Terry Therneau Mayo Clinic. May 11, 2018

The lmekin function. Terry Therneau Mayo Clinic. May 11, 2018 The lmekin function Terry Therneau Mayo Clinic May 11, 2018 1 Background The original kinship library had an implementation of linear mixed effects models using the matrix code found in coxme. Since the

More information

Some issues with R It is command-driven, and learning to use it to its full extent takes some time and effort. The documentation is comprehensive,

Some issues with R It is command-driven, and learning to use it to its full extent takes some time and effort. The documentation is comprehensive, R To R is Human R is a computing environment specially made for doing statistics/econometrics. It is becoming the standard for advanced dealing with empirical data, also in finance. Good parts It is freely

More information

Salary 9 mo : 9 month salary for faculty member for 2004

Salary 9 mo : 9 month salary for faculty member for 2004 22s:52 Applied Linear Regression DeCook Fall 2008 Lab 3 Friday October 3. The data Set In 2004, a study was done to examine if gender, after controlling for other variables, was a significant predictor

More information

Correlation and Regression

Correlation and Regression How are X and Y Related Correlation and Regression Causation (regression) p(y X=) Correlation p(y=, X=) http://kcd.com/552/ Correlation Can be Induced b Man Mechanisms # of Pups 1 2 3 4 5 6 7 8 Inbreeding

More information

Introduction to Mixed Models: Multivariate Regression

Introduction to Mixed Models: Multivariate Regression Introduction to Mixed Models: Multivariate Regression EPSY 905: Multivariate Analysis Spring 2016 Lecture #9 March 30, 2016 EPSY 905: Multivariate Regression via Path Analysis Today s Lecture Multivariate

More information

This is called a linear basis expansion, and h m is the mth basis function For example if X is one-dimensional: f (X) = β 0 + β 1 X + β 2 X 2, or

This is called a linear basis expansion, and h m is the mth basis function For example if X is one-dimensional: f (X) = β 0 + β 1 X + β 2 X 2, or STA 450/4000 S: February 2 2005 Flexible modelling using basis expansions (Chapter 5) Linear regression: y = Xβ + ɛ, ɛ (0, σ 2 ) Smooth regression: y = f (X) + ɛ: f (X) = E(Y X) to be specified Flexible

More information

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression Rebecca C. Steorts, Duke University STA 325, Chapter 3 ISL 1 / 49 Agenda How to extend beyond a SLR Multiple Linear Regression (MLR) Relationship Between the Response and Predictors

More information

Data Mining. ❷Chapter 2 Basic Statistics. Asso.Prof.Dr. Xiao-dong Zhu. Business School, University of Shanghai for Science & Technology

Data Mining. ❷Chapter 2 Basic Statistics. Asso.Prof.Dr. Xiao-dong Zhu. Business School, University of Shanghai for Science & Technology ❷Chapter 2 Basic Statistics Business School, University of Shanghai for Science & Technology 2016-2017 2nd Semester, Spring2017 Contents of chapter 1 1 recording data using computers 2 3 4 5 6 some famous

More information

Exam 4. In the above, label each of the following with the problem number. 1. The population Least Squares line. 2. The population distribution of x.

Exam 4. In the above, label each of the following with the problem number. 1. The population Least Squares line. 2. The population distribution of x. Exam 4 1-5. Normal Population. The scatter plot show below is a random sample from a 2D normal population. The bell curves and dark lines refer to the population. The sample Least Squares Line (shorter)

More information

Nina Zumel and John Mount Win-Vector LLC

Nina Zumel and John Mount Win-Vector LLC SUPERVISED LEARNING IN R: REGRESSION Evaluating a model graphically Nina Zumel and John Mount Win-Vector LLC "line of perfect prediction" Systematic errors DataCamp Plotting Ground Truth vs. Predictions

More information

Compare Linear Regression Lines for the HP-67

Compare Linear Regression Lines for the HP-67 Compare Linear Regression Lines for the HP-67 by Namir Shammas This article presents an HP-67 program that calculates the linear regression statistics for two data sets and then compares their slopes and

More information

Comparing Fitted Models with the fit.models Package

Comparing Fitted Models with the fit.models Package Comparing Fitted Models with the fit.models Package Kjell Konis Acting Assistant Professor Computational Finance and Risk Management Dept. Applied Mathematics, University of Washington History of fit.models

More information

Centering and Interactions: The Training Data

Centering and Interactions: The Training Data Centering and Interactions: The Training Data A random sample of 150 technical support workers were first given a test of their technical skill and knowledge, and then randomly assigned to one of three

More information

Math 263 Excel Assignment 3

Math 263 Excel Assignment 3 ath 263 Excel Assignment 3 Sections 001 and 003 Purpose In this assignment you will use the same data as in Excel Assignment 2. You will perform an exploratory data analysis using R. You shall reproduce

More information

Further Maths Notes. Common Mistakes. Read the bold words in the exam! Always check data entry. Write equations in terms of variables

Further Maths Notes. Common Mistakes. Read the bold words in the exam! Always check data entry. Write equations in terms of variables Further Maths Notes Common Mistakes Read the bold words in the exam! Always check data entry Remember to interpret data with the multipliers specified (e.g. in thousands) Write equations in terms of variables

More information

Stat 5303 (Oehlert): Unbalanced Factorial Examples 1

Stat 5303 (Oehlert): Unbalanced Factorial Examples 1 Stat 5303 (Oehlert): Unbalanced Factorial Examples 1 > section

More information

Bivariate Linear Regression James M. Murray, Ph.D. University of Wisconsin - La Crosse Updated: October 04, 2017

Bivariate Linear Regression James M. Murray, Ph.D. University of Wisconsin - La Crosse Updated: October 04, 2017 Bivariate Linear Regression James M. Murray, Ph.D. University of Wisconsin - La Crosse Updated: October 4, 217 PDF file location: http://www.murraylax.org/rtutorials/regression_intro.pdf HTML file location:

More information

Example 1 of panel data : Data for 6 airlines (groups) over 15 years (time periods) Example 1

Example 1 of panel data : Data for 6 airlines (groups) over 15 years (time periods) Example 1 Panel data set Consists of n entities or subjects (e.g., firms and states), each of which includes T observations measured at 1 through t time period. total number of observations : nt Panel data have

More information

STAT Statistical Learning. Predictive Modeling. Statistical Learning. Overview. Predictive Modeling. Classification Methods.

STAT Statistical Learning. Predictive Modeling. Statistical Learning. Overview. Predictive Modeling. Classification Methods. STAT 48 - STAT 48 - December 5, 27 STAT 48 - STAT 48 - Here are a few questions to consider: What does statistical learning mean to you? Is statistical learning different from statistics as a whole? What

More information

EXST 7014, Lab 1: Review of R Programming Basics and Simple Linear Regression

EXST 7014, Lab 1: Review of R Programming Basics and Simple Linear Regression EXST 7014, Lab 1: Review of R Programming Basics and Simple Linear Regression OBJECTIVES 1. Prepare a scatter plot of the dependent variable on the independent variable 2. Do a simple linear regression

More information

Poisson Regression and Model Checking

Poisson Regression and Model Checking Poisson Regression and Model Checking Readings GH Chapter 6-8 September 27, 2017 HIV & Risk Behaviour Study The variables couples and women_alone code the intervention: control - no counselling (both 0)

More information

S CHAPTER return.data S CHAPTER.Data S CHAPTER

S CHAPTER return.data S CHAPTER.Data S CHAPTER 1 S CHAPTER return.data S CHAPTER.Data MySwork S CHAPTER.Data 2 S e > return ; return + # 3 setenv S_CLEDITOR emacs 4 > 4 + 5 / 3 ## addition & divison [1] 5.666667 > (4 + 5) / 3 ## using parentheses [1]

More information

SLStats.notebook. January 12, Statistics:

SLStats.notebook. January 12, Statistics: Statistics: 1 2 3 Ways to display data: 4 generic arithmetic mean sample 14A: Opener, #3,4 (Vocabulary, histograms, frequency tables, stem and leaf) 14B.1: #3,5,8,9,11,12,14,15,16 (Mean, median, mode,

More information

CSSS 510: Lab 2. Introduction to Maximum Likelihood Estimation

CSSS 510: Lab 2. Introduction to Maximum Likelihood Estimation CSSS 510: Lab 2 Introduction to Maximum Likelihood Estimation 2018-10-12 0. Agenda 1. Housekeeping: simcf, tile 2. Questions about Homework 1 or lecture 3. Simulating heteroskedastic normal data 4. Fitting

More information

Chapter 7: Linear regression

Chapter 7: Linear regression Chapter 7: Linear regression Objective (1) Learn how to model association bet. 2 variables using a straight line (called "linear regression"). (2) Learn to assess the quality of regression models. (3)

More information

Among those 14 potential explanatory variables,non-dummy variables are:

Among those 14 potential explanatory variables,non-dummy variables are: Among those 14 potential explanatory variables,non-dummy variables are: Size: 2nd column in the dataset Land: 14th column in the dataset Bed.Rooms: 5th column in the dataset Fireplace: 7th column in the

More information

Lecture 20: Outliers and Influential Points

Lecture 20: Outliers and Influential Points Lecture 20: Outliers and Influential Points An outlier is a point with a large residual. An influential point is a point that has a large impact on the regression. Surprisingly, these are not the same

More information

Random coefficients models

Random coefficients models enote 9 1 enote 9 Random coefficients models enote 9 INDHOLD 2 Indhold 9 Random coefficients models 1 9.1 Introduction.................................... 2 9.2 Example: Constructed data...........................

More information

Bivariate (Simple) Regression Analysis

Bivariate (Simple) Regression Analysis Revised July 2018 Bivariate (Simple) Regression Analysis This set of notes shows how to use Stata to estimate a simple (two-variable) regression equation. It assumes that you have set Stata up on your

More information

Illustrations - Simple and Multiple Linear Regression Steele H. Valenzuela February 18, 2015

Illustrations - Simple and Multiple Linear Regression Steele H. Valenzuela February 18, 2015 Illustrations - Simple and Multiple Linear Regression Steele H. Valenzuela February 18, 2015 Illustrations for Simple and Multiple Linear Regression February 2015 Simple Linear Regression 1. Introduction

More information

Graphical Analysis of Data using Microsoft Excel [2016 Version]

Graphical Analysis of Data using Microsoft Excel [2016 Version] Graphical Analysis of Data using Microsoft Excel [2016 Version] Introduction In several upcoming labs, a primary goal will be to determine the mathematical relationship between two variable physical parameters.

More information

SOCY7706: Longitudinal Data Analysis Instructor: Natasha Sarkisian. Panel Data Analysis: Fixed Effects Models

SOCY7706: Longitudinal Data Analysis Instructor: Natasha Sarkisian. Panel Data Analysis: Fixed Effects Models SOCY776: Longitudinal Data Analysis Instructor: Natasha Sarkisian Panel Data Analysis: Fixed Effects Models Fixed effects models are similar to the first difference model we considered for two wave data

More information

Conditional and Unconditional Regression with No Measurement Error

Conditional and Unconditional Regression with No Measurement Error Conditional and with No Measurement Error /* reg2ways.sas */ %include 'readsenic.sas'; title2 ''; proc reg; title3 'Conditional Regression'; model infrisk = stay census; proc calis cov; /* Analyze the

More information

IQR = number. summary: largest. = 2. Upper half: Q3 =

IQR = number. summary: largest. = 2. Upper half: Q3 = Step by step box plot Height in centimeters of players on the 003 Women s Worldd Cup soccer team. 157 1611 163 163 164 165 165 165 168 168 168 170 170 170 171 173 173 175 180 180 Determine the 5 number

More information

Data Analysis and Hypothesis Testing Using the Python ecosystem

Data Analysis and Hypothesis Testing Using the Python ecosystem ARISTOTLE UNIVERSITY OF THESSALONIKI Data Analysis and Hypothesis Testing Using the Python ecosystem t-test & ANOVAs Stavros Demetriadis Assc. Prof., School of Informatics, Aristotle University of Thessaloniki

More information

Estimating R 0 : Solutions

Estimating R 0 : Solutions Estimating R 0 : Solutions John M. Drake and Pejman Rohani Exercise 1. Show how this result could have been obtained graphically without the rearranged equation. Here we use the influenza data discussed

More information

Lecture 1: Statistical Reasoning 2. Lecture 1. Simple Regression, An Overview, and Simple Linear Regression

Lecture 1: Statistical Reasoning 2. Lecture 1. Simple Regression, An Overview, and Simple Linear Regression Lecture Simple Regression, An Overview, and Simple Linear Regression Learning Objectives In this set of lectures we will develop a framework for simple linear, logistic, and Cox Proportional Hazards Regression

More information

For our example, we will look at the following factors and factor levels.

For our example, we will look at the following factors and factor levels. In order to review the calculations that are used to generate the Analysis of Variance, we will use the statapult example. By adjusting various settings on the statapult, you are able to throw the ball

More information

Simulating Multivariate Normal Data

Simulating Multivariate Normal Data Simulating Multivariate Normal Data You have a population correlation matrix and wish to simulate a set of data randomly sampled from a population with that structure. I shall present here code and examples

More information

Stat 579: More Preliminaries, Reading from Files

Stat 579: More Preliminaries, Reading from Files Stat 579: More Preliminaries, Reading from Files Ranjan Maitra 2220 Snedecor Hall Department of Statistics Iowa State University. Phone: 515-294-7757 maitra@iastate.edu September 1, 2011, 1/10 Some more

More information

Variable selection is intended to select the best subset of predictors. But why bother?

Variable selection is intended to select the best subset of predictors. But why bother? Chapter 10 Variable Selection Variable selection is intended to select the best subset of predictors. But why bother? 1. We want to explain the data in the simplest way redundant predictors should be removed.

More information

Numerical Methods 5633

Numerical Methods 5633 Numerical Methods 5633 Lecture 3 Marina Krstic Marinkovic mmarina@maths.tcd.ie School of Mathematics Trinity College Dublin Marina Krstic Marinkovic 1 / 15 5633-Numerical Methods Organisational Assignment

More information

Experiment 1 CH Fall 2004 INTRODUCTION TO SPREADSHEETS

Experiment 1 CH Fall 2004 INTRODUCTION TO SPREADSHEETS Experiment 1 CH 222 - Fall 2004 INTRODUCTION TO SPREADSHEETS Introduction Spreadsheets are valuable tools utilized in a variety of fields. They can be used for tasks as simple as adding or subtracting

More information

BIOL 458 BIOMETRY Lab 10 - Multiple Regression

BIOL 458 BIOMETRY Lab 10 - Multiple Regression BIOL 458 BIOMETRY Lab 10 - Multiple Regression Many problems in science involve the analysis of multi-variable data sets. For data sets in which there is a single continuous dependent variable, but several

More information

Basics of Multivariate Modelling and Data Analysis

Basics of Multivariate Modelling and Data Analysis Basics of Multivariate Modelling and Data Analysis Kurt-Erik Häggblom 9. Linear regression with latent variables 9.1 Principal component regression (PCR) 9.2 Partial least-squares regression (PLS) [ mostly

More information

Quantitative Methods in Management

Quantitative Methods in Management Quantitative Methods in Management MBA Glasgow University March 20-23, 2009 Luiz Moutinho, University of Glasgow Graeme Hutcheson, University of Manchester Exploratory Regression The lecture notes, exercises

More information