Data Structures And Algorithms

Size: px
Start display at page:

Download "Data Structures And Algorithms"

Transcription

1 Data Structures And Algorithms Binary Trees Eng. Anis Nazer First Semester

2 Definitions Linked lists, arrays, queues, stacks are linear structures not suitable to represent hierarchical data, for example folders in an operating system So... Trees

3 Example Departments in a university Philadelphia Engineering Science Business administration Computer Electrical Mechanical Mathematics Chemistry Accounting Marketing

4 Definitions like an upside down actual tree A tree has nodes and arcs root node is at the top leaves at the bottom root node has no parent, leaf nodes have no childern

5 Single node Examples

6 Examples

7 Definitions Every node must be reachable from the root node the sequence of arcs to reaching a node is called a path the path to a node is unique the number of arcs in a path is called the length of the path the level of a node is the number of arcs between the root and the node plus one a node can have any number of children including 0 (leaves)

8 Trees Why use trees? represent hierarchical data store data in a tree to speedup search and sort operations think of other applications where tree structures are useful

9 Binary Trees Binary tree: each node can have zero, one, or two children left child, right child Examples:

10 Example Root: A Leaves: level of D: nodes at level 4: B C non-terminal nodes: D E F G

11 Example Root: A A Leaves: E,F, G level of D: 3 nodes at level 4: F, G B C non-terminal nodes: A, B, C, D D E F G

12 Complete Binary tree Complete binary tree: all nodes have two children except leaf nodes number of nodes at level i: 2 i 1 number of non-terminal nodes: m number of leaves: k relation: k = m + 1

13 Binary search tree Binary search tree is a binary tree where for a node n: all values of nodes in the left subtree are less than the value of node n all values of nodes in the right subtree are greater than the value of node n node values are unique, no repetition

14 Example Binary Search tree:

15 Binary search tree Binary search tree simplifies the search: Algorithm: visit node: if value = key stop if key < value, visit left node if key > value, visit right node can be implemented using a recursive function or a non recursive function Complexity?

16 Example Search for < 13, visit left 9 < 10, visit left 9 > 7, visit right = 9, key found

17 Inserting a Node Insert a node in a BST search for the correct location add a new node Example: 15, 4, 20, 17, 19, 25

18 Inserting a Node Example: 15, 4, 20, 17, 19, 25 15

19 Inserting a Node Example: 15, 4, 20, 17, 19,

20 Inserting a Node Example: 15, 4, 20, 17, 19,

21 Inserting a Node Example: 15, 4, 20, 17, 19,

22 Inserting a Node Example: 15, 4, 20, 17, 19,

23 Inserting a Node Example: 15, 4, 20, 17, 19,

24 Class BSTNode Implementation BSTNode + data : int + left : BSTNode * + right : BSTNode * + BSTNode() + BSTNode(int d, BSTNode * L = NULL, BSTNode * R = NULL)

25 Class BSTNode Implementation class BSTNode { public: int data; BSTNode *left, *right; BSTNode() { left = right = NULL; }; BSTNode(int d, BSTNode *L = NULL, BSTNode *R = NULL) { data = d; left = L; right = R; } };

26 Class BST Implementation BST root : BSTNode * + BST() + ~BST() + clear() : void clear(bstnode *) : void + search( int key ) : int * + recursivesearch( int key ) : int * recursivesearch( BSTNode * p, int key ) : int * + insert(int d) : void

27 Class BST Implementation class BST { public: BST() { root = NULL; }; ~BST() { clear(root); }; void clear( ); int * search( int key ); int * recursivesearch( int key ); void insert(int d); private: void clear(bstnode *p ); int * recursivesearch( BSTNode *p, int key ); BSTNode * root; };

28 Implementation clear() void BST::clear( ) { clear( root ); root = NULL; } void BST::clear(BSTNode *p ) { if (p!= NULL) { clear(p >left); clear(p >right); delete p; } }

29 Implementation search() int * BST::search( int key ) { BSTNode *p = root; while ( p!= NULL ) { if ( p >data == key ) return & p >data; else if ( key < p >data ) p = p >left; else p = p >right; } return NULL; }

30 recursivesearch() Implementation int * BST::recursiveSearch( int key ) { return recursivesearch(root, key); } int * BST::recursiveSearch( BSTNode *p, int key ) { if ( p!= NULL ) { if ( p >data == key ) return & p >data; else if ( key < p >data ) return recursivesearch( p >left, key ); else return recursivesearch( p >right, key ); } return NULL; }

31 Implementation insert() void BST::insert( int d ) { // get the correct location BSTNode *p, *q; p = q = root; while ( p!= NULL ) { q = p; if ( d < p >data ) p = p >left; else p = p >right; } // place node in the correct position if ( root == NULL ) root = new BSTNode(d); else if ( d < q >data ) q >left = new BSTNode(d); else q >right = new BSTNode(d); }

32 Implementation main() int main() { BST x; x.insert(15); x.insert(4); x.insert(20); x.insert(17); x.insert(19); x.insert(25); int n; cout << "Enter a number: "; cin >> n; int *ptr; ptr = x.recursivesearch(n); if ( ptr!= NULL ) cout << *ptr << " is found in the tree" << endl; else cout << n << " is not found in the tree" << endl; } return 0;

33 Tree traversal Traversing a tree: visit each node only once lot of combinations to do this ex: take a tree of 4 nodes

34 Definitions ex: take a tree of 4 nodes 15, 4, 20, 17 15, 17, 20, , 20, 17, how many combinations? n!

35 Definitions Not all traversals are useful Two traversals are of interest: Breadth first traversal Depth first traversal

36 Breadth first Breadth first: start with n = 1 visit nodes at level n (left to right, or right to left) visit nodes at level n+1 repeat until you visit all nodes

37 Example What is the sequence of nodes using breadth first traversal? 15, 4,20, 1, 17,

38 Implementation To implement the breadth first traversal, you can use a queue Algorithm: enqueue root while ( queue not empty ) 15 dequeue node if there is a left child enqueue left child if there is a right child enqueue right child

39 Depth first Depth first: go as far as possible to the left (or right) backup to the first crossroad go to the right (or left) go as far as possible to the left (or right) repeat until all nodes are visited

40 Depth first Assume: V: visit, R: right, L: left six options: VLR VRL LVR RVL LRV RLV Assuming left before right three options

41 Depth first Assuming always left then right, only three traversals: VLR: preorder traversal LVR: inorder traversal LRV: postorder traversal

42 Preorder What is the sequence of nodes using preorder traversal? VLR 15 15, 4, 1, 20, 17,

43 Inorder What is the sequence of nodes using inorder traversal? LVR 15 1, 4, 15, 17, 20,

44 Postorder What is the sequence of nodes using postorder traversal? LRV 15 1, 4, 17, 25, 20,

45 Example What is the sequence of nodes using preorder, inorder, postorder traversal?

46 Implementation Depth first traversal can be implemented easily using recursive functions preorder() void BST::preorder(BSTNode *p) { if ( p!= NULL ) { visit(p); preorder(p >left); preorder(p >right); } }

47 Implementation Depth first traversal can be implemented easily using recursive functions inorder() void BST::inorder(BSTNode *p) { if ( p!= NULL ) { inorder(p >left); visit(p); inorder(p >right); } }

48 Implementation Depth first traversal can be implemented easily using recursive functions postorder() void BST::postorder(BSTNode *p) { if ( p!= NULL ) { postorder(p >left); postorder(p >right); visit(p); } }

49 Implementation Easily using recursion Any doubts? try the non recursive implementation...good luck

50 How to delete a node three cases: if the node is a leaf if the node has one child if the node has two children merge or copy

51 Case 1: leaf If the node is a leaf, delete it directly Ex. delete

52 Case 1: leaf

53 Case 2: single child if the node has a single child make the parent point to the child 37 delete the node Ex. delete make 21 point to 7 delete

54 Case 2: single child Ex. delete 15 make 21 point to 7 37 delete

55 Case 2: single child Ex. delete 15 make 21 point to 7 37 delete

56 Case 3: 2 children if the node has 2 children two methods: merge copy

57 Case 3: 2 children Merge: 1) find the rightmost node in the left subtree 2) attach the right subtree to the right of the node in step 1 3) delete the node ( similar to the case of a single child)

58 Case 3: 2 children Ex. delete

59 Case 3: 2 children 1) find the rightmost node in the left subtree

60 Case 3: 2 children 1) find the rightmost node in the left subtree

61 Case 3: 2 children 2) attach right subtree to the right of node in step

62 Case 3: 2 children 2) attach right subtree to the right of node in step 1 37 Right subtree

63 Case 3: 2 children 2) attach right subtree to the right of node in step

64 Case 3: 2 children 3) delete the node as the case of a single child

65 Case 3: 2 children 3) delete the node as the case of a single child

66 Case 3: 2 children Other method Copy: 1) find the rightmost node in the left subtree 2) replace value of node with node in step 1 3) delete the node of step 1 (the node is either a leaf or has a single child)

67 Case 3: 2 children Ex. delete

68 Case 3: 2 children 1) find the rightmost node in the left subtree

69 Case 3: 2 children 1) find the rightmost node in the left subtree

70 Case 3: 2 children 2) swap 33 with

71 Case 3: 2 children 2) swap 33 with

72 Case 3: 2 children 3) delete

73 Case 3: 2 children 3) delete

1 Binary trees. 1 Binary search trees. 1 Traversal. 1 Insertion. 1 An empty structure is an empty tree.

1 Binary trees. 1 Binary search trees. 1 Traversal. 1 Insertion. 1 An empty structure is an empty tree. Unit 6: Binary Trees Part 1 Engineering 4892: Data Structures Faculty of Engineering & Applied Science Memorial University of Newfoundland July 11, 2011 1 Binary trees 1 Binary search trees Analysis of

More information

Binary Search Trees. What is a Binary Search Tree?

Binary Search Trees. What is a Binary Search Tree? Binary Search Trees What is a Binary Search Tree? A binary tree where each node is an object Each node has a key value, left child, and right child (might be empty) Each node satisfies the binary search

More information

IX. Binary Trees (Chapter 10)

IX. Binary Trees (Chapter 10) IX. Binary Trees (Chapter 10) -1- A. Introduction: Searching a linked list. 1. Linear Search /* To linear search a list for a particular Item */ 1. Set Loc = 0; 2. Repeat the following: a. If Loc >= length

More information

Programming II (CS300)

Programming II (CS300) 1 Programming II (CS300) Chapter 11: Binary Search Trees MOUNA KACEM mouna@cs.wisc.edu Fall 2018 General Overview of Data Structures 2 Introduction to trees 3 Tree: Important non-linear data structure

More information

BBM 201 Data structures

BBM 201 Data structures BBM 201 Data structures Lecture 11: Trees 2018-2019 Fall Content Terminology The Binary Tree The Binary Search Tree Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, 2013

More information

IX. Binary Trees (Chapter 10) Linear search can be used for lists stored in an array as well as for linked lists. (It's the method used in the find

IX. Binary Trees (Chapter 10) Linear search can be used for lists stored in an array as well as for linked lists. (It's the method used in the find IX. Binary Trees IX-1 IX. Binary Trees (Chapter 10) A. Introduction: Searching a linked list. 1. Linear Search /* To linear search a list for a particular Item */ 1. Set Loc = 0; 2. Repeat the following:

More information

Tree Data Structures CSC 221

Tree Data Structures CSC 221 Tree Data Structures CSC 221 Specialized Trees Binary Tree: A restriction of trees such that the maximum degree of a node is 2. Order of nodes is now relevant May have zero nodes (emtpy tree) Formal Definition:

More information

Binary Trees. Examples:

Binary Trees. Examples: Binary Trees A tree is a data structure that is made of nodes and pointers, much like a linked list. The difference between them lies in how they are organized: In a linked list each node is connected

More information

Binary Trees

Binary Trees Binary Trees 4-7-2005 Opening Discussion What did we talk about last class? Do you have any code to show? Do you have any questions about the assignment? What is a Tree? You are all familiar with what

More information

Chapter 20: Binary Trees

Chapter 20: Binary Trees Chapter 20: Binary Trees 20.1 Definition and Application of Binary Trees Definition and Application of Binary Trees Binary tree: a nonlinear linked list in which each node may point to 0, 1, or two other

More information

Trees and Tree Traversals. Binary Trees. COMP 210: Object-Oriented Programming Lecture Notes 8. Based on notes by Logan Mayfield

Trees and Tree Traversals. Binary Trees. COMP 210: Object-Oriented Programming Lecture Notes 8. Based on notes by Logan Mayfield OMP 210: Object-Oriented Programming Lecture Notes 8 Trees and Tree Traversals ased on notes by Logan Mayfield In these notes we look at inary Trees and how to traverse them. inary Trees Imagine a list.

More information

a graph is a data structure made up of nodes in graph theory the links are normally called edges

a graph is a data structure made up of nodes in graph theory the links are normally called edges 1 Trees Graphs a graph is a data structure made up of nodes each node stores data each node has links to zero or more nodes in graph theory the links are normally called edges graphs occur frequently in

More information

Data Structure Advanced

Data Structure Advanced Data Structure Advanced 1. Is it possible to find a loop in a Linked list? a. Possilbe at O(n) b. Not possible c. Possible at O(n^2) only d. Depends on the position of loop Solution: a. Possible at O(n)

More information

Trees. (Trees) Data Structures and Programming Spring / 28

Trees. (Trees) Data Structures and Programming Spring / 28 Trees (Trees) Data Structures and Programming Spring 2018 1 / 28 Trees A tree is a collection of nodes, which can be empty (recursive definition) If not empty, a tree consists of a distinguished node r

More information

Tree Structures. A hierarchical data structure whose point of entry is the root node

Tree Structures. A hierarchical data structure whose point of entry is the root node Binary Trees 1 Tree Structures A tree is A hierarchical data structure whose point of entry is the root node This structure can be partitioned into disjoint subsets These subsets are themselves trees and

More information

CSCI-401 Examlet #5. Name: Class: Date: True/False Indicate whether the sentence or statement is true or false.

CSCI-401 Examlet #5. Name: Class: Date: True/False Indicate whether the sentence or statement is true or false. Name: Class: Date: CSCI-401 Examlet #5 True/False Indicate whether the sentence or statement is true or false. 1. The root node of the standard binary tree can be drawn anywhere in the tree diagram. 2.

More information

Name CPTR246 Spring '17 (100 total points) Exam 3

Name CPTR246 Spring '17 (100 total points) Exam 3 Name CPTR246 Spring '17 (100 total points) Exam 3 1. Linked Lists Consider the following linked list of integers (sorted from lowest to highest) and the changes described. Make the necessary changes in

More information

Binary Trees. Height 1

Binary Trees. Height 1 Binary Trees Definitions A tree is a finite set of one or more nodes that shows parent-child relationship such that There is a special node called root Remaining nodes are portioned into subsets T1,T2,T3.

More information

Binary Trees. College of Computing & Information Technology King Abdulaziz University. CPCS-204 Data Structures I

Binary Trees. College of Computing & Information Technology King Abdulaziz University. CPCS-204 Data Structures I Binary Trees College of Computing & Information Technology King Abdulaziz University CPCS-204 Data Structures I Outline Tree Stuff Trees Binary Trees Implementation of a Binary Tree Tree Traversals Depth

More information

BST Implementation. Data Structures. Lecture 4 Binary search trees (BST) Dr. Mahmoud Attia Sakr University of Ain Shams

BST Implementation. Data Structures. Lecture 4 Binary search trees (BST) Dr. Mahmoud Attia Sakr University of Ain Shams Lecture 4 Binary search trees (BST) Dr. Mahmoud Attia Sakr mahmoud.sakr@cis.asu.edu.eg Cairo, Egypt, October 2012 Binary Search Trees (BST) 1. Hierarchical data structure with a single reference to root

More information

Trees! Ellen Walker! CPSC 201 Data Structures! Hiram College!

Trees! Ellen Walker! CPSC 201 Data Structures! Hiram College! Trees! Ellen Walker! CPSC 201 Data Structures! Hiram College! ADTʼs Weʼve Studied! Position-oriented ADT! List! Stack! Queue! Value-oriented ADT! Sorted list! All of these are linear! One previous item;

More information

Data Structure - Binary Tree 1 -

Data Structure - Binary Tree 1 - Data Structure - Binary Tree 1 - Hanyang University Jong-Il Park Basic Tree Concepts Logical structures Chap. 2~4 Chap. 5 Chap. 6 Linear list Tree Graph Linear structures Non-linear structures Linear Lists

More information

TREES. Trees - Introduction

TREES. Trees - Introduction TREES Chapter 6 Trees - Introduction All previous data organizations we've studied are linear each element can have only one predecessor and successor Accessing all elements in a linear sequence is O(n)

More information

Binary Trees, Binary Search Trees

Binary Trees, Binary Search Trees Binary Trees, Binary Search Trees Trees Linear access time of linked lists is prohibitive Does there exist any simple data structure for which the running time of most operations (search, insert, delete)

More information

MULTIMEDIA COLLEGE JALAN GURNEY KIRI KUALA LUMPUR

MULTIMEDIA COLLEGE JALAN GURNEY KIRI KUALA LUMPUR STUDENT IDENTIFICATION NO MULTIMEDIA COLLEGE JALAN GURNEY KIRI 54100 KUALA LUMPUR FIFTH SEMESTER FINAL EXAMINATION, 2014/2015 SESSION PSD2023 ALGORITHM & DATA STRUCTURE DSEW-E-F-2/13 25 MAY 2015 9.00 AM

More information

CS24 Week 8 Lecture 1

CS24 Week 8 Lecture 1 CS24 Week 8 Lecture 1 Kyle Dewey Overview Tree terminology Tree traversals Implementation (if time) Terminology Node The most basic component of a tree - the squares Edge The connections between nodes

More information

12 Abstract Data Types

12 Abstract Data Types 12 Abstract Data Types 12.1 Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: Define the concept of an abstract data type (ADT). Define

More information

! Tree: set of nodes and directed edges. ! Parent: source node of directed edge. ! Child: terminal node of directed edge

! Tree: set of nodes and directed edges. ! Parent: source node of directed edge. ! Child: terminal node of directed edge Trees (& Heaps) Week 12 Gaddis: 20 Weiss: 21.1-3 CS 5301 Spring 2015 Jill Seaman 1 Tree: non-recursive definition! Tree: set of nodes and directed edges - root: one node is distinguished as the root -

More information

Associate Professor Dr. Raed Ibraheem Hamed

Associate Professor Dr. Raed Ibraheem Hamed Associate Professor Dr. Raed Ibraheem Hamed University of Human Development, College of Science and Technology Computer Science Department 2015 2016 Department of Computer Science _ UHD 1 What this Lecture

More information

Bioinformatics Programming. EE, NCKU Tien-Hao Chang (Darby Chang)

Bioinformatics Programming. EE, NCKU Tien-Hao Chang (Darby Chang) Bioinformatics Programming EE, NCKU Tien-Hao Chang (Darby Chang) 1 Tree 2 A Tree Structure A tree structure means that the data are organized so that items of information are related by branches 3 Definition

More information

! Tree: set of nodes and directed edges. ! Parent: source node of directed edge. ! Child: terminal node of directed edge

! Tree: set of nodes and directed edges. ! Parent: source node of directed edge. ! Child: terminal node of directed edge Trees & Heaps Week 12 Gaddis: 20 Weiss: 21.1-3 CS 5301 Fall 2018 Jill Seaman!1 Tree: non-recursive definition! Tree: set of nodes and directed edges - root: one node is distinguished as the root - Every

More information

Programming II (CS300)

Programming II (CS300) 1 Programming II (CS300) Chapter 10: Search and Heaps MOUNA KACEM mouna@cs.wisc.edu Spring 2018 Search and Heaps 2 Linear Search Binary Search Introduction to trees Priority Queues Heaps Linear Search

More information

Tree. A path is a connected sequence of edges. A tree topology is acyclic there is no loop.

Tree. A path is a connected sequence of edges. A tree topology is acyclic there is no loop. Tree A tree consists of a set of nodes and a set of edges connecting pairs of nodes. A tree has the property that there is exactly one path (no more, no less) between any pair of nodes. A path is a connected

More information

Introduction to Trees. D. Thiebaut CSC212 Fall 2014

Introduction to Trees. D. Thiebaut CSC212 Fall 2014 Introduction to Trees D. Thiebaut CSC212 Fall 2014 A bit of History & Data Visualization: The Book of Trees. (Link) We Concentrate on Binary-Trees, Specifically, Binary-Search Trees (BST) How Will Java

More information

Trees. Truong Tuan Anh CSE-HCMUT

Trees. Truong Tuan Anh CSE-HCMUT Trees Truong Tuan Anh CSE-HCMUT Outline Basic concepts Trees Trees A tree consists of a finite set of elements, called nodes, and a finite set of directed lines, called branches, that connect the nodes

More information

Abstract Data Structures IB Computer Science. Content developed by Dartford Grammar School Computer Science Department

Abstract Data Structures IB Computer Science. Content developed by Dartford Grammar School Computer Science Department Abstract Data Structures IB Computer Science Content developed by Dartford Grammar School Computer Science Department HL Topics 1-7, D1-4 1: System design 2: Computer Organisation 3: Networks 4: Computational

More information

Tree: non-recursive definition. Trees, Binary Search Trees, and Heaps. Tree: recursive definition. Tree: example.

Tree: non-recursive definition. Trees, Binary Search Trees, and Heaps. Tree: recursive definition. Tree: example. Trees, Binary Search Trees, and Heaps CS 5301 Fall 2013 Jill Seaman Tree: non-recursive definition Tree: set of nodes and directed edges - root: one node is distinguished as the root - Every node (except

More information

First Semester - Question Bank Department of Computer Science Advanced Data Structures and Algorithms...

First Semester - Question Bank Department of Computer Science Advanced Data Structures and Algorithms... First Semester - Question Bank Department of Computer Science Advanced Data Structures and Algorithms.... Q1) What are some of the applications for the tree data structure? Q2) There are 8, 15, 13, and

More information

Data Structures. Trees. By Dr. Mohammad Ali H. Eljinini. M.A. Eljinini, PhD

Data Structures. Trees. By Dr. Mohammad Ali H. Eljinini. M.A. Eljinini, PhD Data Structures Trees By Dr. Mohammad Ali H. Eljinini Trees Are collections of items arranged in a tree like data structure (none linear). Items are stored inside units called nodes. However: We can use

More information

CS350: Data Structures Tree Traversal

CS350: Data Structures Tree Traversal Tree Traversal James Moscola Department of Engineering & Computer Science York College of Pennsylvania James Moscola Defining Trees Recursively Trees can easily be defined recursively Definition of a binary

More information

CSI33 Data Structures

CSI33 Data Structures Outline Department of Mathematics and Computer Science Bronx Community College November 13, 2017 Outline Outline 1 C++ Supplement.1: Trees Outline C++ Supplement.1: Trees 1 C++ Supplement.1: Trees Uses

More information

CS 206 Introduction to Computer Science II

CS 206 Introduction to Computer Science II CS 206 Introduction to Computer Science II 02 / 24 / 2017 Instructor: Michael Eckmann Today s Topics Questions? Comments? Trees binary trees two ideas for representing them in code traversals start binary

More information

Trees. Tree Structure Binary Tree Tree Traversals

Trees. Tree Structure Binary Tree Tree Traversals Trees Tree Structure Binary Tree Tree Traversals The Tree Structure Consists of nodes and edges that organize data in a hierarchical fashion. nodes store the data elements. edges connect the nodes. The

More information

Data Structure. IBPS SO (IT- Officer) Exam 2017

Data Structure. IBPS SO (IT- Officer) Exam 2017 Data Structure IBPS SO (IT- Officer) Exam 2017 Data Structure: In computer science, a data structure is a way of storing and organizing data in a computer s memory so that it can be used efficiently. Data

More information

CSE 373 APRIL 17 TH TREE BALANCE AND AVL

CSE 373 APRIL 17 TH TREE BALANCE AND AVL CSE 373 APRIL 17 TH TREE BALANCE AND AVL ASSORTED MINUTIAE HW3 due Wednesday Double check submissions Use binary search for SADict Midterm text Friday Review in Class on Wednesday Testing Advice Empty

More information

Trees Algorhyme by Radia Perlman

Trees Algorhyme by Radia Perlman Algorhyme by Radia Perlman I think that I shall never see A graph more lovely than a tree. A tree whose crucial property Is loop-free connectivity. A tree which must be sure to span. So packets can reach

More information

Principles of Computer Science

Principles of Computer Science Principles of Computer Science Binary Trees 08/11/2013 CSCI 2010 - Binary Trees - F.Z. Qureshi 1 Today s Topics Extending LinkedList with Fast Search Sorted Binary Trees Tree Concepts Traversals of a Binary

More information

Trees. CSE 373 Data Structures

Trees. CSE 373 Data Structures Trees CSE 373 Data Structures Readings Reading Chapter 7 Trees 2 Why Do We Need Trees? Lists, Stacks, and Queues are linear relationships Information often contains hierarchical relationships File directories

More information

Programming II (CS300)

Programming II (CS300) 1 Programming II (CS300) Chapter 12: Heaps and Priority Queues MOUNA KACEM mouna@cs.wisc.edu Fall 2018 Heaps and Priority Queues 2 Priority Queues Heaps Priority Queue 3 QueueADT Objects are added and

More information

CMPSCI 187: Programming With Data Structures. Lecture #26: Binary Search Trees David Mix Barrington 9 November 2012

CMPSCI 187: Programming With Data Structures. Lecture #26: Binary Search Trees David Mix Barrington 9 November 2012 CMPSCI 187: Programming With Data Structures Lecture #26: Binary Search Trees David Mix Barrington 9 November 2012 Binary Search Trees Why Binary Search Trees? Trees, Binary Trees and Vocabulary The BST

More information

CISC 235 Topic 3. General Trees, Binary Trees, Binary Search Trees

CISC 235 Topic 3. General Trees, Binary Trees, Binary Search Trees CISC 235 Topic 3 General Trees, Binary Trees, Binary Search Trees Outline General Trees Terminology, Representation, Properties Binary Trees Representations, Properties, Traversals Recursive Algorithms

More information

CS 127 Fall In our last episode. Yet more fun with binary trees. Tree traversals. Breadth-first traversal

CS 127 Fall In our last episode. Yet more fun with binary trees. Tree traversals. Breadth-first traversal CS 127 Fall 2003 Yet more fun with binary trees In our last episode We looked at the complexity of searching a binary tree average complexity is O(lg n), in most cases We pondered the question, How many

More information

DATA STRUCTURES AND ALGORITHMS. Hierarchical data structures: AVL tree, Bayer tree, Heap

DATA STRUCTURES AND ALGORITHMS. Hierarchical data structures: AVL tree, Bayer tree, Heap DATA STRUCTURES AND ALGORITHMS Hierarchical data structures: AVL tree, Bayer tree, Heap Summary of the previous lecture TREE is hierarchical (non linear) data structure Binary trees Definitions Full tree,

More information

Computational Optimization ISE 407. Lecture 16. Dr. Ted Ralphs

Computational Optimization ISE 407. Lecture 16. Dr. Ted Ralphs Computational Optimization ISE 407 Lecture 16 Dr. Ted Ralphs ISE 407 Lecture 16 1 References for Today s Lecture Required reading Sections 6.5-6.7 References CLRS Chapter 22 R. Sedgewick, Algorithms in

More information

Trees : Part 1. Section 4.1. Theory and Terminology. A Tree? A Tree? Theory and Terminology. Theory and Terminology

Trees : Part 1. Section 4.1. Theory and Terminology. A Tree? A Tree? Theory and Terminology. Theory and Terminology Trees : Part Section. () (2) Preorder, Postorder and Levelorder Traversals Definition: A tree is a connected graph with no cycles Consequences: Between any two vertices, there is exactly one unique path

More information

Consider the search operation FindKey (): find an element of a particular key value in a binary tree. This operation takes O(n) time in a binary

Consider the search operation FindKey (): find an element of a particular key value in a binary tree. This operation takes O(n) time in a binary 1 Consider the search operation FindKey (): find an element of a particular key value in a binary tree. This operation takes O(n) time in a binary tree. In a binary tree of 10 6 nodes 10 6 steps required

More information

INF2220: algorithms and data structures Series 1

INF2220: algorithms and data structures Series 1 Universitetet i Oslo Institutt for Informatikk A. Maus, R.K. Runde, I. Yu INF2220: algorithms and data structures Series 1 Topic Trees & estimation of running time (Exercises with hints for solution) Issued:

More information

ECE 242. Data Structures

ECE 242. Data Structures ECE 242 Data Structures Lecture 21 Binary Search Trees Overview Problem: How do I represent data so that no data value is present more than once? Sets: three different implementations Ordered List Binary

More information

Data Structure Lecture#10: Binary Trees (Chapter 5) U Kang Seoul National University

Data Structure Lecture#10: Binary Trees (Chapter 5) U Kang Seoul National University Data Structure Lecture#10: Binary Trees (Chapter 5) U Kang Seoul National University U Kang (2016) 1 In This Lecture The concept of binary tree, its terms, and its operations Full binary tree theorem Idea

More information

Section 5.5. Left subtree The left subtree of a vertex V on a binary tree is the graph formed by the left child L of V, the descendents

Section 5.5. Left subtree The left subtree of a vertex V on a binary tree is the graph formed by the left child L of V, the descendents Section 5.5 Binary Tree A binary tree is a rooted tree in which each vertex has at most two children and each child is designated as being a left child or a right child. Thus, in a binary tree, each vertex

More information

Data Structures. Outline. Introduction Linked Lists Stacks Queues Trees Deitel & Associates, Inc. All rights reserved.

Data Structures. Outline. Introduction Linked Lists Stacks Queues Trees Deitel & Associates, Inc. All rights reserved. Data Structures Outline Introduction Linked Lists Stacks Queues Trees Introduction dynamic data structures - grow and shrink during execution Linked lists - insertions and removals made anywhere Stacks

More information

Data Structures and Algorithms for Engineers

Data Structures and Algorithms for Engineers 04-630 Data Structures and Algorithms for Engineers David Vernon Carnegie Mellon University Africa vernon@cmu.edu www.vernon.eu Data Structures and Algorithms for Engineers 1 Carnegie Mellon University

More information

examines every node of a list until a matching node is found, or until all nodes have been examined and no match is found.

examines every node of a list until a matching node is found, or until all nodes have been examined and no match is found. A examines every node of a list until a matching node is found, or until all nodes have been examined and no match is found. For very long lists that are frequently searched, this can take a large amount

More information

CS 231 Data Structures and Algorithms Fall Recursion and Binary Trees Lecture 21 October 24, Prof. Zadia Codabux

CS 231 Data Structures and Algorithms Fall Recursion and Binary Trees Lecture 21 October 24, Prof. Zadia Codabux CS 231 Data Structures and Algorithms Fall 2018 Recursion and Binary Trees Lecture 21 October 24, 2018 Prof. Zadia Codabux 1 Agenda ArrayQueue.java Recursion Binary Tree Terminologies Traversal 2 Administrative

More information

Trees. Q: Why study trees? A: Many advance ADTs are implemented using tree-based data structures.

Trees. Q: Why study trees? A: Many advance ADTs are implemented using tree-based data structures. Trees Q: Why study trees? : Many advance DTs are implemented using tree-based data structures. Recursive Definition of (Rooted) Tree: Let T be a set with n 0 elements. (i) If n = 0, T is an empty tree,

More information

3137 Data Structures and Algorithms in C++

3137 Data Structures and Algorithms in C++ 3137 Data Structures and Algorithms in C++ Lecture 3 July 12 2006 Shlomo Hershkop 1 Announcements Homework 2 out tonight Please make sure you complete hw1 asap if you have issues, please contact me will

More information

CS 206 Introduction to Computer Science II

CS 206 Introduction to Computer Science II CS 206 Introduction to Computer Science II 10 / 10 / 2016 Instructor: Michael Eckmann Today s Topics Questions? Comments? A few comments about Doubly Linked Lists w/ dummy head/tail Trees Binary trees

More information

CSE 373 OCTOBER 11 TH TRAVERSALS AND AVL

CSE 373 OCTOBER 11 TH TRAVERSALS AND AVL CSE 373 OCTOBER 11 TH TRAVERSALS AND AVL MINUTIAE Feedback for P1p1 should have gone out before class Grades on canvas tonight Emails went to the student who submitted the assignment If you did not receive

More information

Cpt S 122 Data Structures. Data Structures Trees

Cpt S 122 Data Structures. Data Structures Trees Cpt S 122 Data Structures Data Structures Trees Nirmalya Roy School of Electrical Engineering and Computer Science Washington State University Motivation Trees are one of the most important and extensively

More information

CSE 250 Final Exam. Fall 2013 Time: 3 hours. Dec 11, No electronic devices of any kind. You can open your textbook and notes

CSE 250 Final Exam. Fall 2013 Time: 3 hours. Dec 11, No electronic devices of any kind. You can open your textbook and notes CSE 250 Final Exam Fall 2013 Time: 3 hours. Dec 11, 2013 Total points: 100 14 pages Please use the space provided for each question, and the back of the page if you need to. Please do not use any extra

More information

Binary Tree. Preview. Binary Tree. Binary Tree. Binary Search Tree 10/2/2017. Binary Tree

Binary Tree. Preview. Binary Tree. Binary Tree. Binary Search Tree 10/2/2017. Binary Tree 0/2/ Preview Binary Tree Tree Binary Tree Property functions In-order walk Pre-order walk Post-order walk Search Tree Insert an element to the Tree Delete an element form the Tree A binary tree is a tree

More information

Chapter 5. Binary Trees

Chapter 5. Binary Trees Chapter 5 Binary Trees Definitions and Properties A binary tree is made up of a finite set of elements called nodes It consists of a root and two subtrees There is an edge from the root to its children

More information

Revision Statement while return growth rate asymptotic notation complexity Compare algorithms Linear search Binary search Preconditions: sorted,

Revision Statement while return growth rate asymptotic notation complexity Compare algorithms Linear search Binary search Preconditions: sorted, [1] Big-O Analysis AVERAGE(n) 1. sum 0 2. i 0. while i < n 4. number input_number(). sum sum + number 6. i i + 1 7. mean sum / n 8. return mean Revision Statement no. of times executed 1 1 2 1 n+1 4 n

More information

ECE 242 Data Structures and Algorithms. Heaps I. Lecture 22. Prof. Eric Polizzi

ECE 242 Data Structures and Algorithms.  Heaps I. Lecture 22. Prof. Eric Polizzi ECE 242 Data Structures and Algorithms http://www.ecs.umass.edu/~polizzi/teaching/ece242/ Heaps I Lecture 22 Prof. Eric Polizzi Motivations Review of priority queue Input F E D B A Output Input Data structure

More information

Binary Trees. Directed, Rooted Tree. Terminology. Trees. Binary Trees. Possible Implementation 4/18/2013

Binary Trees. Directed, Rooted Tree. Terminology. Trees. Binary Trees. Possible Implementation 4/18/2013 Directed, Rooted Tree Binary Trees Chapter 5 CPTR 318 Every non-empty directed, rooted tree has A unique element called root One or more elements called leaves Every element except root has a unique parent

More information

Stacks, Queues and Hierarchical Collections

Stacks, Queues and Hierarchical Collections Programming III Stacks, Queues and Hierarchical Collections 2501ICT Nathan Contents Linked Data Structures Revisited Stacks Queues Trees Binary Trees Generic Trees Implementations 2 Copyright 2002- by

More information

Discussion 2C Notes (Week 8, February 25) TA: Brian Choi Section Webpage:

Discussion 2C Notes (Week 8, February 25) TA: Brian Choi Section Webpage: Discussion 2C Notes (Week 8, February 25) TA: Brian Choi (schoi@cs.ucla.edu) Section Webpage: http://www.cs.ucla.edu/~schoi/cs32 Trees Definitions Yet another data structure -- trees. Just like a linked

More information

Algorithms in Systems Engineering ISE 172. Lecture 16. Dr. Ted Ralphs

Algorithms in Systems Engineering ISE 172. Lecture 16. Dr. Ted Ralphs Algorithms in Systems Engineering ISE 172 Lecture 16 Dr. Ted Ralphs ISE 172 Lecture 16 1 References for Today s Lecture Required reading Sections 6.5-6.7 References CLRS Chapter 22 R. Sedgewick, Algorithms

More information

Why Do We Need Trees?

Why Do We Need Trees? CSE 373 Lecture 6: Trees Today s agenda: Trees: Definition and terminology Traversing trees Binary search trees Inserting into and deleting from trees Covered in Chapter 4 of the text Why Do We Need Trees?

More information

Final Exam Data Structure course. No. of Branches (5)

Final Exam Data Structure course. No. of Branches (5) Page ١of 5 College Of Science and Technology Khan younis - Palestine Computer Science & Inf. Tech. Information Technology Data Structure (Theoretical Part) Time: 2 Hours Name: ID: Mark: Teacher 50 Mahmoud

More information

R13. II B. Tech I Semester Supplementary Examinations, May/June DATA STRUCTURES (Com. to ECE, CSE, EIE, IT, ECC)

R13. II B. Tech I Semester Supplementary Examinations, May/June DATA STRUCTURES (Com. to ECE, CSE, EIE, IT, ECC) SET - 1 II B. Tech I Semester Supplementary Examinations, May/June - 2016 PART A 1. a) Write a procedure for the Tower of Hanoi problem? b) What you mean by enqueue and dequeue operations in a queue? c)

More information

Trees (part 2) CSE 2320 Algorithms and Data Structures Vassilis Athitsos University of Texas at Arlington

Trees (part 2) CSE 2320 Algorithms and Data Structures Vassilis Athitsos University of Texas at Arlington Trees (part 2) CSE 232 Algorithms and Data Structures Vassilis Athitsos University of Texas at Arlington 1 Student Self-Review Review the theoretical lecture on trees that was covered earlier in the semester.

More information

Also, recursive methods are usually declared private, and require a public non-recursive method to initiate them.

Also, recursive methods are usually declared private, and require a public non-recursive method to initiate them. Laboratory 11: Expression Trees and Binary Search Trees Introduction Trees are nonlinear objects that link nodes together in a hierarchical fashion. Each node contains a reference to the data object, a

More information

We have the pointers reference the next node in an inorder traversal; called threads

We have the pointers reference the next node in an inorder traversal; called threads Leaning Objective: In this Module you will be learning the following: Threaded Binary Tree Introduction: Threaded Binary Tree is also a binary tree in which all left child pointers that are NULL (in Linked

More information

Question Q1 Q2 Q3 Q4 Q5 Q6 Q7 Total

Question Q1 Q2 Q3 Q4 Q5 Q6 Q7 Total Philadelphia University Faculty of Engineering Student Name: Student Number: Dept. of Computer Engineering Final Exam, First Semester: 201/2018 Course Title: Data Structures and lgorithms Date: 1/2/2018

More information

CSE 230 Intermediate Programming in C and C++ Binary Tree

CSE 230 Intermediate Programming in C and C++ Binary Tree CSE 230 Intermediate Programming in C and C++ Binary Tree Fall 2017 Stony Brook University Instructor: Shebuti Rayana shebuti.rayana@stonybrook.edu Introduction to Tree Tree is a non-linear data structure

More information

CS350: Data Structures Heaps and Priority Queues

CS350: Data Structures Heaps and Priority Queues Heaps and Priority Queues James Moscola Department of Engineering & Computer Science York College of Pennsylvania James Moscola Priority Queue An abstract data type of a queue that associates a priority

More information

Objectives. In this session, you will learn to:

Objectives. In this session, you will learn to: TRS Objectives n this session, you will learn to: Store data in a tree istinguish types of inary tree Traverse a inary Tree norder PreOrder PostOrder onstruct a inary Tree onstruct an expression inary

More information

Advanced Java Concepts Unit 5: Trees. Notes and Exercises

Advanced Java Concepts Unit 5: Trees. Notes and Exercises Advanced Java Concepts Unit 5: Trees. Notes and Exercises A Tree is a data structure like the figure shown below. We don t usually care about unordered trees but that s where we ll start. Later we will

More information

CS61B Lecture #20: Trees. Last modified: Mon Oct 8 21:21: CS61B: Lecture #20 1

CS61B Lecture #20: Trees. Last modified: Mon Oct 8 21:21: CS61B: Lecture #20 1 CS61B Lecture #20: Trees Last modified: Mon Oct 8 21:21:22 2018 CS61B: Lecture #20 1 A Recursive Structure Trees naturally represent recursively defined, hierarchical objects with more than one recursive

More information

Binary Search Trees 1

Binary Search Trees 1 Binary Search Trees 1 The Problem with Linked Lists 8Accessing a item from a linked list takes O(N) time for an arbitrary element 8Binary trees can improve upon this and reduce access to O( log N ) time

More information

March 20/2003 Jayakanth Srinivasan,

March 20/2003 Jayakanth Srinivasan, Definition : A simple graph G = (V, E) consists of V, a nonempty set of vertices, and E, a set of unordered pairs of distinct elements of V called edges. Definition : In a multigraph G = (V, E) two or

More information

Topic Binary Trees (Non-Linear Data Structures)

Topic Binary Trees (Non-Linear Data Structures) Topic Binary Trees (Non-Linear Data Structures) CIS210 1 Linear Data Structures Arrays Linked lists Skip lists Self-organizing lists CIS210 2 Non-Linear Data Structures Hierarchical representation? Trees

More information

1. Stack overflow & underflow 2. Implementation: partially filled array & linked list 3. Applications: reverse string, backtracking

1. Stack overflow & underflow 2. Implementation: partially filled array & linked list 3. Applications: reverse string, backtracking Review for Test 2 (Chapter 6-10) Chapter 6: Template functions & classes 1) What is the primary purpose of template functions? A. To allow a single function to be used with varying types of arguments B.

More information

Tutorial # March 2016 Aniruddha Chattoraj CPSC 319. Data Structures, Algorithms, and Their Applications Tutorial 01/03 Winter 17

Tutorial # March 2016 Aniruddha Chattoraj CPSC 319. Data Structures, Algorithms, and Their Applications Tutorial 01/03 Winter 17 Tutorial # 13-14 6-9 March 2016 Aniruddha Chattoraj CPSC 319 Data Structures, Algorithms, and Their Applications Tutorial 01/03 Winter 17 Trees A tree is a hierarchical data structure A binary tree is

More information

Outline. Preliminaries. Binary Trees Binary Search Trees. What is Tree? Implementation of Trees using C++ Tree traversals and applications

Outline. Preliminaries. Binary Trees Binary Search Trees. What is Tree? Implementation of Trees using C++ Tree traversals and applications Trees 1 Outline Preliminaries What is Tree? Implementation of Trees using C++ Tree traversals and applications Binary Trees Binary Search Trees Structure and operations Analysis 2 What is a Tree? A tree

More information

CSI33 Data Structures

CSI33 Data Structures Outline Department of Mathematics and Computer Science Bronx Community College November 15, 2017 Outline Outline 1 C++ Supplement: 1.2 Outline C++ Supplement: 1.2 1 C++ Supplement: 1.2 The Binary Search

More information

Chapter 6: Binary Trees

Chapter 6: Binary Trees Chapter 6: Binary Trees Objectives Looking ahead in this chapter, we ll consider Trees, Binary Trees, and Binary Search Trees Implementing Binary Trees Searching a Binary Search Tree Tree Traversal Insertion

More information

Stacks, Queues and Hierarchical Collections. 2501ICT Logan

Stacks, Queues and Hierarchical Collections. 2501ICT Logan Stacks, Queues and Hierarchical Collections 2501ICT Logan Contents Linked Data Structures Revisited Stacks Queues Trees Binary Trees Generic Trees Implementations 2 Queues and Stacks Queues and Stacks

More information

Data Structures and Algorithms

Data Structures and Algorithms Data Structures and Algorithms CS245-2017S-06 Binary Search Trees David Galles Department of Computer Science University of San Francisco 06-0: Ordered List ADT Operations: Insert an element in the list

More information