Static Analysis versus Software Model Checking for bug finding

Size: px
Start display at page:

Download "Static Analysis versus Software Model Checking for bug finding"

Transcription

1 Static Analysis versus Software Model Checking for bug finding Dawson Englers, Madanlal Musuvathi Stanford University, CA, USA Presented By: Prateek Agarwal ETH, Zürich

2 Agenda Goal Aim Scope Methodologies used Meta Compilation C Model Checker Case Studies Conclusions

3 Goal Checking validity of general perception Static Analysis is easy to apply, finds shallow bugs Model Checking is harder but strictly better

4 Aim Documentation of experience Set of case studies Comparison of two approaches, based on Bugs/Lines of Code False positives vs Actual Bugs Time & Effort required Types of Bugs: generic vs protocol specific Find as many bugs as possible

5 Scope Verification of system/protocol software Critical Hard to test/inspect/reason about manually Highly optimized Protocol codes follow event driven model

6 Meta Compilation (MC) Extension of compiler Used for Static Analysis & Model Checking Metal: Language for Slice specification by pattern matching Code translation State machines xg++ over g++ compiler

7 Meta Compilation: Key Features Code should be highly structured e.g. special MACRO/functions for read/write No source code annotation needed Emphasis on reducing false positives No Simulation of code No model of heap, tracking variable values Simulation tends to become model checking

8 Static Analysis using MC Patterns & Actions Small State machines for checking Example Rule: Sync before read... start: {WAIT_FOR_DB_FULL(addr);} ==> stop {MISCBUS_READ_DB(addr);} ==> {err( Buffer read not sync");};... Start wait_for_db_full misc_bus_read_db Stop Error Engler & Masuvathi [1]

9 Model Checking using MC Extraction & Translation protocol code MurΦ Model Eliminates handcrafted system models MurΦ Explicit state enumeration model checker Each reachable state visited once

10 Model Checking using MC Translation Pattern (Metal Printer) State Variable (Metal Slicer) Protocol Code (Implementation) Correctness Properties xg++ Protocol Model Legend: Automatically Generated Hand Crafted by User Program Unedited source code Hardware Model MurØ Start State Error List Lie, Chou, Engler, Dill [2]

11 Example: Model Checking using MC Metal Slicer:... /* Patterns for n/w and proc mesgs, which use length field */ pat sends = { NI_SEND (type, data, keep,swp, wait,nl);} { P1_SEND(type, data, keep,swp, wait,nl);}... Metal Printer... /* Automatically insert length assertion before send */ {N1_SEND(type, data, keep, swap, wait, null);} ==> Lie, Chou, Engler, Dill [2]... { if(mgk_int_cst(data)!= 0)a mgk_e( assert(nh.len = len_data); ); else mgk_e( assert (nh.len = len_nodata); ); mgk_e( ni_send(%t, %t, procnum,nh,type,swap);

12 Model Checking : C Model Checker Motivation xg++ user needs to know system intricacies MurΦ lacks many C constructs Eliminate need of higher level system model Use the implementation code itself Process scheduling & execution by CMC

13 CMC Key Features Searches for all transitions Complete system state saved and restored Heuristics & Optimizations for state space explosion Correctness properties Assertions from implementation code Memory leaks etc. in built User specified invariants Environment Model still handcrafted

14 Case Study 1: FLASH Cache coherence protocol for FLASH Multiprocessor architecture Code runs on each cache miss 5 FLASH protocols Code Size: 10K-18K John Hennessy [3]

15 Results Static Analysis Bugs Found: 33, False Positives: 28 Most rules on buffer management e.g. allocation before use, deallocation after use, not used after deallocation Model Checking 8 bugs e.g. queue overflows, no invalidation of an exclusive line Handwritten model lead to delays

16 Summary Static Analysis Advantage: Better for same set of properties Works best for code visible rules Model Checking Advantage: Can cover complex properties, invariants e.g. counter overflow missed by SA Model Checking Disadvantage: Simple models Less Coverage Detailed model Increased Time & Effort Erroneous model False Positives

17 Case Study 2: AODV Protocol Ad-hoc On-demand Distance Vector Protocol Routing protocol Simplified environment Input: route request, timer interrupt, packet receipt 3 publicly available implementations used Average 6 KLOC Model Checking using CMC

18 Results Model Checking 42 unique bugs, 1 bug in AODV specification Static Analysis: 34 bugs Both Model Checking Static Analysis Generic Properties Protocol Specific Total comparison of bug count classified by properties

19 Comparison Generic Properties: CMC found only one bug not found by SA SA found 13 bugs not found by CMC Protocol Specific Properties: Difficult to check statically 0 bugs SA hit more code but CMC hit more properties!

20 Summary Static Analysis Advantage: Wins when checking same set of properties (again) Model Checking Advantage: Simulates execution of 'entire system' Looks for actual errors (not 'causes' of error) Gives actual execution trace More checks more bugs CMC executed the code

21 Case Study 3: TCP TCP Code size ~ 10 * (AODV code size) Frequently audited, Heavily Tested code Only Model Checking done (using CMC) System tightly coupled with Environment System: TCP stack Environment: Linux Kernel, Kernel Modules Incremental refinement of model Start simple, keep adding complexity

22 Case Study 3: TCP External Functions can be included in System Advantage Model Checker will find errors in them No effort to create stubs Disadvantage Increase in state space Dependencies on other functions Essential Question Where to draw the line between system and environment?

23 System Separation Cut on narrowest interface TCP Kernel module Poorly documented Effectively simulating kernel Months of effort! Difficult to determine false positives New approach: Use well defined interface System calls interface Hardware abstraction layer Effectively running entire kernel in CMC!

24 Results 4 bugs found Metric to measure coverage: Line Coverage: Lines of code covered Protocol Coverage: %age of abstract protocol behavior covered Description Line Coverage Protocol Coverage Bugs Standard server, client 47.4 % 64.7 % 2 + Simultaneous connect 51.0 % 66.7% 0 + Partial Close 52.7 % 79.5% 2 + Message corruption 50.6% 84.3% 0 Combined Coverage 55.4% 92.1%

25 Conclusions No model is as good as implementation itself Simplification, omission missing critical errors Manual work scale badly for complex systems Use well defined interfaces More code coverage More bugs found

26 My Opinion Usage of live software project is a big plus Meta-Compilation & CMC give huge advantage Better comparison if same tools used across case studies Time & Effort not measured accurately No comparison with other existing tools

27 Future Scope How to increase code coverage in meta compilation and CMC? Analysis of class of properties checked

28 References 1)Experiences using static analysis & model checking for bug finding Dawson Engler and Madanlal Masuvathi 2)A simple method for extracting models from protocol code David Lie, Andy Chou, Dawson Engler, David L. Dill 3)Stanford FLASH Multiprocessor: Status, Some Lessons and Plans John Hennessy

29 Q & A

Checking System Rules Using System-Specific, Programmer- Written Compiler Extensions

Checking System Rules Using System-Specific, Programmer- Written Compiler Extensions Motivation for using Checking System Rules Using System-Specific, Programmer- Written Compiler Extensions Dawson Engler Benjamin Chelf Andy Chou Seth Hallem 1 Computer Systems Laboratory Stanford University

More information

Motivation. What s the Problem? What Will we be Talking About? What s the Solution? What s the Problem?

Motivation. What s the Problem? What Will we be Talking About? What s the Solution? What s the Problem? 1 Checking System Rules Using System-Specific, Programmer-Written Compiler Extensions Dawson Engler Benjamin Chelf Andy Chou Seth Hallem Stanford University Matthew Thornton November 9, 2005 2 Motivation

More information

Model Checking Large Network Protocol Implementations

Model Checking Large Network Protocol Implementations Model Checking Large Network Protocol Implementations Madanlal Musuvathi, Dawson R. Engler {madan, engler}@cs.stanford.edu Computer Systems Laboratory Stanford University Stanford, CA 94305, U.S.A Abstract

More information

MC: Meta-level Compilation

MC: Meta-level Compilation MC: Meta-level Compilation Extending the Process of Code Compilation with Application-Specific Information for the layman developer (code monkey) Gaurav S. Kc 8 th October, 2003 1 Outline Dawson Engler

More information

CMC: A Pragmatic Approach to Model Checking Real Code

CMC: A Pragmatic Approach to Model Checking Real Code CMC: A Pragmatic Approach to Model Checking Real Code Madanlal Musuvathi, David Y.W. Park, Andy Chou, Dawson R. Engler, David L. Dill {madan, parkit, acc, engler, dill@cs.stanford.edu Computer Systems

More information

Lessons Learned in Static Analysis Tool Evaluation. Providing World-Class Services for World-Class Competitiveness

Lessons Learned in Static Analysis Tool Evaluation. Providing World-Class Services for World-Class Competitiveness Lessons Learned in Static Analysis Tool Evaluation 1 Overview Lessons learned in the evaluation of five (5) commercially available static analysis tools Topics Licensing Performance Measurement Limitations

More information

FixD : Fault Detection, Bug Reporting, and Recoverability for Distributed Applications

FixD : Fault Detection, Bug Reporting, and Recoverability for Distributed Applications FixD : Fault Detection, Bug Reporting, and Recoverability for Distributed Applications Cristian Ţăpuş, David A. Noblet California Institute of Technology {crt,dnoblet}@cs.caltech.edu Abstract Model checking,

More information

Lecture 12: Software Verification Using Explicit State Model Checking, Java Path Finder, CMC

Lecture 12: Software Verification Using Explicit State Model Checking, Java Path Finder, CMC CS 267: Automated Verification Lecture 12: Software Verification Using Explicit State Model Checking, Java Path Finder, CMC Instructor: Tevfik Bultan Software s Chronic Crisis Large software systems often:

More information

Computer Organization: A Programmer's Perspective

Computer Organization: A Programmer's Perspective Profiling Oren Kapah orenkapah.ac@gmail.com Profiling: Performance Analysis Performance Analysis ( Profiling ) Understanding the run-time behavior of programs What parts are executed, when, for how long

More information

7/20/2008. What Operating Systems Do Computer-System Organization

7/20/2008. What Operating Systems Do Computer-System Organization Introduction to Operating Systems Introduction What Operating Systems Do Computer-System Organization Computer-System Architecture Operating-System Structure Operating-System Operations Process Management

More information

Whatever can go wrong will go wrong. attributed to Edward A. Murphy. Murphy was an optimist. authors of lock-free programs LOCK FREE KERNEL

Whatever can go wrong will go wrong. attributed to Edward A. Murphy. Murphy was an optimist. authors of lock-free programs LOCK FREE KERNEL Whatever can go wrong will go wrong. attributed to Edward A. Murphy Murphy was an optimist. authors of lock-free programs LOCK FREE KERNEL 251 Literature Maurice Herlihy and Nir Shavit. The Art of Multiprocessor

More information

Announcement. Exercise #2 will be out today. Due date is next Monday

Announcement. Exercise #2 will be out today. Due date is next Monday Announcement Exercise #2 will be out today Due date is next Monday Major OS Developments 2 Evolution of Operating Systems Generations include: Serial Processing Simple Batch Systems Multiprogrammed Batch

More information

INITIALISING POINTER VARIABLES; DYNAMIC VARIABLES; OPERATIONS ON POINTERS

INITIALISING POINTER VARIABLES; DYNAMIC VARIABLES; OPERATIONS ON POINTERS INITIALISING POINTER VARIABLES; DYNAMIC VARIABLES; OPERATIONS ON POINTERS Pages 792 to 800 Anna Rakitianskaia, University of Pretoria INITIALISING POINTER VARIABLES Pointer variables are declared by putting

More information

Eraser: Dynamic Data Race Detection

Eraser: Dynamic Data Race Detection Eraser: Dynamic Data Race Detection 15-712 Topics overview Concurrency and race detection Framework: dynamic, static Sound vs. unsound Tools, generally: Binary rewriting (ATOM, Etch,...) and analysis (BAP,

More information

Chapter 1: Introduction

Chapter 1: Introduction Chapter 1: Introduction Chapter 1: Introduction What Operating Systems Do Computer-System Organization Computer-System Architecture Operating-System Structure Operating-System Operations Process Management

More information

Chapter 1: Introduction. Operating System Concepts 8 th Edition,

Chapter 1: Introduction. Operating System Concepts 8 th Edition, Chapter 1: Introduction Operating System Concepts 8 th Edition, Silberschatz, Galvin and Gagne 2009 Operating-System Operations Interrupt driven by hardware Software error or system request creates exception

More information

CS 322 Operating Systems Practice Midterm Questions

CS 322 Operating Systems Practice Midterm Questions ! CS 322 Operating Systems 1. Processes go through the following states in their lifetime. time slice ends Consider the following events and answer the questions that follow. Assume there are 5 processes,

More information

Chapter 1: Introduction

Chapter 1: Introduction Chapter 1: Introduction Chapter 1: Introduction What Operating Systems Do Computer-System Organization Computer-System Architecture Operating-System Structure Operating-System Operations Process Management

More information

Performance of Non-Moving Garbage Collectors. Hans-J. Boehm HP Labs

Performance of Non-Moving Garbage Collectors. Hans-J. Boehm HP Labs Performance of Non-Moving Garbage Collectors Hans-J. Boehm HP Labs Why Use (Tracing) Garbage Collection to Reclaim Program Memory? Increasingly common Java, C#, Scheme, Python, ML,... gcc, w3m, emacs,

More information

To provide a grand tour of the major operating systems components To provide coverage of basic computer system organization

To provide a grand tour of the major operating systems components To provide coverage of basic computer system organization Introduction What Operating Systems Do Computer-System Organization Computer-System Architecture Operating-System Structure Operating-System Operations Process Management Memory Management Storage Management

More information

Software Exorcism: A Handbook for Debugging and Optimizing Legacy Code

Software Exorcism: A Handbook for Debugging and Optimizing Legacy Code Software Exorcism: A Handbook for Debugging and Optimizing Legacy Code BILL BLUNDEN Apress About the Author Acknowledgments Introduction xi xiii xv Chapter 1 Preventative Medicine 1 1.1 Core Problems 2

More information

State Pruning for Test Vector Generation for a Multiprocessor Cache Coherence Protocol

State Pruning for Test Vector Generation for a Multiprocessor Cache Coherence Protocol State Pruning for Test Vector Generation for a Multiprocessor Cache Coherence Protocol Ying Chen Dennis Abts* David J. Lilja wildfire@ece.umn.edu dabts@cray.com lilja@ece.umn.edu Electrical and Computer

More information

Research Collection. Formal background and algorithms. Other Conference Item. ETH Library. Author(s): Biere, Armin. Publication Date: 2001

Research Collection. Formal background and algorithms. Other Conference Item. ETH Library. Author(s): Biere, Armin. Publication Date: 2001 Research Collection Other Conference Item Formal background and algorithms Author(s): Biere, Armin Publication Date: 2001 Permanent Link: https://doi.org/10.3929/ethz-a-004239730 Rights / License: In Copyright

More information

ELEC 377 Operating Systems. Week 1 Class 2

ELEC 377 Operating Systems. Week 1 Class 2 Operating Systems Week 1 Class 2 Labs vs. Assignments The only work to turn in are the labs. In some of the handouts I refer to the labs as assignments. There are no assignments separate from the labs.

More information

Operating System. Chapter 3. Process. Lynn Choi School of Electrical Engineering

Operating System. Chapter 3. Process. Lynn Choi School of Electrical Engineering Operating System Chapter 3. Process Lynn Choi School of Electrical Engineering Process Def: A process is an instance of a program in execution. One of the most profound ideas in computer science. Not the

More information

Background: I/O Concurrency

Background: I/O Concurrency Background: I/O Concurrency Brad Karp UCL Computer Science CS GZ03 / M030 5 th October 2011 Outline Worse Is Better and Distributed Systems Problem: Naïve single-process server leaves system resources

More information

Chapter 3: Important Concepts (3/29/2015)

Chapter 3: Important Concepts (3/29/2015) CISC 3595 Operating System Spring, 2015 Chapter 3: Important Concepts (3/29/2015) 1 Memory from programmer s perspective: you already know these: Code (functions) and data are loaded into memory when the

More information

Chapter 5 - Input / Output

Chapter 5 - Input / Output Chapter 5 - Input / Output Luis Tarrataca luis.tarrataca@gmail.com CEFET-RJ L. Tarrataca Chapter 5 - Input / Output 1 / 90 1 Motivation 2 Principle of I/O Hardware I/O Devices Device Controllers Memory-Mapped

More information

Performance Optimization for an ARM Cortex-A53 System Using Software Workloads and Cycle Accurate Models. Jason Andrews

Performance Optimization for an ARM Cortex-A53 System Using Software Workloads and Cycle Accurate Models. Jason Andrews Performance Optimization for an ARM Cortex-A53 System Using Software Workloads and Cycle Accurate Models Jason Andrews Agenda System Performance Analysis IP Configuration System Creation Methodology: Create,

More information

Multiprocessors & Thread Level Parallelism

Multiprocessors & Thread Level Parallelism Multiprocessors & Thread Level Parallelism COE 403 Computer Architecture Prof. Muhamed Mudawar Computer Engineering Department King Fahd University of Petroleum and Minerals Presentation Outline Introduction

More information

RCU in the Linux Kernel: One Decade Later

RCU in the Linux Kernel: One Decade Later RCU in the Linux Kernel: One Decade Later by: Paul E. Mckenney, Silas Boyd-Wickizer, Jonathan Walpole Slides by David Kennedy (and sources) RCU Usage in Linux During this same time period, the usage of

More information

Testing. ECE/CS 5780/6780: Embedded System Design. Why is testing so hard? Why do testing?

Testing. ECE/CS 5780/6780: Embedded System Design. Why is testing so hard? Why do testing? Testing ECE/CS 5780/6780: Embedded System Design Scott R. Little Lecture 24: Introduction to Software Testing and Verification What is software testing? Running a program in order to find bugs (faults,

More information

Chapter 1: Introduction. Chapter 1: Introduction

Chapter 1: Introduction. Chapter 1: Introduction Chapter 1: Introduction Chapter 1: Introduction What Operating Systems Do Computer-System Organization Computer-System Architecture Operating-System Structure Operating-System Operations Process Management

More information

Effective Data-Race Detection for the Kernel

Effective Data-Race Detection for the Kernel Effective Data-Race Detection for the Kernel John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, Kirk Olynyk Microsoft Research Presented by Thaddeus Czauski 06 Aug 2011 CS 5204 2 How do we prevent

More information

Chapter 1: Introduction

Chapter 1: Introduction Chapter 1: Introduction Silberschatz, Galvin and Gagne 2009 Chapter 1: Introduction What Operating Systems Do Computer-System Organization Computer-System Architecture Operating-System Structure Operating-System

More information

THREADS: (abstract CPUs)

THREADS: (abstract CPUs) CS 61 Scribe Notes (November 29, 2012) Mu, Nagler, Strominger TODAY: Threads, Synchronization - Pset 5! AT LONG LAST! Adversarial network pong handling dropped packets, server delays, overloads with connection

More information

Multiprocessor Systems. Chapter 8, 8.1

Multiprocessor Systems. Chapter 8, 8.1 Multiprocessor Systems Chapter 8, 8.1 1 Learning Outcomes An understanding of the structure and limits of multiprocessor hardware. An appreciation of approaches to operating system support for multiprocessor

More information

Multiprocessor Systems Continuous need for faster computers Multiprocessors: shared memory model, access time nanosec (ns) Multicomputers: message pas

Multiprocessor Systems Continuous need for faster computers Multiprocessors: shared memory model, access time nanosec (ns) Multicomputers: message pas Multiple processor systems 1 Multiprocessor Systems Continuous need for faster computers Multiprocessors: shared memory model, access time nanosec (ns) Multicomputers: message passing multiprocessor, access

More information

Lecture 1 Introduction (Chapter 1 of Textbook)

Lecture 1 Introduction (Chapter 1 of Textbook) Bilkent University Department of Computer Engineering CS342 Operating Systems Lecture 1 Introduction (Chapter 1 of Textbook) Dr. İbrahim Körpeoğlu http://www.cs.bilkent.edu.tr/~korpe 1 References The slides

More information

IT 540 Operating Systems ECE519 Advanced Operating Systems

IT 540 Operating Systems ECE519 Advanced Operating Systems IT 540 Operating Systems ECE519 Advanced Operating Systems Prof. Dr. Hasan Hüseyin BALIK (3 rd Week) (Advanced) Operating Systems 3. Process Description and Control 3. Outline What Is a Process? Process

More information

Last Class: Deadlocks. Where we are in the course

Last Class: Deadlocks. Where we are in the course Last Class: Deadlocks Necessary conditions for deadlock: Mutual exclusion Hold and wait No preemption Circular wait Ways of handling deadlock Deadlock detection and recovery Deadlock prevention Deadlock

More information

Operating Systems, Fall Lecture 9, Tiina Niklander 1

Operating Systems, Fall Lecture 9, Tiina Niklander 1 Multiprocessor Systems Multiple processor systems Ch 8.1 8.3 1 Continuous need for faster computers Multiprocessors: shared memory model, access time nanosec (ns) Multicomputers: message passing multiprocessor,

More information

CSC 4320 Test 1 Spring 2017

CSC 4320 Test 1 Spring 2017 CSC 4320 Test 1 Spring 2017 Name 1. What are the three main purposes of an operating system? 2. Which of the following instructions should be privileged? a. Set value of timer. b. Read the clock. c. Clear

More information

Static Analysis Basics II

Static Analysis Basics II Systems and Internet Infrastructure Security Network and Security Research Center Department of Computer Science and Engineering Pennsylvania State University, University Park PA Static Analysis Basics

More information

QUESTION BANK UNIT I

QUESTION BANK UNIT I QUESTION BANK Subject Name: Operating Systems UNIT I 1) Differentiate between tightly coupled systems and loosely coupled systems. 2) Define OS 3) What are the differences between Batch OS and Multiprogramming?

More information

Operating Systems Design Exam 2 Review: Fall 2010

Operating Systems Design Exam 2 Review: Fall 2010 Operating Systems Design Exam 2 Review: Fall 2010 Paul Krzyzanowski pxk@cs.rutgers.edu 1 1. Why could adding more memory to a computer make it run faster? If processes don t have their working sets in

More information

Examples of Code Roaches. First Draft List Cem Kaner September 11, 2005

Examples of Code Roaches. First Draft List Cem Kaner September 11, 2005 Examples of Code Roaches First Draft List Cem Kaner September 11, 2005 Why a Potential-Bug List? Given a potential error, you can develop a method to test for it Foundation for Code inspections Glass box

More information

Input and Output = Communication. What is computation? Hardware Thread (CPU core) Transforming state

Input and Output = Communication. What is computation? Hardware Thread (CPU core) Transforming state What is computation? Input and Output = Communication Input State Output i s F(s,i) (s,o) o s There are many different types of IO (Input/Output) What constitutes IO is context dependent Obvious forms

More information

Shared Symmetric Memory Systems

Shared Symmetric Memory Systems Shared Symmetric Memory Systems Computer Architecture J. Daniel García Sánchez (coordinator) David Expósito Singh Francisco Javier García Blas ARCOS Group Computer Science and Engineering Department University

More information

Verifying Concurrent Programs

Verifying Concurrent Programs Verifying Concurrent Programs Daniel Kroening 8 May 1 June 01 Outline Shared-Variable Concurrency Predicate Abstraction for Concurrent Programs Boolean Programs with Bounded Replication Boolean Programs

More information

CS2141 Software Development using C/C++ Debugging

CS2141 Software Development using C/C++ Debugging CS2141 Software Development using C/C++ Debugging Debugging Tips Examine the most recent change Error likely in, or exposed by, code most recently added Developing code incrementally and testing along

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Fall 2016 Lecture 2 Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 2 System I/O System I/O (Chap 13) Central

More information

Building Caches using Multi-Threaded State Machines

Building Caches using Multi-Threaded State Machines Building Caches using Multi-Threaded State Machines Wanda Chiu and John H. Hartman Department of Computer Science The University of Arizona Tucson, AZ 85721 Abstract Designing a client-side cache for a

More information

Chapter 1 Computer System Overview

Chapter 1 Computer System Overview Operating Systems: Internals and Design Principles Chapter 1 Computer System Overview Seventh Edition By William Stallings Objectives of Chapter To provide a grand tour of the major computer system components:

More information

CPU Architecture. HPCE / dt10 / 2013 / 10.1

CPU Architecture. HPCE / dt10 / 2013 / 10.1 Architecture HPCE / dt10 / 2013 / 10.1 What is computation? Input i o State s F(s,i) (s,o) s Output HPCE / dt10 / 2013 / 10.2 Input and Output = Communication There are many different types of IO (Input/Output)

More information

Virtual Memory COMPSCI 386

Virtual Memory COMPSCI 386 Virtual Memory COMPSCI 386 Motivation An instruction to be executed must be in physical memory, but there may not be enough space for all ready processes. Typically the entire program is not needed. Exception

More information

Computer-System Architecture (cont.) Symmetrically Constructed Clusters (cont.) Advantages: 1. Greater computational power by running applications

Computer-System Architecture (cont.) Symmetrically Constructed Clusters (cont.) Advantages: 1. Greater computational power by running applications Computer-System Architecture (cont.) Symmetrically Constructed Clusters (cont.) Advantages: 1. Greater computational power by running applications concurrently on all computers in the cluster. Disadvantages:

More information

Multiple Processor Systems. Lecture 15 Multiple Processor Systems. Multiprocessor Hardware (1) Multiprocessors. Multiprocessor Hardware (2)

Multiple Processor Systems. Lecture 15 Multiple Processor Systems. Multiprocessor Hardware (1) Multiprocessors. Multiprocessor Hardware (2) Lecture 15 Multiple Processor Systems Multiple Processor Systems Multiprocessors Multicomputers Continuous need for faster computers shared memory model message passing multiprocessor wide area distributed

More information

Lecture 24: Multiprocessing Computer Architecture and Systems Programming ( )

Lecture 24: Multiprocessing Computer Architecture and Systems Programming ( ) Systems Group Department of Computer Science ETH Zürich Lecture 24: Multiprocessing Computer Architecture and Systems Programming (252-0061-00) Timothy Roscoe Herbstsemester 2012 Most of the rest of this

More information

CS 326: Operating Systems. CPU Scheduling. Lecture 6

CS 326: Operating Systems. CPU Scheduling. Lecture 6 CS 326: Operating Systems CPU Scheduling Lecture 6 Today s Schedule Agenda? Context Switches and Interrupts Basic Scheduling Algorithms Scheduling with I/O Symmetric multiprocessing 2/7/18 CS 326: Operating

More information

Operating System Services

Operating System Services CSE325 Principles of Operating Systems Operating System Services David Duggan dduggan@sandia.gov January 22, 2013 Reading Assignment 3 Chapter 3, due 01/29 1/23/13 CSE325 - OS Services 2 What Categories

More information

CSE 410: Systems Programming

CSE 410: Systems Programming CSE 410: Systems Programming Concurrency Ethan Blanton Department of Computer Science and Engineering University at Buffalo Logical Control Flows The text defines a logical control flow as: [A] series

More information

Operating System - Virtual Memory

Operating System - Virtual Memory Operating System - Virtual Memory Virtual memory is a technique that allows the execution of processes which are not completely available in memory. The main visible advantage of this scheme is that programs

More information

Module 1. Introduction:

Module 1. Introduction: Module 1 Introduction: Operating system is the most fundamental of all the system programs. It is a layer of software on top of the hardware which constitutes the system and manages all parts of the system.

More information

Today s Topics. u Thread implementation. l Non-preemptive versus preemptive threads. l Kernel vs. user threads

Today s Topics. u Thread implementation. l Non-preemptive versus preemptive threads. l Kernel vs. user threads Today s Topics COS 318: Operating Systems Implementing Threads u Thread implementation l Non-preemptive versus preemptive threads l Kernel vs. user threads Jaswinder Pal Singh and a Fabulous Course Staff

More information

Operating System: an Overview. Lucia Dwi Krisnawati, MA

Operating System: an Overview. Lucia Dwi Krisnawati, MA Operating System: an Overview Lucia Dwi Krisnawati, MA What is an Operating System? A program that acts as an intermediary between a user of a computer and the computer hardware. Operating system goals:

More information

Java PathFinder JPF 2 Second Generation of Java Model Checker

Java PathFinder JPF 2 Second Generation of Java Model Checker Java PathFinder JPF 2 Second Generation of Java Model Checker Guenther Brand Mat. Nr. 9430535 27. 06. 2003 Abstract This essay is based on the papers Java PathFinder, Second Generation of Java Model Checker

More information

Real-Time Programming

Real-Time Programming Real-Time Programming Week 7: Real-Time Operating Systems Instructors Tony Montiel & Ken Arnold rtp@hte.com 4/1/2003 Co Montiel 1 Objectives o Introduction to RTOS o Event Driven Systems o Synchronization

More information

Whatever can go wrong will go wrong. attributed to Edward A. Murphy. Murphy was an optimist. authors of lock-free programs 3.

Whatever can go wrong will go wrong. attributed to Edward A. Murphy. Murphy was an optimist. authors of lock-free programs 3. Whatever can go wrong will go wrong. attributed to Edward A. Murphy Murphy was an optimist. authors of lock-free programs 3. LOCK FREE KERNEL 309 Literature Maurice Herlihy and Nir Shavit. The Art of Multiprocessor

More information

Multiprocessor Systems. COMP s1

Multiprocessor Systems. COMP s1 Multiprocessor Systems 1 Multiprocessor System We will look at shared-memory multiprocessors More than one processor sharing the same memory A single CPU can only go so fast Use more than one CPU to improve

More information

The control of I/O devices is a major concern for OS designers

The control of I/O devices is a major concern for OS designers Lecture Overview I/O devices I/O hardware Interrupts Direct memory access Device dimensions Device drivers Kernel I/O subsystem Operating Systems - June 26, 2001 I/O Device Issues The control of I/O devices

More information

The Journey of an I/O request through the Block Layer

The Journey of an I/O request through the Block Layer The Journey of an I/O request through the Block Layer Suresh Jayaraman Linux Kernel Engineer SUSE Labs sjayaraman@suse.com Introduction Motivation Scope Common cases More emphasis on the Block layer Why

More information

Dynamic Storage Allocation

Dynamic Storage Allocation 6.172 Performance Engineering of Software Systems LECTURE 10 Dynamic Storage Allocation Charles E. Leiserson October 12, 2010 2010 Charles E. Leiserson 1 Stack Allocation Array and pointer A un Allocate

More information

Stephen McLaughlin. From Uncertainty to Belief: Inferring the Specification Within

Stephen McLaughlin. From Uncertainty to Belief: Inferring the Specification Within From Uncertainty to Belief: Inferring the Specification Within Overview Area: Program analysis and error checking / program specification Problem: Tools lack adequate specification. Good specifications

More information

Formal Verification of Embedded Software in Medical Devices Considering Stringent Hardware Constraints

Formal Verification of Embedded Software in Medical Devices Considering Stringent Hardware Constraints Formal Verification of Embedded Software in Medical Devices Considering Stringent Hardware Constraints L. Cordeiro, B. Fischer, H. Chen, J. P. Marques-Silva Lucas Cordeiro lcc08r@ecs.soton.ac.uk Agenda

More information

2$ Cache. 2nd-Level DRAM. Network MAGIC I/O MAGIC

2$ Cache. 2nd-Level DRAM. Network MAGIC I/O MAGIC Using Meta-level Compilation to Check FLASH Protocol Code Andy Chou, Benjamin Chelf, Dawson Engler Computer Systems Laboratory Stanford University Stanford, CA 94305, U.S.A. Mark Heinrich Computer Systems

More information

Native POSIX Thread Library (NPTL) CSE 506 Don Porter

Native POSIX Thread Library (NPTL) CSE 506 Don Porter Native POSIX Thread Library (NPTL) CSE 506 Don Porter Logical Diagram Binary Memory Threads Formats Allocators Today s Lecture Scheduling System Calls threads RCU File System Networking Sync User Kernel

More information

Gaps in Static Analysis Tool Capabilities. Providing World-Class Services for World-Class Competitiveness

Gaps in Static Analysis Tool Capabilities. Providing World-Class Services for World-Class Competitiveness Gaps in Static Analysis Tool Capabilities 1 Overview Gaps in Static Analysis tools as identified during the evaluation of five (5) commercially available static analysis tools Collaborative effort between

More information

Chapter 2 Computer-System Structure

Chapter 2 Computer-System Structure Contents 1. Introduction 2. Computer-System Structures 3. Operating-System Structures 4. Processes 5. Threads 6. CPU Scheduling 7. Process Synchronization 8. Deadlocks 9. Memory Management 10. Virtual

More information

Distributed Systems Programming (F21DS1) Formal Verification

Distributed Systems Programming (F21DS1) Formal Verification Distributed Systems Programming (F21DS1) Formal Verification Andrew Ireland Department of Computer Science School of Mathematical and Computer Sciences Heriot-Watt University Edinburgh Overview Focus on

More information

Hazard Pointers. Number of threads unbounded time to check hazard pointers also unbounded! difficult dynamic bookkeeping! thread B - hp1 - hp2

Hazard Pointers. Number of threads unbounded time to check hazard pointers also unbounded! difficult dynamic bookkeeping! thread B - hp1 - hp2 Hazard Pointers Store pointers of memory references about to be accessed by a thread Memory allocation checks all hazard pointers to avoid the ABA problem thread A - hp1 - hp2 thread B - hp1 - hp2 thread

More information

Verification & Validation of Open Source

Verification & Validation of Open Source Verification & Validation of Open Source 2011 WORKSHOP ON SPACECRAFT FLIGHT SOFTWARE Gordon Uchenick Coverity, Inc Open Source is Ubiquitous Most commercial and proprietary software systems have some open

More information

Learning from Executions

Learning from Executions Learning from Executions Dynamic analysis for program understanding and software engineering Michael D. Ernst and Jeff H. Perkins November 7, 2005 Tutorial at ASE 2005 Outline What is dynamic analysis?

More information

Misc. Third Generation Batch Multiprogramming. Fourth Generation Time Sharing. Last Time Evolution of OSs

Misc. Third Generation Batch Multiprogramming. Fourth Generation Time Sharing. Last Time Evolution of OSs Third Generation Batch Multiprogramming Misc. Problem: but I/O still expensive; can happen in middle of job Idea: have a pool of ready jobs in memory, switch to one when another needs I/O When one job

More information

Four Components of a Computer System

Four Components of a Computer System Four Components of a Computer System Operating System Concepts Essentials 2nd Edition 1.1 Silberschatz, Galvin and Gagne 2013 Operating System Definition OS is a resource allocator Manages all resources

More information

Performance measurement. SMD149 - Operating Systems - Performance and processor design. Introduction. Important trends affecting performance issues

Performance measurement. SMD149 - Operating Systems - Performance and processor design. Introduction. Important trends affecting performance issues Performance measurement SMD149 - Operating Systems - Performance and processor design Roland Parviainen November 28, 2005 Performance measurement Motivation Techniques Common metrics Processor architectural

More information

Interrupts Peter Rounce

Interrupts Peter Rounce Interrupts Peter Rounce P.Rounce@cs.ucl.ac.uk 22/11/2011 11-GC03 Interrupts 1 INTERRUPTS An interrupt is a signal to the CPU from hardware external to the CPU that indicates than some event has occured,

More information

Introduction CHAPTER. Review Questions

Introduction CHAPTER. Review Questions 1 CHAPTER Introduction Review Questions Section 1.1 1.1 What are the four components of a computer system? 1.2 Provide at least three resources the operating system allocates. 1.3 What is the common name

More information

CPSC 341 OS & Networks. Introduction. Dr. Yingwu Zhu

CPSC 341 OS & Networks. Introduction. Dr. Yingwu Zhu CPSC 341 OS & Networks Introduction Dr. Yingwu Zhu What to learn? Concepts Processes, threads, multi-processing, multithreading, synchronization, deadlocks, CPU scheduling, networks, security Practice:

More information

CS 31: Intro to Systems Operating Systems Overview. Kevin Webb Swarthmore College March 31, 2015

CS 31: Intro to Systems Operating Systems Overview. Kevin Webb Swarthmore College March 31, 2015 CS 31: Intro to Systems Operating Systems Overview Kevin Webb Swarthmore College March 31, 2015 Reading Quiz OS: Turn undesirable into desirable Turn undesirable inconveniences: reality Complexity of hardware

More information

CSC 453 Operating Systems

CSC 453 Operating Systems CSC 453 Operating Systems Lecture 3: Operating-System Structures Operating System Components Operating systems are large and complex - the only way to manage such a project is to divide it into smaller

More information

Introduction to OS. Introduction MOS Mahmoud El-Gayyar. Mahmoud El-Gayyar / Introduction to OS 1

Introduction to OS. Introduction MOS Mahmoud El-Gayyar. Mahmoud El-Gayyar / Introduction to OS 1 Introduction to OS Introduction MOS 1.1 1.3 Mahmoud El-Gayyar elgayyar@ci.suez.edu.eg Mahmoud El-Gayyar / Introduction to OS 1 Why an Operating Systems course? Understanding of inner workings of systems

More information

Rapid Natural Scene Text Segmentation

Rapid Natural Scene Text Segmentation Rapid Natural Scene Text Segmentation Ben Newhouse, Stanford University December 10, 2009 1 Abstract A new algorithm was developed to segment text from an image by classifying images according to the gradient

More information

Agenda. Threads. Single and Multi-threaded Processes. What is Thread. CSCI 444/544 Operating Systems Fall 2008

Agenda. Threads. Single and Multi-threaded Processes. What is Thread. CSCI 444/544 Operating Systems Fall 2008 Agenda Threads CSCI 444/544 Operating Systems Fall 2008 Thread concept Thread vs process Thread implementation - user-level - kernel-level - hybrid Inter-process (inter-thread) communication What is Thread

More information

Static Analysis methods and tools An industrial study. Pär Emanuelsson Ericsson AB and LiU Prof Ulf Nilsson LiU

Static Analysis methods and tools An industrial study. Pär Emanuelsson Ericsson AB and LiU Prof Ulf Nilsson LiU Static Analysis methods and tools An industrial study Pär Emanuelsson Ericsson AB and LiU Prof Ulf Nilsson LiU Outline Why static analysis What is it Underlying technology Some tools (Coverity, KlocWork,

More information

Dynamic Selection of Application-Specific Garbage Collectors

Dynamic Selection of Application-Specific Garbage Collectors Dynamic Selection of Application-Specific Garbage Collectors Sunil V. Soman Chandra Krintz University of California, Santa Barbara David F. Bacon IBM T.J. Watson Research Center Background VMs/managed

More information

OPERATING SYSTEMS UNIT - 1

OPERATING SYSTEMS UNIT - 1 OPERATING SYSTEMS UNIT - 1 Syllabus UNIT I FUNDAMENTALS Introduction: Mainframe systems Desktop Systems Multiprocessor Systems Distributed Systems Clustered Systems Real Time Systems Handheld Systems -

More information

Stanford University Computer Science Department CS 240 Sample Quiz 2 Questions Winter February 25, 2005

Stanford University Computer Science Department CS 240 Sample Quiz 2 Questions Winter February 25, 2005 Stanford University Computer Science Department CS 240 Sample Quiz 2 Questions Winter 2005 February 25, 2005 These were from open-book exams. In general you had 50 minutes to answer 8-10 out of 10-12 questions.

More information

Handout 3 Multiprocessor and thread level parallelism

Handout 3 Multiprocessor and thread level parallelism Handout 3 Multiprocessor and thread level parallelism Outline Review MP Motivation SISD v SIMD (SIMT) v MIMD Centralized vs Distributed Memory MESI and Directory Cache Coherency Synchronization and Relaxed

More information

Shared Memory Multiprocessors. Symmetric Shared Memory Architecture (SMP) Cache Coherence. Cache Coherence Mechanism. Interconnection Network

Shared Memory Multiprocessors. Symmetric Shared Memory Architecture (SMP) Cache Coherence. Cache Coherence Mechanism. Interconnection Network Shared Memory Multis Processor Processor Processor i Processor n Symmetric Shared Memory Architecture (SMP) cache cache cache cache Interconnection Network Main Memory I/O System Cache Coherence Cache

More information