Floating-Point Arithmetic

Size: px
Start display at page:

Download "Floating-Point Arithmetic"

Transcription

1 Floating-Point Arithmetic 1 Numerical Analysis a definition sources of error 2 Floating-Point Numbers floating-point representation of a real number machine precision 3 Floating-Point Arithmetic adding two floating-point numbers loss of significance 4 Arbitrary Precision and Interval Arithmetic extending floating-point arithmetic MCS 471 Lecture 1(b) Numerical Analysis Jan Verschelde, 18 June 2018 Numerical Analysis (MCS 471) Floating-Point Arithmetic L-1(b) 18 June / 25

2 Floating-Point Arithmetic 1 Numerical Analysis a definition sources of error 2 Floating-Point Numbers floating-point representation of a real number machine precision 3 Floating-Point Arithmetic adding two floating-point numbers loss of significance 4 Arbitrary Precision and Interval Arithmetic extending floating-point arithmetic Numerical Analysis (MCS 471) Floating-Point Arithmetic L-1(b) 18 June / 25

3 Numerical Analysis a definition Definition (Nick Trefethen, SIAM News 1992) Numerical analysis is the study of algorithms for the problems of continuous mathematics. We care for the efficiency and accuracy of algorithms. In continuous models to solve problems, we obtain approximate answers for approximate input data. Two related disciplines: Computer Algebra to formulate and re-formulate problems. Scientific Computing, for applications to science. Numerical Analysis (MCS 471) Floating-Point Arithmetic L-1(b) 18 June / 25

4 Floating-Point Arithmetic 1 Numerical Analysis a definition sources of error 2 Floating-Point Numbers floating-point representation of a real number machine precision 3 Floating-Point Arithmetic adding two floating-point numbers loss of significance 4 Arbitrary Precision and Interval Arithmetic extending floating-point arithmetic Numerical Analysis (MCS 471) Floating-Point Arithmetic L-1(b) 18 June / 25

5 sources of error Some sources of error are truncation errors in mathematical models; observed input data are approximate numbers; 1 representation errors, e.g.: 10 in binary; roundoff error during calculations. In numerical analysis, we ask two important questions: 1 How sensitive is the output to changes in the input? 2 Do roundoff errors in an algorithm propagate? Answers to these two questions, are addressed respectively by 1 numerical conditioning is a property of a problem; 2 numerical stability is a property of an algorithm. Numerical Analysis (MCS 471) Floating-Point Arithmetic L-1(b) 18 June / 25

6 absolute and relative error Definition (absolute error) Let x be an approximation for x. The absolute error x is the absolute value of the difference of x with x: Definition (relative error) x = x x. Let x be an approximation for x. The relative error δx is the absolute error divided by the absolute value of x: δx = x x. Numerical Analysis (MCS 471) Floating-Point Arithmetic L-1(b) 18 June / 25

7 Floating-Point Arithmetic 1 Numerical Analysis a definition sources of error 2 Floating-Point Numbers floating-point representation of a real number machine precision 3 Floating-Point Arithmetic adding two floating-point numbers loss of significance 4 Arbitrary Precision and Interval Arithmetic extending floating-point arithmetic Numerical Analysis (MCS 471) Floating-Point Arithmetic L-1(b) 18 June / 25

8 floating-point numbers A floating-point number consists of 1 one sign bit, 2 a normalized fraction: the leading bit is nonzero, and 3 an exponent. Definition The floating-point representation f l(x) of a real number x R is f l(x) = ±.bb... b 2 e, stored compactly as the tuple (±, e, bb... b). The representation error is f l(x) x. Numerical Analysis (MCS 471) Floating-Point Arithmetic L-1(b) 18 June / 25

9 floating-point formats Hardware supports single precision (32-bit), double precision (64-bit), and long double precision (80-bit), summarized below: number of bits precision sign exponent fraction total single double long double A 64-bit floating-point number has 1 sign bit s, 0 for positive, 1 for negative, 11 bits e 1, e 2,..., e 11 in the exponent, and 52 bits f 1, f 2,..., f 52 in the fraction, f 1 0. s e 1 e 2 e 11 f 1 f 2 f 52 Numerical Analysis (MCS 471) Floating-Point Arithmetic L-1(b) 18 June / 25

10 a number line Consider a floating-point number system with basis 2 1 with two bits in the (normalized) fraction, and 2 with exponents 1, 0, +1, +2. We display all positive floating-point numbers in this system: = 0.01 = 1/ = = 3/ = 0.1 = 1/ = 0.11 = 3/ = = 1.1 = 3/ = 10 = = 11 = error f l(x) x 1/8 error f l(x) x 1/2 Numerical Analysis (MCS 471) Floating-Point Arithmetic L-1(b) 18 June / 25

11 Floating-Point Arithmetic 1 Numerical Analysis a definition sources of error 2 Floating-Point Numbers floating-point representation of a real number machine precision 3 Floating-Point Arithmetic adding two floating-point numbers loss of significance 4 Arbitrary Precision and Interval Arithmetic extending floating-point arithmetic Numerical Analysis (MCS 471) Floating-Point Arithmetic L-1(b) 18 June / 25

12 machine precision Definition The number machine precision ɛ mach is the distance between 1 and the smallest floating-point number greater than one. For basis B and size p of the fraction: ɛ mach = B p. For 0 < ɛ < ɛ mach : (1 + ɛ) 1 ɛ + (1 1). The machine precision as supported by hardware single floats (32-bit), double floats (64-bit), and long double floats (80-bit) is below: number of bits machine precision sign exponent fraction total precision single e-07 double e-16 long double e-20 Numerical Analysis (MCS 471) Floating-Point Arithmetic L-1(b) 18 June / 25

13 the smallest and largest exponent An exponent e [e min, e max ] where e min is the smallest exponent and e max is the largest exponent. number of bits exponent range precision sign exponent fraction total e min e max single double long double Special values for the exponent for double precision: , nonzero fraction : -NaN, not a number; , zero fraction : -Inf, represents ; : numbers that are not normalized; , zero fraction : +Inf, represents +. Numerical Analysis (MCS 471) Floating-Point Arithmetic L-1(b) 18 June / 25

14 exponent encoding The exponents are encoded with an offset, minus 1023 for double: julia> a = 2.0^(-1022) e-308 julia> bits(a) " " We see that the smallest exponent is julia> b = 2.0^ e307 julia> bits(b) " " We see that the largest exponent is Numerical Analysis (MCS 471) Floating-Point Arithmetic L-1(b) 18 June / 25

15 the smallest and largest double julia> a = nextfloat(0.0) 5.0e-324 julia> bits(a) " " The smallest number is not normalized: = julia> b = prevfloat(inf) e308 julia> bits(b) " " The largest number has exponent and fraction 1 + ( ). julia> bits(2.0^1023*(1 + (1-2.0^(-52)))) " " Numerical Analysis (MCS 471) Floating-Point Arithmetic L-1(b) 18 June / 25

16 Floating-Point Arithmetic 1 Numerical Analysis a definition sources of error 2 Floating-Point Numbers floating-point representation of a real number machine precision 3 Floating-Point Arithmetic adding two floating-point numbers loss of significance 4 Arbitrary Precision and Interval Arithmetic extending floating-point arithmetic Numerical Analysis (MCS 471) Floating-Point Arithmetic L-1(b) 18 June / 25

17 adding two floating-point numbers Consider two numbers in a system with 4 as the size of fraction: x = and y = Four steps to add two floating-point numbers: 1 Align the numbers so they both have the same exponent. y = = = Perform the addition Round the result: x + y = Normalize the result: x + y = Exercise 1: check the accuracy of the sum. Numerical Analysis (MCS 471) Floating-Point Arithmetic L-1(b) 18 June / 25

18 Floating-Point Arithmetic 1 Numerical Analysis a definition sources of error 2 Floating-Point Numbers floating-point representation of a real number machine precision 3 Floating-Point Arithmetic adding two floating-point numbers loss of significance 4 Arbitrary Precision and Interval Arithmetic extending floating-point arithmetic Numerical Analysis (MCS 471) Floating-Point Arithmetic L-1(b) 18 June / 25

19 loss of significance Consider two numbers in a system with 4 as the size of fraction: x = and y = Compute x y: After normalization: x y = Problem: x and y have 4 bits of significance, the result x y has only one significant bit of accuracy. Numerical Analysis (MCS 471) Floating-Point Arithmetic L-1(b) 18 June / 25

20 restructuring a calculation Consider in a three decimal digit number system. In this system, 3 is represented by represented by The subtraction will thus yield zero. We can avoid the subtraction: = ( )( ) = The difference in the numerator is not zero: minus yields Dividing by = results in Numerical Analysis (MCS 471) Floating-Point Arithmetic L-1(b) 18 June / 25

21 Floating-Point Arithmetic 1 Numerical Analysis a definition sources of error 2 Floating-Point Numbers floating-point representation of a real number machine precision 3 Floating-Point Arithmetic adding two floating-point numbers loss of significance 4 Arbitrary Precision and Interval Arithmetic extending floating-point arithmetic Numerical Analysis (MCS 471) Floating-Point Arithmetic L-1(b) 18 June / 25

22 extending floating-point arithmetic Two ways to extend floating-point arithmetic: 1 arbitrary precision floating-point arithmetic The GNU Multiprecision Arithmetic Library and the GNU MPFR library provide arbitrary-precision integers and floating-point numbers, wrapped in Julia by the types BigInt and BigFloat. See the methods precision() and setprecision() to query the precision (in bits) and to set the precision (also in bits). 2 interval arithmetic Instead of one number, we can calculate with an interval [a, b], where a is the lower and b the upper bound for the approximation. Numerical Analysis (MCS 471) Floating-Point Arithmetic L-1(b) 18 June / 25

23 setting the precision of BigFloat Consider the following session: julia> setprecision(bigfloat, 5); julia> x = sqrt(bigfloat(9.01)) 3.00 Exercise 2: What is the smallest value for the precision for a BigFloat to see the difference between 3 and sqrt(bigfloat(9.01)? Exercise 3: Is there a value for the precision for a BigFloat for which 3 is the same as sqrt(bigfloat(9.01) but for which (9.01-9)/(sqrt(BigFloat(9.01)) + 3 yields a better result? Numerical Analysis (MCS 471) Floating-Point Arithmetic L-1(b) 18 June / 25

24 expression evaluation The example is taken from the paper of Stefano Taschini: Interval Arithmetic: Python Implementation and Applications Proceedings of the 7th Python in Science Conference (SciPy 2008). F(x, y) = (333//1 + 3//4 - x^2)*y^6 + x^2*(11//1*x^2*y^2-121//1*y^4-2//1) + (11//2)*y^8 + x/(2//1*y) (A, B) = (BigInt(77617)//1, BigInt(33096)//1) exact = F(A, B) Exercise 4: Compare the exact result with the evaluation with 64-bit floating-point arithmetic. What is the difference? Exercise 5: Find the smallest value for the precision for a BigFloat so the expression is evaluated correctly. Numerical Analysis (MCS 471) Floating-Point Arithmetic L-1(b) 18 June / 25

25 use interval arithmetic Exercise 6: Use the package IntervalArithmetic to evaluate the expression. Interpret the result of the evaluation. Demonstrate how interval arithmetic can be applied to find the correct value for the precision? Numerical Analysis (MCS 471) Floating-Point Arithmetic L-1(b) 18 June / 25

Roundoff Errors and Computer Arithmetic

Roundoff Errors and Computer Arithmetic Jim Lambers Math 105A Summer Session I 2003-04 Lecture 2 Notes These notes correspond to Section 1.2 in the text. Roundoff Errors and Computer Arithmetic In computing the solution to any mathematical problem,

More information

Interval Arithmetic. MCS 507 Lecture 29 Mathematical, Statistical and Scientific Software Jan Verschelde, 28 October 2011

Interval Arithmetic. MCS 507 Lecture 29 Mathematical, Statistical and Scientific Software Jan Verschelde, 28 October 2011 Naive Arithmetic 1 2 Naive 3 MCS 507 Lecture 29 Mathematical, Statistical and Scientific Software Jan Verschelde, 28 October 2011 Naive Arithmetic 1 2 Naive 3 an expression Naive Problem: Evaluate f(x,

More information

Computational Methods. Sources of Errors

Computational Methods. Sources of Errors Computational Methods Sources of Errors Manfred Huber 2011 1 Numerical Analysis / Scientific Computing Many problems in Science and Engineering can not be solved analytically on a computer Numeric solutions

More information

Floating-point Arithmetic. where you sum up the integer to the left of the decimal point and the fraction to the right.

Floating-point Arithmetic. where you sum up the integer to the left of the decimal point and the fraction to the right. Floating-point Arithmetic Reading: pp. 312-328 Floating-Point Representation Non-scientific floating point numbers: A non-integer can be represented as: 2 4 2 3 2 2 2 1 2 0.2-1 2-2 2-3 2-4 where you sum

More information

fractional quantities are typically represented in computers using floating point format this approach is very much similar to scientific notation

fractional quantities are typically represented in computers using floating point format this approach is very much similar to scientific notation Floating Point Arithmetic fractional quantities are typically represented in computers using floating point format this approach is very much similar to scientific notation for example, fixed point number

More information

Chapter 3. Errors and numerical stability

Chapter 3. Errors and numerical stability Chapter 3 Errors and numerical stability 1 Representation of numbers Binary system : micro-transistor in state off 0 on 1 Smallest amount of stored data bit Object in memory chain of 1 and 0 10011000110101001111010010100010

More information

Review Questions 26 CHAPTER 1. SCIENTIFIC COMPUTING

Review Questions 26 CHAPTER 1. SCIENTIFIC COMPUTING 26 CHAPTER 1. SCIENTIFIC COMPUTING amples. The IEEE floating-point standard can be found in [131]. A useful tutorial on floating-point arithmetic and the IEEE standard is [97]. Although it is no substitute

More information

operator overloading algorithmic differentiation the class DifferentialNumber operator overloading

operator overloading algorithmic differentiation the class DifferentialNumber operator overloading operator overloading 1 Computing with Differential Numbers algorithmic differentiation the class DifferentialNumber operator overloading 2 Computing with Double Doubles the class DoubleDouble defining

More information

Mathematical preliminaries and error analysis

Mathematical preliminaries and error analysis Mathematical preliminaries and error analysis Tsung-Ming Huang Department of Mathematics National Taiwan Normal University, Taiwan August 28, 2011 Outline 1 Round-off errors and computer arithmetic IEEE

More information

Floating Point Numbers

Floating Point Numbers Floating Point Numbers Summer 8 Fractional numbers Fractional numbers fixed point Floating point numbers the IEEE 7 floating point standard Floating point operations Rounding modes CMPE Summer 8 Slides

More information

CS101 Lecture 04: Binary Arithmetic

CS101 Lecture 04: Binary Arithmetic CS101 Lecture 04: Binary Arithmetic Binary Number Addition Two s complement encoding Briefly: real number representation Aaron Stevens (azs@bu.edu) 25 January 2013 What You ll Learn Today Counting in binary

More information

1.2 Round-off Errors and Computer Arithmetic

1.2 Round-off Errors and Computer Arithmetic 1.2 Round-off Errors and Computer Arithmetic 1 In a computer model, a memory storage unit word is used to store a number. A word has only a finite number of bits. These facts imply: 1. Only a small set

More information

Errors in Computation

Errors in Computation Theory of Errors Content Errors in computation Absolute Error Relative Error Roundoff Errors Truncation Errors Floating Point Numbers Normalized Floating Point Numbers Roundoff Error in Floating Point

More information

Finite arithmetic and error analysis

Finite arithmetic and error analysis Finite arithmetic and error analysis Escuela de Ingeniería Informática de Oviedo (Dpto de Matemáticas-UniOvi) Numerical Computation Finite arithmetic and error analysis 1 / 45 Outline 1 Number representation:

More information

ECE232: Hardware Organization and Design

ECE232: Hardware Organization and Design ECE232: Hardware Organization and Design Lecture 11: Floating Point & Floating Point Addition Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Last time: Single Precision Format

More information

Floating-Point Numbers in Digital Computers

Floating-Point Numbers in Digital Computers POLYTECHNIC UNIVERSITY Department of Computer and Information Science Floating-Point Numbers in Digital Computers K. Ming Leung Abstract: We explain how floating-point numbers are represented and stored

More information

Floating-Point Numbers in Digital Computers

Floating-Point Numbers in Digital Computers POLYTECHNIC UNIVERSITY Department of Computer and Information Science Floating-Point Numbers in Digital Computers K. Ming Leung Abstract: We explain how floating-point numbers are represented and stored

More information

Floating-point representation

Floating-point representation Lecture 3-4: Floating-point representation and arithmetic Floating-point representation The notion of real numbers in mathematics is convenient for hand computations and formula manipulations. However,

More information

COMP2611: Computer Organization. Data Representation

COMP2611: Computer Organization. Data Representation COMP2611: Computer Organization Comp2611 Fall 2015 2 1. Binary numbers and 2 s Complement Numbers 3 Bits: are the basis for binary number representation in digital computers What you will learn here: How

More information

Floating Point Arithmetic

Floating Point Arithmetic Floating Point Arithmetic Computer Systems, Section 2.4 Abstraction Anything that is not an integer can be thought of as . e.g. 391.1356 Or can be thought of as + /

More information

Floating-point numbers. Phys 420/580 Lecture 6

Floating-point numbers. Phys 420/580 Lecture 6 Floating-point numbers Phys 420/580 Lecture 6 Random walk CA Activate a single cell at site i = 0 For all subsequent times steps, let the active site wander to i := i ± 1 with equal probability Random

More information

Section 1.4 Mathematics on the Computer: Floating Point Arithmetic

Section 1.4 Mathematics on the Computer: Floating Point Arithmetic Section 1.4 Mathematics on the Computer: Floating Point Arithmetic Key terms Floating point arithmetic IEE Standard Mantissa Exponent Roundoff error Pitfalls of floating point arithmetic Structuring computations

More information

Review of Calculus, cont d

Review of Calculus, cont d Jim Lambers MAT 460/560 Fall Semester 2009-10 Lecture 4 Notes These notes correspond to Sections 1.1 1.2 in the text. Review of Calculus, cont d Taylor s Theorem, cont d We conclude our discussion of Taylor

More information

Chapter 2 Float Point Arithmetic. Real Numbers in Decimal Notation. Real Numbers in Decimal Notation

Chapter 2 Float Point Arithmetic. Real Numbers in Decimal Notation. Real Numbers in Decimal Notation Chapter 2 Float Point Arithmetic Topics IEEE Floating Point Standard Fractional Binary Numbers Rounding Floating Point Operations Mathematical properties Real Numbers in Decimal Notation Representation

More information

CS321. Introduction to Numerical Methods

CS321. Introduction to Numerical Methods CS31 Introduction to Numerical Methods Lecture 1 Number Representations and Errors Professor Jun Zhang Department of Computer Science University of Kentucky Lexington, KY 40506 0633 August 5, 017 Number

More information

15213 Recitation 2: Floating Point

15213 Recitation 2: Floating Point 15213 Recitation 2: Floating Point 1 Introduction This handout will introduce and test your knowledge of the floating point representation of real numbers, as defined by the IEEE standard. This information

More information

Math 340 Fall 2014, Victor Matveev. Binary system, round-off errors, loss of significance, and double precision accuracy.

Math 340 Fall 2014, Victor Matveev. Binary system, round-off errors, loss of significance, and double precision accuracy. Math 340 Fall 2014, Victor Matveev Binary system, round-off errors, loss of significance, and double precision accuracy. 1. Bits and the binary number system A bit is one digit in a binary representation

More information

2 Computation with Floating-Point Numbers

2 Computation with Floating-Point Numbers 2 Computation with Floating-Point Numbers 2.1 Floating-Point Representation The notion of real numbers in mathematics is convenient for hand computations and formula manipulations. However, real numbers

More information

Floating Point Puzzles. Lecture 3B Floating Point. IEEE Floating Point. Fractional Binary Numbers. Topics. IEEE Standard 754

Floating Point Puzzles. Lecture 3B Floating Point. IEEE Floating Point. Fractional Binary Numbers. Topics. IEEE Standard 754 Floating Point Puzzles Topics Lecture 3B Floating Point IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties For each of the following C expressions, either: Argue that

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 1 Scientific Computing Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction

More information

Chapter 03: Computer Arithmetic. Lesson 09: Arithmetic using floating point numbers

Chapter 03: Computer Arithmetic. Lesson 09: Arithmetic using floating point numbers Chapter 03: Computer Arithmetic Lesson 09: Arithmetic using floating point numbers Objective To understand arithmetic operations in case of floating point numbers 2 Multiplication of Floating Point Numbers

More information

Numeric Encodings Prof. James L. Frankel Harvard University

Numeric Encodings Prof. James L. Frankel Harvard University Numeric Encodings Prof. James L. Frankel Harvard University Version of 10:19 PM 12-Sep-2017 Copyright 2017, 2016 James L. Frankel. All rights reserved. Representation of Positive & Negative Integral and

More information

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for 1 Logistics Notes for 2016-09-07 1. We are still at 50. If you are still waiting and are not interested in knowing if a slot frees up, let me know. 2. There is a correction to HW 1, problem 4; the condition

More information

Scientific Computing. Error Analysis

Scientific Computing. Error Analysis ECE257 Numerical Methods and Scientific Computing Error Analysis Today s s class: Introduction to error analysis Approximations Round-Off Errors Introduction Error is the difference between the exact solution

More information

Computer Arithmetic. 1. Floating-point representation of numbers (scientific notation) has four components, for example, 3.

Computer Arithmetic. 1. Floating-point representation of numbers (scientific notation) has four components, for example, 3. ECS231 Handout Computer Arithmetic I: Floating-point numbers and representations 1. Floating-point representation of numbers (scientific notation) has four components, for example, 3.1416 10 1 sign significandbase

More information

Operations On Data CHAPTER 4. (Solutions to Odd-Numbered Problems) Review Questions

Operations On Data CHAPTER 4. (Solutions to Odd-Numbered Problems) Review Questions CHAPTER 4 Operations On Data (Solutions to Odd-Numbered Problems) Review Questions 1. Arithmetic operations interpret bit patterns as numbers. Logical operations interpret each bit as a logical values

More information

CSCI 402: Computer Architectures. Arithmetic for Computers (3) Fengguang Song Department of Computer & Information Science IUPUI.

CSCI 402: Computer Architectures. Arithmetic for Computers (3) Fengguang Song Department of Computer & Information Science IUPUI. CSCI 402: Computer Architectures Arithmetic for Computers (3) Fengguang Song Department of Computer & Information Science IUPUI 3.5 Today s Contents Floating point numbers: 2.5, 10.1, 100.2, etc.. How

More information

1.3 Floating Point Form

1.3 Floating Point Form Section 1.3 Floating Point Form 29 1.3 Floating Point Form Floating point numbers are used by computers to approximate real numbers. On the surface, the question is a simple one. There are an infinite

More information

EE878 Special Topics in VLSI. Computer Arithmetic for Digital Signal Processing

EE878 Special Topics in VLSI. Computer Arithmetic for Digital Signal Processing EE878 Special Topics in VLSI Computer Arithmetic for Digital Signal Processing Part 4-B Floating-Point Arithmetic - II Spring 2017 Koren Part.4b.1 The IEEE Floating-Point Standard Four formats for floating-point

More information

Computing Basics. 1 Sources of Error LECTURE NOTES ECO 613/614 FALL 2007 KAREN A. KOPECKY

Computing Basics. 1 Sources of Error LECTURE NOTES ECO 613/614 FALL 2007 KAREN A. KOPECKY LECTURE NOTES ECO 613/614 FALL 2007 KAREN A. KOPECKY Computing Basics 1 Sources of Error Numerical solutions to problems differ from their analytical counterparts. Why? The reason for the difference is

More information

Floating point. Today! IEEE Floating Point Standard! Rounding! Floating Point Operations! Mathematical properties. Next time. !

Floating point. Today! IEEE Floating Point Standard! Rounding! Floating Point Operations! Mathematical properties. Next time. ! Floating point Today! IEEE Floating Point Standard! Rounding! Floating Point Operations! Mathematical properties Next time! The machine model Chris Riesbeck, Fall 2011 Checkpoint IEEE Floating point Floating

More information

Foundations of Computer Systems

Foundations of Computer Systems 18-600 Foundations of Computer Systems Lecture 4: Floating Point Required Reading Assignment: Chapter 2 of CS:APP (3 rd edition) by Randy Bryant & Dave O Hallaron Assignments for This Week: Lab 1 18-600

More information

Process model formulation and solution, 3E4 Computer software tutorial - Tutorial 3

Process model formulation and solution, 3E4 Computer software tutorial - Tutorial 3 Process model formulation and solution, 3E4 Computer software tutorial - Tutorial 3 Kevin Dunn, dunnkg@mcmaster.ca October 2 Tutorial solutions: Elliot Cameron. Tutorial objectives Understand computer

More information

Computational Economics and Finance

Computational Economics and Finance Computational Economics and Finance Part I: Elementary Concepts of Numerical Analysis Spring 2015 Outline Computer arithmetic Error analysis: Sources of error Error propagation Controlling the error Rates

More information

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Digital Computer Arithmetic ECE 666

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Digital Computer Arithmetic ECE 666 UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering Digital Computer Arithmetic ECE 666 Part 4-B Floating-Point Arithmetic - II Israel Koren ECE666/Koren Part.4b.1 The IEEE Floating-Point

More information

MATH 353 Engineering mathematics III

MATH 353 Engineering mathematics III MATH 353 Engineering mathematics III Instructor: Francisco-Javier Pancho Sayas Spring 2014 University of Delaware Instructor: Francisco-Javier Pancho Sayas MATH 353 1 / 20 MEET YOUR COMPUTER Instructor:

More information

2 Computation with Floating-Point Numbers

2 Computation with Floating-Point Numbers 2 Computation with Floating-Point Numbers 2.1 Floating-Point Representation The notion of real numbers in mathematics is convenient for hand computations and formula manipulations. However, real numbers

More information

ME 261: Numerical Analysis. ME 261: Numerical Analysis

ME 261: Numerical Analysis. ME 261: Numerical Analysis ME 261: Numerical Analysis 3. credit hours Prereq.: ME 163/ME 171 Course content Approximations and error types Roots of polynomials and transcendental equations Determinants and matrices Solution of linear

More information

Floating Point January 24, 2008

Floating Point January 24, 2008 15-213 The course that gives CMU its Zip! Floating Point January 24, 2008 Topics IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties class04.ppt 15-213, S 08 Floating

More information

Introduction to floating point arithmetic

Introduction to floating point arithmetic Introduction to floating point arithmetic Matthias Petschow and Paolo Bientinesi AICES, RWTH Aachen petschow@aices.rwth-aachen.de October 24th, 2013 Aachen, Germany Matthias Petschow (AICES, RWTH Aachen)

More information

Lecture Objectives. Structured Programming & an Introduction to Error. Review the basic good habits of programming

Lecture Objectives. Structured Programming & an Introduction to Error. Review the basic good habits of programming Structured Programming & an Introduction to Error Lecture Objectives Review the basic good habits of programming To understand basic concepts of error and error estimation as it applies to Numerical Methods

More information

AM205: lecture 2. 1 These have been shifted to MD 323 for the rest of the semester.

AM205: lecture 2. 1 These have been shifted to MD 323 for the rest of the semester. AM205: lecture 2 Luna and Gary will hold a Python tutorial on Wednesday in 60 Oxford Street, Room 330 Assignment 1 will be posted this week Chris will hold office hours on Thursday (1:30pm 3:30pm, Pierce

More information

Floating Point Numbers

Floating Point Numbers Floating Point Numbers Computer Systems Organization (Spring 2016) CSCI-UA 201, Section 2 Instructor: Joanna Klukowska Slides adapted from Randal E. Bryant and David R. O Hallaron (CMU) Mohamed Zahran

More information

Floating Point Numbers

Floating Point Numbers Floating Point Numbers Computer Systems Organization (Spring 2016) CSCI-UA 201, Section 2 Fractions in Binary Instructor: Joanna Klukowska Slides adapted from Randal E. Bryant and David R. O Hallaron (CMU)

More information

Hani Mehrpouyan, California State University, Bakersfield. Signals and Systems

Hani Mehrpouyan, California State University, Bakersfield. Signals and Systems Hani Mehrpouyan, Department of Electrical and Computer Engineering, California State University, Bakersfield Lecture 3 (Error and Computer Arithmetic) April 8 th, 2013 The material in these lectures is

More information

Data Representation Floating Point

Data Representation Floating Point Data Representation Floating Point CSCI 2400 / ECE 3217: Computer Architecture Instructor: David Ferry Slides adapted from Bryant & O Hallaron s slides via Jason Fritts Today: Floating Point Background:

More information

Reals 1. Floating-point numbers and their properties. Pitfalls of numeric computation. Horner's method. Bisection. Newton's method.

Reals 1. Floating-point numbers and their properties. Pitfalls of numeric computation. Horner's method. Bisection. Newton's method. Reals 1 13 Reals Floating-point numbers and their properties. Pitfalls of numeric computation. Horner's method. Bisection. Newton's method. 13.1 Floating-point numbers Real numbers, those declared to be

More information

Lecture 03 Approximations, Errors and Their Analysis

Lecture 03 Approximations, Errors and Their Analysis AM702 Applied Computational Methods c ecture 03 Approximations, rrors and heir Analysis Approximations and rrors c Approximation is unavoidable in mathematical modeling the real world phenomena Approximation

More information

Floating Point Puzzles. Lecture 3B Floating Point. IEEE Floating Point. Fractional Binary Numbers. Topics. IEEE Standard 754

Floating Point Puzzles. Lecture 3B Floating Point. IEEE Floating Point. Fractional Binary Numbers. Topics. IEEE Standard 754 Floating Point Puzzles Topics Lecture 3B Floating Point IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties For each of the following C expressions, either: Argue that

More information

COSC 243. Data Representation 3. Lecture 3 - Data Representation 3 1. COSC 243 (Computer Architecture)

COSC 243. Data Representation 3. Lecture 3 - Data Representation 3 1. COSC 243 (Computer Architecture) COSC 243 Data Representation 3 Lecture 3 - Data Representation 3 1 Data Representation Test Material Lectures 1, 2, and 3 Tutorials 1b, 2a, and 2b During Tutorial a Next Week 12 th and 13 th March If you

More information

Floating-Point Arithmetic

Floating-Point Arithmetic Floating-Point Arithmetic Raymond J. Spiteri Lecture Notes for CMPT 898: Numerical Software University of Saskatchewan January 9, 2013 Objectives Floating-point numbers Floating-point arithmetic Analysis

More information

Floating Point Representation in Computers

Floating Point Representation in Computers Floating Point Representation in Computers Floating Point Numbers - What are they? Floating Point Representation Floating Point Operations Where Things can go wrong What are Floating Point Numbers? Any

More information

Table : IEEE Single Format ± a a 2 a 3 :::a 8 b b 2 b 3 :::b 23 If exponent bitstring a :::a 8 is Then numerical value represented is ( ) 2 = (

Table : IEEE Single Format ± a a 2 a 3 :::a 8 b b 2 b 3 :::b 23 If exponent bitstring a :::a 8 is Then numerical value represented is ( ) 2 = ( Floating Point Numbers in Java by Michael L. Overton Virtually all modern computers follow the IEEE 2 floating point standard in their representation of floating point numbers. The Java programming language

More information

CS 6210 Fall 2016 Bei Wang. Lecture 4 Floating Point Systems Continued

CS 6210 Fall 2016 Bei Wang. Lecture 4 Floating Point Systems Continued CS 6210 Fall 2016 Bei Wang Lecture 4 Floating Point Systems Continued Take home message 1. Floating point rounding 2. Rounding unit 3. 64 bit word: double precision (IEEE standard word) 4. Exact rounding

More information

Data Representation Floating Point

Data Representation Floating Point Data Representation Floating Point CSCI 2400 / ECE 3217: Computer Architecture Instructor: David Ferry Slides adapted from Bryant & O Hallaron s slides via Jason Fritts Today: Floating Point Background:

More information

The course that gives CMU its Zip! Floating Point Arithmetic Feb 17, 2000

The course that gives CMU its Zip! Floating Point Arithmetic Feb 17, 2000 15-213 The course that gives CMU its Zip! Floating Point Arithmetic Feb 17, 2000 Topics IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties IA32 floating point Floating

More information

In this lesson you will learn: how to add and multiply positive binary integers how to work with signed binary numbers using two s complement how fixed and floating point numbers are used to represent

More information

System Programming CISC 360. Floating Point September 16, 2008

System Programming CISC 360. Floating Point September 16, 2008 System Programming CISC 360 Floating Point September 16, 2008 Topics IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties Powerpoint Lecture Notes for Computer Systems:

More information

Binary floating point encodings

Binary floating point encodings Week 1: Wednesday, Jan 25 Binary floating point encodings Binary floating point arithmetic is essentially scientific notation. Where in decimal scientific notation we write in floating point, we write

More information

Today: Floating Point. Floating Point. Fractional Binary Numbers. Fractional binary numbers. bi bi 1 b2 b1 b0 b 1 b 2 b 3 b j

Today: Floating Point. Floating Point. Fractional Binary Numbers. Fractional binary numbers. bi bi 1 b2 b1 b0 b 1 b 2 b 3 b j Floating Point 15 213: Introduction to Computer Systems 4 th Lecture, Jan 24, 2013 Instructors: Seth Copen Goldstein, Anthony Rowe, Greg Kesden 2 Fractional binary numbers What is 1011.101 2? Fractional

More information

CS429: Computer Organization and Architecture

CS429: Computer Organization and Architecture CS429: Computer Organization and Architecture Dr. Bill Young Department of Computer Sciences University of Texas at Austin Last updated: September 18, 2017 at 12:48 CS429 Slideset 4: 1 Topics of this Slideset

More information

Number Systems and Binary Arithmetic. Quantitative Analysis II Professor Bob Orr

Number Systems and Binary Arithmetic. Quantitative Analysis II Professor Bob Orr Number Systems and Binary Arithmetic Quantitative Analysis II Professor Bob Orr Introduction to Numbering Systems We are all familiar with the decimal number system (Base 10). Some other number systems

More information

IEEE Standard for Floating-Point Arithmetic: 754

IEEE Standard for Floating-Point Arithmetic: 754 IEEE Standard for Floating-Point Arithmetic: 754 G.E. Antoniou G.E. Antoniou () IEEE Standard for Floating-Point Arithmetic: 754 1 / 34 Floating Point Standard: IEEE 754 1985/2008 Established in 1985 (2008)

More information

CO212 Lecture 10: Arithmetic & Logical Unit

CO212 Lecture 10: Arithmetic & Logical Unit CO212 Lecture 10: Arithmetic & Logical Unit Shobhanjana Kalita, Dept. of CSE, Tezpur University Slides courtesy: Computer Architecture and Organization, 9 th Ed, W. Stallings Integer Representation For

More information

Systems I. Floating Point. Topics IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties

Systems I. Floating Point. Topics IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties Systems I Floating Point Topics IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties IEEE Floating Point IEEE Standard 754 Established in 1985 as uniform standard for

More information

Floating Point Puzzles The course that gives CMU its Zip! Floating Point Jan 22, IEEE Floating Point. Fractional Binary Numbers.

Floating Point Puzzles The course that gives CMU its Zip! Floating Point Jan 22, IEEE Floating Point. Fractional Binary Numbers. class04.ppt 15-213 The course that gives CMU its Zip! Topics Floating Point Jan 22, 2004 IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties Floating Point Puzzles For

More information

Number Systems Standard positional representation of numbers: An unsigned number with whole and fraction portions is represented as:

Number Systems Standard positional representation of numbers: An unsigned number with whole and fraction portions is represented as: N Number Systems Standard positional representation of numbers: An unsigned number with whole and fraction portions is represented as: a n a a a The value of this number is given by: = a n Ka a a a a a

More information

Numerical Methods 5633

Numerical Methods 5633 Numerical Methods 5633 Lecture 2 Marina Krstic Marinkovic mmarina@maths.tcd.ie School of Mathematics Trinity College Dublin Marina Krstic Marinkovic 1 / 15 5633-Numerical Methods Organisational Assignment

More information

Floating Point (with contributions from Dr. Bin Ren, William & Mary Computer Science)

Floating Point (with contributions from Dr. Bin Ren, William & Mary Computer Science) Floating Point (with contributions from Dr. Bin Ren, William & Mary Computer Science) Floating Point Background: Fractional binary numbers IEEE floating point standard: Definition Example and properties

More information

(Refer Slide Time: 02:59)

(Refer Slide Time: 02:59) Numerical Methods and Programming P. B. Sunil Kumar Department of Physics Indian Institute of Technology, Madras Lecture - 7 Error propagation and stability Last class we discussed about the representation

More information

Computational Economics and Finance

Computational Economics and Finance Computational Economics and Finance Part I: Elementary Concepts of Numerical Analysis Spring 2016 Outline Computer arithmetic Error analysis: Sources of error Error propagation Controlling the error Rates

More information

Giving credit where credit is due

Giving credit where credit is due CSCE 230J Computer Organization Floating Point Dr. Steve Goddard goddard@cse.unl.edu http://cse.unl.edu/~goddard/courses/csce230j Giving credit where credit is due Most of slides for this lecture are based

More information

Integers and Floating Point

Integers and Floating Point CMPE12 More about Numbers Integers and Floating Point (Rest of Textbook Chapter 2 plus more)" Review: Unsigned Integer A string of 0s and 1s that represent a positive integer." String is X n-1, X n-2,

More information

Numerical Computing: An Introduction

Numerical Computing: An Introduction Numerical Computing: An Introduction Gyula Horváth Horvath@inf.u-szeged.hu Tom Verhoeff T.Verhoeff@TUE.NL University of Szeged Hungary Eindhoven University of Technology The Netherlands Numerical Computing

More information

Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition. Carnegie Mellon

Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition. Carnegie Mellon Carnegie Mellon Floating Point 15-213/18-213/14-513/15-513: Introduction to Computer Systems 4 th Lecture, Sept. 6, 2018 Today: Floating Point Background: Fractional binary numbers IEEE floating point

More information

Giving credit where credit is due

Giving credit where credit is due JDEP 284H Foundations of Computer Systems Floating Point Dr. Steve Goddard goddard@cse.unl.edu Giving credit where credit is due Most of slides for this lecture are based on slides created by Drs. Bryant

More information

2.1.1 Fixed-Point (or Integer) Arithmetic

2.1.1 Fixed-Point (or Integer) Arithmetic x = approximation to true value x error = x x, relative error = x x. x 2.1.1 Fixed-Point (or Integer) Arithmetic A base 2 (base 10) fixed-point number has a fixed number of binary (decimal) places. 1.

More information

Physics 331 Introduction to Numerical Techniques in Physics

Physics 331 Introduction to Numerical Techniques in Physics Physics 331 Introduction to Numerical Techniques in Physics Instructor: Joaquín Drut Lecture 2 Any logistics questions? Today: Number representation Sources of error Note: typo in HW! Two parts c. Call

More information

Algebra 1 Review. Properties of Real Numbers. Algebraic Expressions

Algebra 1 Review. Properties of Real Numbers. Algebraic Expressions Algebra 1 Review Properties of Real Numbers Algebraic Expressions Real Numbers Natural Numbers: 1, 2, 3, 4,.. Numbers used for counting Whole Numbers: 0, 1, 2, 3, 4,.. Natural Numbers and 0 Integers:,

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 1 Scientific Computing Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction

More information

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng.

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng. CS 265 Computer Architecture Wei Lu, Ph.D., P.Eng. CS 265 Midterm #1 Monday, Oct 18, 12:00pm-1:45pm, SCI 163 Questions on essential terms and concepts of Computer Architecture Mathematical questions on

More information

XQ: An XML Query Language Language Reference Manual

XQ: An XML Query Language Language Reference Manual XQ: An XML Query Language Language Reference Manual Kin Ng kn2006@columbia.edu 1. Introduction XQ is a query language for XML documents. This language enables programmers to express queries in a few simple

More information

Floating-Point Data Representation and Manipulation 198:231 Introduction to Computer Organization Lecture 3

Floating-Point Data Representation and Manipulation 198:231 Introduction to Computer Organization Lecture 3 Floating-Point Data Representation and Manipulation 198:231 Introduction to Computer Organization Instructor: Nicole Hynes nicole.hynes@rutgers.edu 1 Fixed Point Numbers Fixed point number: integer part

More information

MAT128A: Numerical Analysis Lecture Two: Finite Precision Arithmetic

MAT128A: Numerical Analysis Lecture Two: Finite Precision Arithmetic MAT128A: Numerical Analysis Lecture Two: Finite Precision Arithmetic September 28, 2018 Lecture 1 September 28, 2018 1 / 25 Floating point arithmetic Computers use finite strings of binary digits to represent

More information

Floating Point : Introduction to Computer Systems 4 th Lecture, May 25, Instructor: Brian Railing. Carnegie Mellon

Floating Point : Introduction to Computer Systems 4 th Lecture, May 25, Instructor: Brian Railing. Carnegie Mellon Floating Point 15-213: Introduction to Computer Systems 4 th Lecture, May 25, 2018 Instructor: Brian Railing Today: Floating Point Background: Fractional binary numbers IEEE floating point standard: Definition

More information

unused unused unused unused unused unused

unused unused unused unused unused unused BCD numbers. In some applications, such as in the financial industry, the errors that can creep in due to converting numbers back and forth between decimal and binary is unacceptable. For these applications

More information

Chapter 3: Arithmetic for Computers

Chapter 3: Arithmetic for Computers Chapter 3: Arithmetic for Computers Objectives Signed and Unsigned Numbers Addition and Subtraction Multiplication and Division Floating Point Computer Architecture CS 35101-002 2 The Binary Numbering

More information

Floating-point representations

Floating-point representations Lecture 10 Floating-point representations Methods of representing real numbers (1) 1. Fixed-point number system limited range and/or limited precision results must be scaled 100101010 1111010 100101010.1111010

More information

Floating-point representations

Floating-point representations Lecture 10 Floating-point representations Methods of representing real numbers (1) 1. Fixed-point number system limited range and/or limited precision results must be scaled 100101010 1111010 100101010.1111010

More information

Floating point. Today. IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties Next time.

Floating point. Today. IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties Next time. Floating point Today IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties Next time The machine model Fabián E. Bustamante, Spring 2010 IEEE Floating point Floating point

More information