Solution to Bonus Questions

Size: px
Start display at page:

Download "Solution to Bonus Questions"

Transcription

1 Solution to Bonus Questions Q2: (a) The histogram of 1000 sample means and sample variances are plotted below. Both histogram are symmetrically centered around the true lambda value 20. But the sample variances have much larger spread and range than the sample means. Hence as estimators for lambda, sample mean is better than sample variance because it is more precise. Histogram of Sample Means Histograms of Sample Variances Frequency Frequency xbar s2 (b) The average the 1000 sample means is and the variance of them is This leads to the simulated MSE of sample mean: (c) The average the 1000 sample variances is and the variance of them is This leads to the simulated MSE of sample mean: (d) Based on part (b) and (c), sample mean seems a better estimator than sample variance for lambda, since it has a smaller variance and a smaller MSE. (The bias of the sample means and the bias of the sample variances is about same. ) The result is same regardless of the choice of lambda. Please see the following table for comparison in various choice of lambda Bias:xbar e Bias:s e Var:xbar e Var:s e MSE:xbar e MSE:s e

2 (e) The first few confidence intervals are presented in the following as an illustration. Totally, 53 out of 1000 simulated confidence intervals do not contain the true lambda 20. This is similar as what we expect, since we constructed 95% confidence intervals. [,1] [,2] [1,] [2,] [3,] [4,] [5,] [6,] (f) The first few confidence intervals are presented in the following as an illustration. Totally, 51 out of 1000 simulated confidence intervals do not contain the true lambda 20. This is similar as what we expect, since we constructed 95% confidence intervals. [,1] [,2] [1,] [2,] [3,] [4,] [5,] [6,] (g) Comparing result from (e) and (f), both confidence intervals have similar coverage (similar chance of containing the true lambda). The average lengths of the confidence intervals in part (e) and (f) are 3.15 and 3.20, which are similar too. However, if we further check the standard deviation of the lengths of confidence intervals, we found the confidence interval length in part (f) is much more stable than the that in part (f). The standard deviation of the length of CIs in part (e) is 0.43, while it is only 0.07 in part (f), which is only 15% of the previous standard deviation. In another words, the confidence intervals in part (f) is much more stable than the confidence interval in part (e). In the following, we plot the upper limit against the lower limit of each confidence intervals. The black points are for CIs in part (e) and the blue points are for part (f). Obviously, the blue points are more tightly clustered than the black points, which implies that the CIs in part (f) is more stable than those in part (e). The points outside of the two red lines are the CIs that don t contain the true lambda. To summary, we conclude the confidence interval in part (f) is better. This is because we use extra distribution information to construct this confidence interval. The CI for population mean in part (e) is generally true, no matter what distribution of the data is. The CI in part (f) used the additional information that the mean and variance of the data is same, hence is more efficient and achieve better precision.

3 Confidence Intervals for lambda Upper limit CIs in (e) CIs in (f) Lower limit

4 Q3: (a) The regression output from R is attached below. About 29.49% variability in PIQ is accounted for by a person s brain size, height and weight. > summary(regfit) Call: lm(formula = PIQ ~ MRI + Height + Weight, data = piq) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) 1.114e e MRI 2.060e e *** Height e e * Weight 5.599e e Signif. codes: 0 *** ** 0.01 * Residual standard error: on 34 degrees of freedom Multiple R-squared: , Adjusted R-squared: F-statistic: on 3 and 34 DF, p-value: (b) A person s brain size significantly affects his/her PIQ, and 1 unit increase in of brain size (MRI count/10000) will lead to 2.06 unit of PIQ increase. Height is negatively associated with PIQ, and one inch taller will lead to 2.73 unit decrease in PIQ. Weight is not significantly associated with PIQ given brain size and height of a person. (c) The correlation matrix between brain size, height and weight is given below, together with their correlation with PIQ. Height and weight are most correlated with correlation 0.7. PIQ RI Height Weight PIQ MRI Height Weight The variance inflation factors (VIF) of brain size, height and weight are 1.58, 2.28, and 2.02, respectively. These are all less than 10 and are acceptable. There does not appear to be high multicollinearity. (d) The correlation between PIQ and brain size, height, weight are , respectively. The partial correlation between PIQ and height given brain size is (with p- value=0.02), and the partial correlation between PIQ and weight given brain size is (with p-value=0.16). Hence, height is a better predictor to be included, given brain size is already included in the model.

5 Appendix: ###### Bonus Question 2 ## Part(a) lambda=20 xn=matrix(rpois(30*1000,lambda),ncol=1000,nrow=30) xbar=apply(xn,2,mean) s2=apply(xn,2,var) par(mfrow=c(1,2)) hist(xbar,main="histogram of Sample Means") abline(v=lambda,col='red') hist(s2,main="histograms of Sample Variances") abline(v=lambda,col='red') ## Part (b) mean(xbar) var(xbar) MSExbar=(mean(xbar)-lambda)^2+var(xbar) MSExbar ## Part (c) mean(s2) var(s2) MSEs2=(mean(s2)-lambda)^2+var(s2) MSEs2 ## Part (d) ## This comparison under different lambda will be done later. ## Part (e) CIe=cbind(xbar-1.96*sqrt(s2)/sqrt(30),xbar+1.96*sqrt(s2)/sqrt(30)) head(cie) sum(cie[,1]>lambda)+ sum(cie[,2]<lambda) head(cie) ## Part (f) CIf=cbind(xbar-1.96*sqrt(xbar)/sqrt(30),xbar+1.96*sqrt(xbar)/sqrt(30)) head(cif) sum(cif[,1]>lambda)+ sum(cif[,2]<lambda) head(cif) ## Part(g) mean(cie[,2]-cie[,1]) sd(cie[,2]-cie[,1]) mean(cif[,2]-cif[,1]) sd(cif[,2]-cif[,1]) par(pch=19) plot(cie[,1],cie[,2],xlab="lower limit",ylab="upper limit", main="confidence Intervals for lambda") points(cif[,1],cif[,2],col="blue") abline(v=lambda,col='red',lty=2) abline(h=lambda,col='red',lty=2) legend("topleft",c("cis in (e)","cis in (f)"),col=c("black","blue"),pch=19)

6 ## Part (d) bias=c() variance=c() mse=c() for (lambda in c(20,30,50,100)){ ## simulate 1000 samples xn=matrix(rpois(30*1000,lambda),ncol=1000,nrow=30) ## record sample mean and sample variance of each sample for all 1000 samples xbar=apply(xn,2,mean) s2=apply(xn,2,var) bias=cbind(bias,c((mean(xbar)-lambda), (mean(s2)-lambda)) ) variance=cbind(variance, c(var(xbar),var(s2))) } MSExbar=(mean(xbar)-lambda)^2+var(xbar) MSEs2=(mean(s2)-lambda)^2+var(s2) mse=cbind(mse,c(msexbar,mses2)) mysummary=rbind(bias,variance,mse) colnames(mysummary)=c(20,30,50,100) rownames(mysummary)=c("bias:xbar","bias:s2","var:xbar","var:s2","mse:xbar","mse :s2") print(mysummary,digits=2) ###### Bonus Question 3 ## part(a) Ex piq=read.table("c:/data/work/teaching/math3200/tamhane_data/tamhane_data/ascii/ Chapt11/Ex11_3.txt",header=T) head(piq) regfit=lm(piq~mri+height+weight,data=piq) summary(regfit) ## part(c) Ex print(cor(piq),width=3) library(car) vif(regfit) ## part(d) Ex SSEx1=16198 SSEx1x2=13322 SSEx1x3=15258 n=dim(piq)[1] (r12=-sqrt((ssex1-ssex1x2)/ssex1)) (f2=(ssex1-ssex1x2)/(ssex1/(n-3))) 1-pf(f2,df1=1,df2=n-3) (r13=-sqrt((ssex1-ssex1x3)/ssex1)) (f3=(ssex1-ssex1x3)/(ssex1/(n-3))) 1-pf(r13^2*(n-3),df1=1,df2=n-3)

Regression Analysis and Linear Regression Models

Regression Analysis and Linear Regression Models Regression Analysis and Linear Regression Models University of Trento - FBK 2 March, 2015 (UNITN-FBK) Regression Analysis and Linear Regression Models 2 March, 2015 1 / 33 Relationship between numerical

More information

CDAA No. 4 - Part Two - Multiple Regression - Initial Data Screening

CDAA No. 4 - Part Two - Multiple Regression - Initial Data Screening CDAA No. 4 - Part Two - Multiple Regression - Initial Data Screening Variables Entered/Removed b Variables Entered GPA in other high school, test, Math test, GPA, High school math GPA a Variables Removed

More information

Regression on the trees data with R

Regression on the trees data with R > trees Girth Height Volume 1 8.3 70 10.3 2 8.6 65 10.3 3 8.8 63 10.2 4 10.5 72 16.4 5 10.7 81 18.8 6 10.8 83 19.7 7 11.0 66 15.6 8 11.0 75 18.2 9 11.1 80 22.6 10 11.2 75 19.9 11 11.3 79 24.2 12 11.4 76

More information

Section 3.2: Multiple Linear Regression II. Jared S. Murray The University of Texas at Austin McCombs School of Business

Section 3.2: Multiple Linear Regression II. Jared S. Murray The University of Texas at Austin McCombs School of Business Section 3.2: Multiple Linear Regression II Jared S. Murray The University of Texas at Austin McCombs School of Business 1 Multiple Linear Regression: Inference and Understanding We can answer new questions

More information

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression Rebecca C. Steorts, Duke University STA 325, Chapter 3 ISL 1 / 49 Agenda How to extend beyond a SLR Multiple Linear Regression (MLR) Relationship Between the Response and Predictors

More information

ST512. Fall Quarter, Exam 1. Directions: Answer questions as directed. Please show work. For true/false questions, circle either true or false.

ST512. Fall Quarter, Exam 1. Directions: Answer questions as directed. Please show work. For true/false questions, circle either true or false. ST512 Fall Quarter, 2005 Exam 1 Name: Directions: Answer questions as directed. Please show work. For true/false questions, circle either true or false. 1. (42 points) A random sample of n = 30 NBA basketball

More information

9.1 Random coefficients models Constructed data Consumer preference mapping of carrots... 10

9.1 Random coefficients models Constructed data Consumer preference mapping of carrots... 10 St@tmaster 02429/MIXED LINEAR MODELS PREPARED BY THE STATISTICS GROUPS AT IMM, DTU AND KU-LIFE Module 9: R 9.1 Random coefficients models...................... 1 9.1.1 Constructed data........................

More information

Section 2.3: Simple Linear Regression: Predictions and Inference

Section 2.3: Simple Linear Regression: Predictions and Inference Section 2.3: Simple Linear Regression: Predictions and Inference Jared S. Murray The University of Texas at Austin McCombs School of Business Suggested reading: OpenIntro Statistics, Chapter 7.4 1 Simple

More information

THIS IS NOT REPRESNTATIVE OF CURRENT CLASS MATERIAL. STOR 455 Midterm 1 September 28, 2010

THIS IS NOT REPRESNTATIVE OF CURRENT CLASS MATERIAL. STOR 455 Midterm 1 September 28, 2010 THIS IS NOT REPRESNTATIVE OF CURRENT CLASS MATERIAL STOR 455 Midterm September 8, INSTRUCTIONS: BOTH THE EXAM AND THE BUBBLE SHEET WILL BE COLLECTED. YOU MUST PRINT YOUR NAME AND SIGN THE HONOR PLEDGE

More information

A (very) brief introduction to R

A (very) brief introduction to R A (very) brief introduction to R You typically start R at the command line prompt in a command line interface (CLI) mode. It is not a graphical user interface (GUI) although there are some efforts to produce

More information

Section 2.2: Covariance, Correlation, and Least Squares

Section 2.2: Covariance, Correlation, and Least Squares Section 2.2: Covariance, Correlation, and Least Squares Jared S. Murray The University of Texas at Austin McCombs School of Business Suggested reading: OpenIntro Statistics, Chapter 7.1, 7.2 1 A Deeper

More information

Math 263 Excel Assignment 3

Math 263 Excel Assignment 3 ath 263 Excel Assignment 3 Sections 001 and 003 Purpose In this assignment you will use the same data as in Excel Assignment 2. You will perform an exploratory data analysis using R. You shall reproduce

More information

Gelman-Hill Chapter 3

Gelman-Hill Chapter 3 Gelman-Hill Chapter 3 Linear Regression Basics In linear regression with a single independent variable, as we have seen, the fundamental equation is where ŷ bx 1 b0 b b b y 1 yx, 0 y 1 x x Bivariate Normal

More information

Regression on SAT Scores of 374 High Schools and K-means on Clustering Schools

Regression on SAT Scores of 374 High Schools and K-means on Clustering Schools Regression on SAT Scores of 374 High Schools and K-means on Clustering Schools Abstract In this project, we study 374 public high schools in New York City. The project seeks to use regression techniques

More information

THE UNIVERSITY OF BRITISH COLUMBIA FORESTRY 430 and 533. Time: 50 minutes 40 Marks FRST Marks FRST 533 (extra questions)

THE UNIVERSITY OF BRITISH COLUMBIA FORESTRY 430 and 533. Time: 50 minutes 40 Marks FRST Marks FRST 533 (extra questions) THE UNIVERSITY OF BRITISH COLUMBIA FORESTRY 430 and 533 MIDTERM EXAMINATION: October 14, 2005 Instructor: Val LeMay Time: 50 minutes 40 Marks FRST 430 50 Marks FRST 533 (extra questions) This examination

More information

Statistics Lab #7 ANOVA Part 2 & ANCOVA

Statistics Lab #7 ANOVA Part 2 & ANCOVA Statistics Lab #7 ANOVA Part 2 & ANCOVA PSYCH 710 7 Initialize R Initialize R by entering the following commands at the prompt. You must type the commands exactly as shown. options(contrasts=c("contr.sum","contr.poly")

More information

Exercise 2.23 Villanova MAT 8406 September 7, 2015

Exercise 2.23 Villanova MAT 8406 September 7, 2015 Exercise 2.23 Villanova MAT 8406 September 7, 2015 Step 1: Understand the Question Consider the simple linear regression model y = 50 + 10x + ε where ε is NID(0, 16). Suppose that n = 20 pairs of observations

More information

3. Data Analysis and Statistics

3. Data Analysis and Statistics 3. Data Analysis and Statistics 3.1 Visual Analysis of Data 3.2.1 Basic Statistics Examples 3.2.2 Basic Statistical Theory 3.3 Normal Distributions 3.4 Bivariate Data 3.1 Visual Analysis of Data Visual

More information

NEURAL NETWORKS. Cement. Blast Furnace Slag. Fly Ash. Water. Superplasticizer. Coarse Aggregate. Fine Aggregate. Age

NEURAL NETWORKS. Cement. Blast Furnace Slag. Fly Ash. Water. Superplasticizer. Coarse Aggregate. Fine Aggregate. Age NEURAL NETWORKS As an introduction, we ll tackle a prediction task with a continuous variable. We ll reproduce research from the field of cement and concrete manufacturing that seeks to model the compressive

More information

610 R12 Prof Colleen F. Moore Analysis of variance for Unbalanced Between Groups designs in R For Psychology 610 University of Wisconsin--Madison

610 R12 Prof Colleen F. Moore Analysis of variance for Unbalanced Between Groups designs in R For Psychology 610 University of Wisconsin--Madison 610 R12 Prof Colleen F. Moore Analysis of variance for Unbalanced Between Groups designs in R For Psychology 610 University of Wisconsin--Madison R is very touchy about unbalanced designs, partly because

More information

SYS 6021 Linear Statistical Models

SYS 6021 Linear Statistical Models SYS 6021 Linear Statistical Models Project 2 Spam Filters Jinghe Zhang Summary The spambase data and time indexed counts of spams and hams are studied to develop accurate spam filters. Static models are

More information

Bivariate (Simple) Regression Analysis

Bivariate (Simple) Regression Analysis Revised July 2018 Bivariate (Simple) Regression Analysis This set of notes shows how to use Stata to estimate a simple (two-variable) regression equation. It assumes that you have set Stata up on your

More information

Part I, Chapters 4 & 5. Data Tables and Data Analysis Statistics and Figures

Part I, Chapters 4 & 5. Data Tables and Data Analysis Statistics and Figures Part I, Chapters 4 & 5 Data Tables and Data Analysis Statistics and Figures Descriptive Statistics 1 Are data points clumped? (order variable / exp. variable) Concentrated around one value? Concentrated

More information

36-402/608 HW #1 Solutions 1/21/2010

36-402/608 HW #1 Solutions 1/21/2010 36-402/608 HW #1 Solutions 1/21/2010 1. t-test (20 points) Use fullbumpus.r to set up the data from fullbumpus.txt (both at Blackboard/Assignments). For this problem, analyze the full dataset together

More information

IQR = number. summary: largest. = 2. Upper half: Q3 =

IQR = number. summary: largest. = 2. Upper half: Q3 = Step by step box plot Height in centimeters of players on the 003 Women s Worldd Cup soccer team. 157 1611 163 163 164 165 165 165 168 168 168 170 170 170 171 173 173 175 180 180 Determine the 5 number

More information

Lab #13 - Resampling Methods Econ 224 October 23rd, 2018

Lab #13 - Resampling Methods Econ 224 October 23rd, 2018 Lab #13 - Resampling Methods Econ 224 October 23rd, 2018 Introduction In this lab you will work through Section 5.3 of ISL and record your code and results in an RMarkdown document. I have added section

More information

Orange Juice data. Emanuele Taufer. 4/12/2018 Orange Juice data (1)

Orange Juice data. Emanuele Taufer. 4/12/2018 Orange Juice data (1) Orange Juice data Emanuele Taufer file:///c:/users/emanuele.taufer/google%20drive/2%20corsi/5%20qmma%20-%20mim/0%20labs/l10-oj-data.html#(1) 1/31 Orange Juice Data The data contain weekly sales of refrigerated

More information

Regression III: Lab 4

Regression III: Lab 4 Regression III: Lab 4 This lab will work through some model/variable selection problems, finite mixture models and missing data issues. You shouldn t feel obligated to work through this linearly, I would

More information

Analysis of variance - ANOVA

Analysis of variance - ANOVA Analysis of variance - ANOVA Based on a book by Julian J. Faraway University of Iceland (UI) Estimation 1 / 50 Anova In ANOVAs all predictors are categorical/qualitative. The original thinking was to try

More information

BIO 360: Vertebrate Physiology Lab 9: Graphing in Excel. Lab 9: Graphing: how, why, when, and what does it mean? Due 3/26

BIO 360: Vertebrate Physiology Lab 9: Graphing in Excel. Lab 9: Graphing: how, why, when, and what does it mean? Due 3/26 Lab 9: Graphing: how, why, when, and what does it mean? Due 3/26 INTRODUCTION Graphs are one of the most important aspects of data analysis and presentation of your of data. They are visual representations

More information

Applied Regression Modeling: A Business Approach

Applied Regression Modeling: A Business Approach i Applied Regression Modeling: A Business Approach Computer software help: SAS SAS (originally Statistical Analysis Software ) is a commercial statistical software package based on a powerful programming

More information

PSY 9556B (Feb 5) Latent Growth Modeling

PSY 9556B (Feb 5) Latent Growth Modeling PSY 9556B (Feb 5) Latent Growth Modeling Fixed and random word confusion Simplest LGM knowing how to calculate dfs How many time points needed? Power, sample size Nonlinear growth quadratic Nonlinear growth

More information

Applied Statistics and Econometrics Lecture 6

Applied Statistics and Econometrics Lecture 6 Applied Statistics and Econometrics Lecture 6 Giuseppe Ragusa Luiss University gragusa@luiss.it http://gragusa.org/ March 6, 2017 Luiss University Empirical application. Data Italian Labour Force Survey,

More information

Applied Regression Modeling: A Business Approach

Applied Regression Modeling: A Business Approach i Applied Regression Modeling: A Business Approach Computer software help: SPSS SPSS (originally Statistical Package for the Social Sciences ) is a commercial statistical software package with an easy-to-use

More information

Multiple Regression White paper

Multiple Regression White paper +44 (0) 333 666 7366 Multiple Regression White paper A tool to determine the impact in analysing the effectiveness of advertising spend. Multiple Regression In order to establish if the advertising mechanisms

More information

Stat 5303 (Oehlert): Response Surfaces 1

Stat 5303 (Oehlert): Response Surfaces 1 Stat 5303 (Oehlert): Response Surfaces 1 > data

More information

Model Selection and Inference

Model Selection and Inference Model Selection and Inference Merlise Clyde January 29, 2017 Last Class Model for brain weight as a function of body weight In the model with both response and predictor log transformed, are dinosaurs

More information

Resources for statistical assistance. Quantitative covariates and regression analysis. Methods for predicting continuous outcomes.

Resources for statistical assistance. Quantitative covariates and regression analysis. Methods for predicting continuous outcomes. Resources for statistical assistance Quantitative covariates and regression analysis Carolyn Taylor Applied Statistics and Data Science Group (ASDa) Department of Statistics, UBC January 24, 2017 Department

More information

22s:152 Applied Linear Regression

22s:152 Applied Linear Regression 22s:152 Applied Linear Regression Chapter 22: Model Selection In model selection, the idea is to find the smallest set of variables which provides an adequate description of the data. We will consider

More information

Practice in R. 1 Sivan s practice. 2 Hetroskadasticity. January 28, (pdf version)

Practice in R. 1 Sivan s practice. 2 Hetroskadasticity. January 28, (pdf version) Practice in R January 28, 2010 (pdf version) 1 Sivan s practice Her practice file should be (here), or check the web for a more useful pointer. 2 Hetroskadasticity ˆ Let s make some hetroskadastic data:

More information

22s:152 Applied Linear Regression

22s:152 Applied Linear Regression 22s:152 Applied Linear Regression Chapter 22: Model Selection In model selection, the idea is to find the smallest set of variables which provides an adequate description of the data. We will consider

More information

CSSS 510: Lab 2. Introduction to Maximum Likelihood Estimation

CSSS 510: Lab 2. Introduction to Maximum Likelihood Estimation CSSS 510: Lab 2 Introduction to Maximum Likelihood Estimation 2018-10-12 0. Agenda 1. Housekeeping: simcf, tile 2. Questions about Homework 1 or lecture 3. Simulating heteroskedastic normal data 4. Fitting

More information

Quantitative - One Population

Quantitative - One Population Quantitative - One Population The Quantitative One Population VISA procedures allow the user to perform descriptive and inferential procedures for problems involving one population with quantitative (interval)

More information

E-Campus Inferential Statistics - Part 2

E-Campus Inferential Statistics - Part 2 E-Campus Inferential Statistics - Part 2 Group Members: James Jones Question 4-Isthere a significant difference in the mean prices of the stores? New Textbook Prices New Price Descriptives 95% Confidence

More information

= = P. IE 434 Homework 2 Process Capability. Kate Gilland 10/2/13. Figure 1: Capability Analysis

= = P. IE 434 Homework 2 Process Capability. Kate Gilland 10/2/13. Figure 1: Capability Analysis Kate Gilland 10/2/13 IE 434 Homework 2 Process Capability 1. Figure 1: Capability Analysis σ = R = 4.642857 = 1.996069 P d 2 2.326 p = 1.80 C p = 2.17 These results are according to Method 2 in Minitab.

More information

Chapter 6: Linear Model Selection and Regularization

Chapter 6: Linear Model Selection and Regularization Chapter 6: Linear Model Selection and Regularization As p (the number of predictors) comes close to or exceeds n (the sample size) standard linear regression is faced with problems. The variance of the

More information

Section 3.4: Diagnostics and Transformations. Jared S. Murray The University of Texas at Austin McCombs School of Business

Section 3.4: Diagnostics and Transformations. Jared S. Murray The University of Texas at Austin McCombs School of Business Section 3.4: Diagnostics and Transformations Jared S. Murray The University of Texas at Austin McCombs School of Business 1 Regression Model Assumptions Y i = β 0 + β 1 X i + ɛ Recall the key assumptions

More information

Multivariate Analysis Multivariate Calibration part 2

Multivariate Analysis Multivariate Calibration part 2 Multivariate Analysis Multivariate Calibration part 2 Prof. Dr. Anselmo E de Oliveira anselmo.quimica.ufg.br anselmo.disciplinas@gmail.com Linear Latent Variables An essential concept in multivariate data

More information

For our example, we will look at the following factors and factor levels.

For our example, we will look at the following factors and factor levels. In order to review the calculations that are used to generate the Analysis of Variance, we will use the statapult example. By adjusting various settings on the statapult, you are able to throw the ball

More information

1. Determine the population mean of x denoted m x. Ans. 10 from bottom bell curve.

1. Determine the population mean of x denoted m x. Ans. 10 from bottom bell curve. 6. Using the regression line, determine a predicted value of y for x = 25. Does it look as though this prediction is a good one? Ans. The regression line at x = 25 is at height y = 45. This is right at

More information

Lab #9: ANOVA and TUKEY tests

Lab #9: ANOVA and TUKEY tests Lab #9: ANOVA and TUKEY tests Objectives: 1. Column manipulation in SAS 2. Analysis of variance 3. Tukey test 4. Least Significant Difference test 5. Analysis of variance with PROC GLM 6. Levene test for

More information

Poisson Regression and Model Checking

Poisson Regression and Model Checking Poisson Regression and Model Checking Readings GH Chapter 6-8 September 27, 2017 HIV & Risk Behaviour Study The variables couples and women_alone code the intervention: control - no counselling (both 0)

More information

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008 MIT OpenCourseWare http://ocw.mit.edu.83j / 6.78J / ESD.63J Control of Manufacturing Processes (SMA 633) Spring 8 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

AA BB CC DD EE. Introduction to Graphics in R

AA BB CC DD EE. Introduction to Graphics in R Introduction to Graphics in R Cori Mar 7/10/18 ### Reading in the data dat

More information

Lecture 7: Linear Regression (continued)

Lecture 7: Linear Regression (continued) Lecture 7: Linear Regression (continued) Reading: Chapter 3 STATS 2: Data mining and analysis Jonathan Taylor, 10/8 Slide credits: Sergio Bacallado 1 / 14 Potential issues in linear regression 1. Interactions

More information

Robust Linear Regression (Passing- Bablok Median-Slope)

Robust Linear Regression (Passing- Bablok Median-Slope) Chapter 314 Robust Linear Regression (Passing- Bablok Median-Slope) Introduction This procedure performs robust linear regression estimation using the Passing-Bablok (1988) median-slope algorithm. Their

More information

Simulating power in practice

Simulating power in practice Simulating power in practice Author: Nicholas G Reich This material is part of the statsteachr project Made available under the Creative Commons Attribution-ShareAlike 3.0 Unported License: http://creativecommons.org/licenses/by-sa/3.0/deed.en

More information

Exam Review: Ch. 1-3 Answer Section

Exam Review: Ch. 1-3 Answer Section Exam Review: Ch. 1-3 Answer Section MDM 4U0 MULTIPLE CHOICE 1. ANS: A Section 1.6 2. ANS: A Section 1.6 3. ANS: A Section 1.7 4. ANS: A Section 1.7 5. ANS: C Section 2.3 6. ANS: B Section 2.3 7. ANS: D

More information

Name Date Types of Graphs and Creating Graphs Notes

Name Date Types of Graphs and Creating Graphs Notes Name Date Types of Graphs and Creating Graphs Notes Graphs are helpful visual representations of data. Different graphs display data in different ways. Some graphs show individual data, but many do not.

More information

I. MODEL. Q3i: Check my . Q29s: I like to see films and TV programs from other countries. Q28e: I like to watch TV shows on a laptop/tablet/phone

I. MODEL. Q3i: Check my  . Q29s: I like to see films and TV programs from other countries. Q28e: I like to watch TV shows on a laptop/tablet/phone 1 Multiple Regression-FORCED-ENTRY HIERARCHICAL MODEL DORIS ACHEME COM 631/731, Spring 2017 Data: Film & TV Usage 2015 I. MODEL IV Block 1: Demographics Sex (female dummy):q30 Age: Q31 Income: Q34 Block

More information

STAT 2607 REVIEW PROBLEMS Word problems must be answered in words of the problem.

STAT 2607 REVIEW PROBLEMS Word problems must be answered in words of the problem. STAT 2607 REVIEW PROBLEMS 1 REMINDER: On the final exam 1. Word problems must be answered in words of the problem. 2. "Test" means that you must carry out a formal hypothesis testing procedure with H0,

More information

Section 4.1: Time Series I. Jared S. Murray The University of Texas at Austin McCombs School of Business

Section 4.1: Time Series I. Jared S. Murray The University of Texas at Austin McCombs School of Business Section 4.1: Time Series I Jared S. Murray The University of Texas at Austin McCombs School of Business 1 Time Series Data and Dependence Time-series data are simply a collection of observations gathered

More information

Minitab 17 commands Prepared by Jeffrey S. Simonoff

Minitab 17 commands Prepared by Jeffrey S. Simonoff Minitab 17 commands Prepared by Jeffrey S. Simonoff Data entry and manipulation To enter data by hand, click on the Worksheet window, and enter the values in as you would in any spreadsheet. To then save

More information

CHAPTER 3 AN OVERVIEW OF DESIGN OF EXPERIMENTS AND RESPONSE SURFACE METHODOLOGY

CHAPTER 3 AN OVERVIEW OF DESIGN OF EXPERIMENTS AND RESPONSE SURFACE METHODOLOGY 23 CHAPTER 3 AN OVERVIEW OF DESIGN OF EXPERIMENTS AND RESPONSE SURFACE METHODOLOGY 3.1 DESIGN OF EXPERIMENTS Design of experiments is a systematic approach for investigation of a system or process. A series

More information

Conditional and Unconditional Regression with No Measurement Error

Conditional and Unconditional Regression with No Measurement Error Conditional and with No Measurement Error /* reg2ways.sas */ %include 'readsenic.sas'; title2 ''; proc reg; title3 'Conditional Regression'; model infrisk = stay census; proc calis cov; /* Analyze the

More information

Among those 14 potential explanatory variables,non-dummy variables are:

Among those 14 potential explanatory variables,non-dummy variables are: Among those 14 potential explanatory variables,non-dummy variables are: Size: 2nd column in the dataset Land: 14th column in the dataset Bed.Rooms: 5th column in the dataset Fireplace: 7th column in the

More information

Statistics: Normal Distribution, Sampling, Function Fitting & Regression Analysis (Grade 12) *

Statistics: Normal Distribution, Sampling, Function Fitting & Regression Analysis (Grade 12) * OpenStax-CNX module: m39305 1 Statistics: Normal Distribution, Sampling, Function Fitting & Regression Analysis (Grade 12) * Free High School Science Texts Project This work is produced by OpenStax-CNX

More information

Statistical Analysis in R Guest Lecturer: Maja Milosavljevic January 28, 2015

Statistical Analysis in R Guest Lecturer: Maja Milosavljevic January 28, 2015 Statistical Analysis in R Guest Lecturer: Maja Milosavljevic January 28, 2015 Data Exploration Import Relevant Packages: library(grdevices) library(graphics) library(plyr) library(hexbin) library(base)

More information

Some methods for the quantification of prediction uncertainties for digital soil mapping: Universal kriging prediction variance.

Some methods for the quantification of prediction uncertainties for digital soil mapping: Universal kriging prediction variance. Some methods for the quantification of prediction uncertainties for digital soil mapping: Universal kriging prediction variance. Soil Security Laboratory 2018 1 Universal kriging prediction variance In

More information

Using HLM for Presenting Meta Analysis Results. R, C, Gardner Department of Psychology

Using HLM for Presenting Meta Analysis Results. R, C, Gardner Department of Psychology Data_Analysis.calm: dacmeta Using HLM for Presenting Meta Analysis Results R, C, Gardner Department of Psychology The primary purpose of meta analysis is to summarize the effect size results from a number

More information

Math 120 Introduction to Statistics Mr. Toner s Lecture Notes 3.1 Measures of Central Tendency

Math 120 Introduction to Statistics Mr. Toner s Lecture Notes 3.1 Measures of Central Tendency Math 1 Introduction to Statistics Mr. Toner s Lecture Notes 3.1 Measures of Central Tendency lowest value + highest value midrange The word average: is very ambiguous and can actually refer to the mean,

More information

Further Maths Notes. Common Mistakes. Read the bold words in the exam! Always check data entry. Write equations in terms of variables

Further Maths Notes. Common Mistakes. Read the bold words in the exam! Always check data entry. Write equations in terms of variables Further Maths Notes Common Mistakes Read the bold words in the exam! Always check data entry Remember to interpret data with the multipliers specified (e.g. in thousands) Write equations in terms of variables

More information

MAT 110 WORKSHOP. Updated Fall 2018

MAT 110 WORKSHOP. Updated Fall 2018 MAT 110 WORKSHOP Updated Fall 2018 UNIT 3: STATISTICS Introduction Choosing a Sample Simple Random Sample: a set of individuals from the population chosen in a way that every individual has an equal chance

More information

Section 2.1: Intro to Simple Linear Regression & Least Squares

Section 2.1: Intro to Simple Linear Regression & Least Squares Section 2.1: Intro to Simple Linear Regression & Least Squares Jared S. Murray The University of Texas at Austin McCombs School of Business Suggested reading: OpenIntro Statistics, Chapter 7.1, 7.2 1 Regression:

More information

STA 570 Spring Lecture 5 Tuesday, Feb 1

STA 570 Spring Lecture 5 Tuesday, Feb 1 STA 570 Spring 2011 Lecture 5 Tuesday, Feb 1 Descriptive Statistics Summarizing Univariate Data o Standard Deviation, Empirical Rule, IQR o Boxplots Summarizing Bivariate Data o Contingency Tables o Row

More information

Historical Data RSM Tutorial Part 1 The Basics

Historical Data RSM Tutorial Part 1 The Basics DX10-05-3-HistRSM Rev. 1/27/16 Historical Data RSM Tutorial Part 1 The Basics Introduction In this tutorial you will see how the regression tool in Design-Expert software, intended for response surface

More information

Regression. Notes. Page 1 25-JAN :21:57. Output Created Comments

Regression. Notes. Page 1 25-JAN :21:57. Output Created Comments /STATISTICS COEFF OUTS CI(95) R ANOVA /CRITERIA=PIN(.05) POUT(.10) /DEPENDENT Favorability /METHOD=ENTER zcontemp ZAnxious6 zallcontact. Regression Notes Output Created Comments Input Missing Value Handling

More information

Salary 9 mo : 9 month salary for faculty member for 2004

Salary 9 mo : 9 month salary for faculty member for 2004 22s:52 Applied Linear Regression DeCook Fall 2008 Lab 3 Friday October 3. The data Set In 2004, a study was done to examine if gender, after controlling for other variables, was a significant predictor

More information

9.8 Rockin the Residuals

9.8 Rockin the Residuals 42 SECONDARY MATH 1 // MODULE 9 9.8 Rockin the Residuals A Solidify Understanding Task The correlation coefficient is not the only tool that statisticians use to analyze whether or not a line is a good

More information

Predictive Checking. Readings GH Chapter 6-8. February 8, 2017

Predictive Checking. Readings GH Chapter 6-8. February 8, 2017 Predictive Checking Readings GH Chapter 6-8 February 8, 2017 Model Choice and Model Checking 2 Questions: 1. Is my Model good enough? (no alternative models in mind) 2. Which Model is best? (comparison

More information

TI-83 Users Guide. to accompany. Statistics: Unlocking the Power of Data by Lock, Lock, Lock, Lock, and Lock

TI-83 Users Guide. to accompany. Statistics: Unlocking the Power of Data by Lock, Lock, Lock, Lock, and Lock TI-83 Users Guide to accompany by Lock, Lock, Lock, Lock, and Lock TI-83 Users Guide- 1 Getting Started Entering Data Use the STAT menu, then select EDIT and hit Enter. Enter data for a single variable

More information

Comparing Fitted Models with the fit.models Package

Comparing Fitted Models with the fit.models Package Comparing Fitted Models with the fit.models Package Kjell Konis Acting Assistant Professor Computational Finance and Risk Management Dept. Applied Mathematics, University of Washington History of fit.models

More information

Week 4: Describing data and estimation

Week 4: Describing data and estimation Week 4: Describing data and estimation Goals Investigate sampling error; see that larger samples have less sampling error. Visualize confidence intervals. Calculate basic summary statistics using R. Calculate

More information

Statistics I 2011/2012 Notes about the third Computer Class: Simulation of samples and goodness of fit; Central Limit Theorem; Confidence intervals.

Statistics I 2011/2012 Notes about the third Computer Class: Simulation of samples and goodness of fit; Central Limit Theorem; Confidence intervals. Statistics I 2011/2012 Notes about the third Computer Class: Simulation of samples and goodness of fit; Central Limit Theorem; Confidence intervals. In this Computer Class we are going to use Statgraphics

More information

Example 1 of panel data : Data for 6 airlines (groups) over 15 years (time periods) Example 1

Example 1 of panel data : Data for 6 airlines (groups) over 15 years (time periods) Example 1 Panel data set Consists of n entities or subjects (e.g., firms and states), each of which includes T observations measured at 1 through t time period. total number of observations : nt Panel data have

More information

Confidence Intervals: Estimators

Confidence Intervals: Estimators Confidence Intervals: Estimators Point Estimate: a specific value at estimates a parameter e.g., best estimator of e population mean ( ) is a sample mean problem is at ere is no way to determine how close

More information

Assignment No: 2. Assessment as per Schedule. Specifications Readability Assignments

Assignment No: 2. Assessment as per Schedule. Specifications Readability Assignments Specifications Readability Assignments Assessment as per Schedule Oral Total 6 4 4 2 4 20 Date of Performance:... Expected Date of Completion:... Actual Date of Completion:... ----------------------------------------------------------------------------------------------------------------

More information

SLStats.notebook. January 12, Statistics:

SLStats.notebook. January 12, Statistics: Statistics: 1 2 3 Ways to display data: 4 generic arithmetic mean sample 14A: Opener, #3,4 (Vocabulary, histograms, frequency tables, stem and leaf) 14B.1: #3,5,8,9,11,12,14,15,16 (Mean, median, mode,

More information

Regression Lab 1. The data set cholesterol.txt available on your thumb drive contains the following variables:

Regression Lab 1. The data set cholesterol.txt available on your thumb drive contains the following variables: Regression Lab The data set cholesterol.txt available on your thumb drive contains the following variables: Field Descriptions ID: Subject ID sex: Sex: 0 = male, = female age: Age in years chol: Serum

More information

STAT - Edit Scroll up the appropriate list to highlight the list name at the very top Press CLEAR, followed by the down arrow or ENTER

STAT - Edit Scroll up the appropriate list to highlight the list name at the very top Press CLEAR, followed by the down arrow or ENTER Entering/Editing Data Use arrows to scroll to the appropriate list and position Enter or edit data, pressing ENTER after each (including the last) Deleting Data (One Value at a Time) Use arrows to scroll

More information

Outline. Topic 16 - Other Remedies. Ridge Regression. Ridge Regression. Ridge Regression. Robust Regression. Regression Trees. Piecewise Linear Model

Outline. Topic 16 - Other Remedies. Ridge Regression. Ridge Regression. Ridge Regression. Robust Regression. Regression Trees. Piecewise Linear Model Topic 16 - Other Remedies Ridge Regression Robust Regression Regression Trees Outline - Fall 2013 Piecewise Linear Model Bootstrapping Topic 16 2 Ridge Regression Modification of least squares that addresses

More information

Getting Correct Results from PROC REG

Getting Correct Results from PROC REG Getting Correct Results from PROC REG Nate Derby Stakana Analytics Seattle, WA, USA SUCCESS 3/12/15 Nate Derby Getting Correct Results from PROC REG 1 / 29 Outline PROC REG 1 PROC REG 2 Nate Derby Getting

More information

Chapter 6: DESCRIPTIVE STATISTICS

Chapter 6: DESCRIPTIVE STATISTICS Chapter 6: DESCRIPTIVE STATISTICS Random Sampling Numerical Summaries Stem-n-Leaf plots Histograms, and Box plots Time Sequence Plots Normal Probability Plots Sections 6-1 to 6-5, and 6-7 Random Sampling

More information

Stat 4510/7510 Homework 4

Stat 4510/7510 Homework 4 Stat 45/75 1/7. Stat 45/75 Homework 4 Instructions: Please list your name and student number clearly. In order to receive credit for a problem, your solution must show sufficient details so that the grader

More information

S CHAPTER return.data S CHAPTER.Data S CHAPTER

S CHAPTER return.data S CHAPTER.Data S CHAPTER 1 S CHAPTER return.data S CHAPTER.Data MySwork S CHAPTER.Data 2 S e > return ; return + # 3 setenv S_CLEDITOR emacs 4 > 4 + 5 / 3 ## addition & divison [1] 5.666667 > (4 + 5) / 3 ## using parentheses [1]

More information

Sales Price of Laptops Based on Their Specifications. Hyunwoo Cho Jay Jung Gun Hee Lee Chan Hong Park Seoyul Um Mario Wijaya Team #10

Sales Price of Laptops Based on Their Specifications. Hyunwoo Cho Jay Jung Gun Hee Lee Chan Hong Park Seoyul Um Mario Wijaya Team #10 Sales Price of Laptops Based on Their Specifications Hyunwoo Cho Jay Jung Gun Hee Lee Chan Hong Park Seoyul Um Mario Wijaya Team #10 Table of Contents 1) Introduction 2 2) Problem Statement 2 3) Data Descriptions

More information

Correlation and Regression

Correlation and Regression How are X and Y Related Correlation and Regression Causation (regression) p(y X=) Correlation p(y=, X=) http://kcd.com/552/ Correlation Can be Induced b Man Mechanisms # of Pups 1 2 3 4 5 6 7 8 Inbreeding

More information

Stat 579: More Preliminaries, Reading from Files

Stat 579: More Preliminaries, Reading from Files Stat 579: More Preliminaries, Reading from Files Ranjan Maitra 2220 Snedecor Hall Department of Statistics Iowa State University. Phone: 515-294-7757 maitra@iastate.edu September 1, 2011, 1/10 Some more

More information

Exercise: Graphing and Least Squares Fitting in Quattro Pro

Exercise: Graphing and Least Squares Fitting in Quattro Pro Chapter 5 Exercise: Graphing and Least Squares Fitting in Quattro Pro 5.1 Purpose The purpose of this experiment is to become familiar with using Quattro Pro to produce graphs and analyze graphical data.

More information

Moving Beyond Linearity

Moving Beyond Linearity Moving Beyond Linearity Basic non-linear models one input feature: polynomial regression step functions splines smoothing splines local regression. more features: generalized additive models. Polynomial

More information