5G: an IP Engineer Perspective

Size: px
Start display at page:

Download "5G: an IP Engineer Perspective"

Transcription

1 5G: an Engineer Perspective Igor Giangrossi Principal Consulting Engineer /Optical Networks 1 NANOG 75

2 A Brief History of Mobile Networks From analog voice to high speed Internet 1G 2G 3G 4G 5G Analog Voice Digital Voice Mobile Data Mobile Broadband No Data 100s of kbps 10s of Mbps 100s of Mbps? Nokia Cityman Nokia 3210 iphone 3G iphone X NANOG 75

3 What Is 5G? ITU-R IMT-2020 performance goals Area Traffic Capacity (Mbps/m 2 ) 10 1 Peak Data Rate (Gbps) 20 1 User Experienced Data Rate (Mbps) Area Traffic Capacity High Importance Medium Peak Data Rate Enhanced Mobile Broadband User Experienced Data Rate Energy 100x Efficiency 10x 5G 1x 0.1 4G 1x 3x Spectrum Efficiency Energy Efficiency Low Spectrum Efficiency 350 Massive Machine Type Communications Connection Density (devices/km 2 ) Mobility (Km/h) Connection Density Latency Mobility Ultra Reliable And Low Latency Communications Latency (ms) Source: ITU-R M Nokia Internal

4 Recap: 4G/LTE Evolved Packet Core Main nodes and functions Mobility and Session Management Interface to Subscriber Database MME S1-MME S11 S1-U S5 SGi Core enb SGW PGW Internet Mobility Anchor Point Session Management Packet Forwarding Anchor Point Session Management Packet Forwarding Interface to Policy, Charging, etc. MME: Mobility Management Entity SGW: Serving Gateway PGW: PDN Gateway enb: enodeb (Radio) 4 NANOG 75

5 Recap: 4G/LTE Architecture and Traffic Flows Combined control and user plane over S1-AP SCTP Control Plane (S1-MME) GTP-C UDP enb MME X2 Backhaul S11 Core enb User Plane (S1-U) SGW S5 PGW Internet GPS/ SyncE/ 1588v2/ NTP GTP-U UDP GTP-U 5 NANOG 75 UDP MME: Mobility Management Entity SGW: Serving Gateway PGW: PDN Gateway enb: enodeb (Radio)

6 5G Architecture: Native Control and User Plane Separation Main nodes and functions SBA Bus Mobility Management N AMF N SMF Session Management N2 AMF N4 SMF N4 Control Plane User Plane N3 N9 N6 gnb UPF UPF N6 Centralized User Plane Internet Packet Forwarding Internet Distributed User Plane 6 NANOG 75 AMF: Access and Mobility Management Function SMF: Session Management Function UPF: User Plane Function SBA: Service Based Architecture gnb: gnodeb (Radio)

7 5G Architecture and Traffic Flows Same backhaul protocol stack with REST control plane NG-AP SCTP Control Plane (N2) N AMF SBA Bus N SMF REST/JSON HTTP/2 TCP gnb AMF SMF Xn Backhaul N4 Core gnb User Plane (N3) UPF N6 Internet GPS/ 1588v2 GTP-U 7 NANOG 75 UDP PFCP UDP AMF: Access and Mobility Management Function SMF: Session Management Function UPF: User Plane Function SBA: Service Based Architecture gnb: gnodeb (Radio)

8 5G Network Slicing for Network as a Service Requires a service-aware backhaul network SBA Bus N NSSF N AMF NSSF AMF N2 N3 TE-enabled Backhaul gnb NSSF: Network Slice Selection Function 8 NANOG 75

9 RAN Densification: Searching for Better Radio Coordination CRAN architecture introduces CPRI for the Fronthaul network S/PGW CPRI: Common Public Radio Interface User Plane Control & Management Sync Backhaul Fronthaul BBU Pool enbs IQ Data Vendor Specific Ethernet HDLC Time Division Multiplexing L1 In-band Protocol Ultra low delay variation (16ns) P2P constant bitrate stream EPC: Evolved Packet Core RRH: Remote Radio Head BBU: Baseband Unit RRH RRH RRH Centralized RAN Requires Dedicated Fiber (xwdm) 9 NANOG 75

10 5G New Radio Main Technology Innovations Targeting a 10X increase in throughput New Spectrum Options Massive MIMO 1GHz 6GHz 24GHz mmwave Larger Radio Channels Up to 400MHz 10 NANOG 75

11 Current CRAN Architecture Unfit for 5G Deployments CPRI bandwidth explosion with massive MIMO 1000Gbps *Approximate values 100Gbps Gbps 64 1Gbps 1 4 1Tx 4Tx 64Tx 64Tx 20MHz 20MHz 20MHz 100MHz 11 NANOG 75

12 5G Standards Development Initiatives Transport related standards bodies Main 5G standards (release 15): - Overall architecture - Radio - Core Ethernet forwarding standards: CM Time Sensitive Networks - NGFI Next Generation Fronthaul Interface Packet Based Fronthaul Radio over Ethernet Fronthaul protocols: - CPRI v7.0 (2015) - ecpri v1.2 (2018) Fronthaul transport services specification: - MEF MEF Additional initiatives exist to address other areas of 5G standards (O-RAN, Small Cell Forum, etc.) 12 NANOG 75

13 Addressing the Fronthaul Bandwidth Challenges RAN protocol stack split options RRC PDCP Option 1 Option 2 Max. Latency Layer 2 RLC MAC PHY Option 3 Option 4 Option 5 Option 6 Option 7 Layer 1 Option 8 CPRI RF Required Bandwidth 13 NANOG 75

14 Addressing the Fronthaul Bandwidth Challenges RAN protocol stack split options RRC Layer 2 PDCP RLC MAC Option 1 Option 2 Option 3 Option 4 Option 5 High Layer Max. Latency Layer 1 PHY RF Option 6 Option 7 Option 8 Low Layer Required Bandwidth 14 NANOG 75

15 5G NR Introduces a New RAN Architecture Cloud RAN with packet-based transport EPC/5GC Backhaul NG/S1 NG/S1 gnb CU Xn gnb CU Midhaul F1 F1 F1 F1 F1 F1 High Layer Split (Option 2) Fronthaul DU DU DU DU DU DU Low Layer Split (Option 7-2a) CU: Centralized Unit DU: Distributed Unit RU: Radio Unit RU RU RU RU RU RU 15 NANOG 75

16 New Midhaul Interfaces: E1 and F1 Similar to current backhaul protocol stack N3 N2 E1-AP SCTP E1 CU-UP CU-CP User Plane GTP-U UDP F1-U DU F1-C F1-AP SCTP gnb RU 16 NANOG 75

17 ecpri: Fronthaul Transport over Ethernet Designed for packet-based networks ecpri Services User Data Real-Time Control Other ecpri Services Synchronization C&M Connection OAM ecpri Protocol Header PTP SyncE SSH, SNMP, etc UDP (Optional) UDP, TCP, etc. (Optional) ICMP Ethernet (Etype:AEFE) VLAN+PCP MACSec Ethernet OAM 17 NANOG 75

18 ecpri Fronthaul Bandwidth Estimations Savings of 10x compared to CPRI 236 Gbps 236 Gbps Basic Assumptions: 100MHz 8x4 MIMO (w/ 2 streams per uplink layer) 64 Antennas TTI: 1ms Modulation: 256QAM *3Gbps downlink from MAC layer *1.5Gbps uplink to MAC layer ecpri Drives 25GE interfaces 20 Gbps <10 Gbps 20 Gbps <10 Gbps User/ Down Control/ Down User/ Up Control/ Up Down Up Option 7-2 (Downlink) Option 7-2 (Uplink) CPRI 18 NANOG 75

19 IEEE & ecpri Recommended One-Way Latency Direct implication on inter-node distances UPF 5G Core CU DU RU Backhaul Midhaul Fronthaul >10ms 1ms 100!s (50!s for URLLC) >2000km 200km 20km (10km for URLLC) Fiber Latency=5!s/km 19 NANOG 75

20 IEEE 802.1CM Time Sensitive Networks QoS for mixing Fronthaul with other traffic flows Profile A: Strict Priority Ingress traffic Fronthaul: High Priority Other: Low Priority Supported Today Fronthaul 3 2 Egress port: Other 4 1 Profile B: Frame Preemption (<10GE only) Fronthaul: Express Traffic Other: Preemptable Traffic Frame Preemption Requires MAC Change (mated boxes on a link) Egress port: NANOG 75

21 ecpri Fronthaul Depends on External Synchronization Timing architecture driven by RAN features and TE budget Tight TE Budget Relaxed TE Budget GPS RU T-GM CU DU RU DU T-TSC RU TE (relative) Core T-TSC T-TSC RU TE (relative) Fronthaul Backhaul Midhaul Fronthaul T-GM T-TSC T-BC T-BC T-TSC G SyncE G SyncE Router TE classes (G ) Class A ±50 B ±20 C ±10 Max TE (ns) Radio Timing Requirements Category Max TE (ns) RAN features A+ ±20 (relative) MIMO, Tx-diversity A ±70 (relative) Intra-band CA B ±200 (relative) Inter-band CA C ±1100 (absolute)* Basic TDD, LTE CoMP/eICIC *Note: Time error figures are between any two given RUs in the network, except for Category C which is an absolute value from the timing source (T-GM). 21 NANOG 75

22 Summary: No One-Size Fits-All Solution Radio and /Transport planning must be done together Backhaul (>10ms) Midhaul (1ms) Fronthaul (100us) 5G Core CU DU RU DATA CENTER/NFVI 5G Core Backhaul (>10ms) Backhaul (>10ms) CU Midhaul (1ms) Fronthaul (100us) DU+RU 5G Core CU+DU RU Backhaul (>10ms) 5G Core CU+DU+RU 22 NANOG 75

23 Thank You! Igor Giangrossi 23

IMPACT OF 5G RAN ARCHITECTURE IN TRANSPORT

IMPACT OF 5G RAN ARCHITECTURE IN TRANSPORT IMPACT OF 5G RAN ARCHITECTURE IN TRANSPORT NETWORKS Daniel Camps (i2cat) ONDM 2018 Optical Technologies in the 5G era (Workshop) Bristol 5G city testbed with 5G-XHaul extensions OUTLINE From 4G to 5G architecture

More information

ITSF - TIMING FOR 5G SYNCHRONISATION REQUIREMENTS FOR 5G

ITSF - TIMING FOR 5G SYNCHRONISATION REQUIREMENTS FOR 5G ITSF - TIMING FOR 5G SYNCHRONISATION REQUIREMENTS FOR 5G Agenda LTE A-PRO What defines 5G 5G use cases Use cases mapped to capabilities Network Slicing 5G New Radio timeline 5G new interfaces & RAN functional

More information

ITU-T. Technical Report GSTR-TN5G. Transport network support of IMT-2020/5G. (9 February 2018)

ITU-T. Technical Report GSTR-TN5G. Transport network support of IMT-2020/5G. (9 February 2018) I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n ITU-T TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU Technical Report (9 February 2018) GSTR-TN5G Transport network support of IMT-2020/5G

More information

Priority Considerations for Fronthaul Traffic. Raghu M. Rao, Xilinx Inc.

Priority Considerations for Fronthaul Traffic. Raghu M. Rao, Xilinx Inc. Priority Considerations for Fronthaul Traffic Raghu M. Rao, Xilinx Inc. Compliance with IEEE Standards Policies and Procedures Subclause 5.2.1 of the IEEE-SA Standards Board Bylaws states, "While participating

More information

ITU-T. Technical Report GSTR-TN5G. Transport network support of IMT-2020/5G. (19 October 2018)

ITU-T. Technical Report GSTR-TN5G. Transport network support of IMT-2020/5G. (19 October 2018) I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n ITU-T TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU Technical Report (19 October 2018) GSTR-TN5G Transport network support of IMT-2020/5G

More information

Visionary Technology Presentations

Visionary Technology Presentations Visionary Technology Presentations The path toward C-RAN and V-RAN Philippe Chanclou, 5G WORLD 5G LIVE! THEATRE - DAY ONE JUNE 29th 2016 29th 30 th June 2016 London U-K Co-Ax The Radio Access Network architecture

More information

Examining the Fronthaul Network Segment on the 5G Road Why Hybrid Optical WDM Access and Wireless Technologies are required?

Examining the Fronthaul Network Segment on the 5G Road Why Hybrid Optical WDM Access and Wireless Technologies are required? Examining the Fronthaul Network Segment on the 5G Road Why Hybrid Optical WDM Access and Wireless Technologies are required? Philippe Chanclou, Sebastien Randazzo, 18th Annual Next Generation Optical Networking

More information

Common Public Radio Interface

Common Public Radio Interface Common Public Radio Interface ecpri presentation 2018 Ericsson AB, Huawei Technologies Co. Ltd, NEC Corporation and Nokia. Background 1/2 1. Operator view of CPRI features Although CPRI has been the main

More information

xran and C-RAN Integration in M-CORD

xran and C-RAN Integration in M-CORD xran and C-RAN Integration in M-CORD Dr. Sassan Ahmadi Director of 5G Wireless Systems and Standards Xilinx Inc. November 8, 2017 Outline Cloud RAN Integration in M-CORD 4G to 5G Technology Evolution 3GPP

More information

IEEE 1914 NGFI (xhaul): efficient and scalable fronthaul transport for 5G

IEEE 1914 NGFI (xhaul): efficient and scalable fronthaul transport for 5G : efficient and scalable fronthaul transport for 5G Aleksandra Checko, PhD Editor of IEEE 1914.1/MTI Radiocomp BackNets 2017 In conjunction with IEEE VTC Fall 2017 Toronto, Canada September 24, 2017 Base

More information

Common Public Radio Interface

Common Public Radio Interface Common Public Radio Interface ecpri Overview Tero Mustala and Olivier Klein, Nokia Background 1/2 1. Operator view of CPRI features Although CPRI has been the main Fronthaul interface standard, many operators

More information

Challenges in Data-Center Technologies for Distributed Radio Signal Processing. Raymond Knopp EURECOM, Communication Systems Department

Challenges in Data-Center Technologies for Distributed Radio Signal Processing. Raymond Knopp EURECOM, Communication Systems Department Challenges in Data-Center Technologies for Distributed Radio Signal Processing Raymond Knopp EURECOM, Communication Systems Department Some visions of 5G and beyond 5G and beyond is not only New Radio

More information

MEF 3.0 & The Road to 5G: Transport, Network Slicing, Orchestration, and Fixed- Mobile Convergence

MEF 3.0 & The Road to 5G: Transport, Network Slicing, Orchestration, and Fixed- Mobile Convergence MEF 3.0 & The Road to 5G: Transport, Network Slicing, Orchestration, and Fixed- Mobile Convergence Emerson Moura Distinguished Systems Engineer Cisco 2 What is new in 5G? 5G Is Use-Case Driven Massive

More information

Overview and requirements

Overview and requirements Overview and requirements Aleksandra Checko, MTI Andrijana Popovska Avramova, Foxconn Morten Høgdal, Foxconn IEEE 1914 f2f meeting, Beijing, CN 01/17-19/2017 Compliance with IEEE Standards Policies and

More information

GTI 5G Network Architecture White Paper

GTI 5G Network Architecture White Paper GTI 5G Network Architecture White Paper http://www.gtigroup.org Page0 5G Network Architecture White Paper V 1.0 Version V1.0 Deliverable Type Confidential Level Procedural Document Working Document Open

More information

5G Cloud-RAN and Fronthaul 5G-KS 2018 (IITM Research Park)

5G Cloud-RAN and Fronthaul 5G-KS 2018 (IITM Research Park) 5G Cloud-RAN and Fronthaul 5G-KS 2018 (IITM Research Park) RaviKanth Pasumarthy, AVP Technology Vinesh Varghese, Director Technology 5G Use-cases & Requirements Ultra Reliable Low Latency Communication

More information

NG Fronthaul Network Requirements and Architecture. Tony Tam Fujitsu Network Communications Peter K. Cho Actus Networks/HFR, Inc

NG Fronthaul Network Requirements and Architecture. Tony Tam Fujitsu Network Communications Peter K. Cho Actus Networks/HFR, Inc NG Fronthaul Network Requirements and Architecture Tony Tam Fujitsu Network Communications Peter K. Cho Actus Networks/HFR, Inc Compliance with IEEE Standards Policies and Procedures Subclause 5.2.1 of

More information

INTRODUCTION TO LTE. ECE MOBILE COMMUNICATION Monday, 25 June 2018

INTRODUCTION TO LTE. ECE MOBILE COMMUNICATION Monday, 25 June 2018 INTRODUCTION TO LTE ECE 2526 - MOBILE COMMUNICATION Monday, 25 June 2018 1 WHAT IS LTE? 1. LTE stands for Long Term Evolution and it was started as a project in 2004 by the Third Generation Partnership

More information

Transport Requirements for a 5G Broadband Use Case. Vishwanath Ramamurthi Thomas Tan Shankar Venkatraman Verizon

Transport Requirements for a 5G Broadband Use Case. Vishwanath Ramamurthi Thomas Tan Shankar Venkatraman Verizon Transport Requirements for a 5G Broadband Use Case Vishwanath Ramamurthi Thomas Tan Shankar Venkatraman Verizon Compliance with IEEE Standards Policies and Procedures Subclause 5.2.1 of the IEEE-SA Standards

More information

Packet-based fronthaul - a critical enabler of 5G

Packet-based fronthaul - a critical enabler of 5G Packet-based fronthaul - a critical enabler of 5G Comcores a leading supplier of IP-solutions takes a significant step towards workable 5G with Radio over Ethernet/5G NR demonstrator Comcores Authors:

More information

Fronthaul scenarios and 1914 transport classes. Vincenzo Sestito, SM Optics June 22 nd, 2017

Fronthaul scenarios and 1914 transport classes. Vincenzo Sestito, SM Optics June 22 nd, 2017 Fronthaul scenarios and 1914 transport classes Vincenzo Sestito, SM Optics June 22 nd, 2017 Compliance with IEEE Standards Policies and Procedures Subclause5.2.1 of the IEEE-SA Standards Board Bylaws states,

More information

DAY 2. HSPA Systems Architecture and Protocols

DAY 2. HSPA Systems Architecture and Protocols DAY 2 HSPA Systems Architecture and Protocols 1 LTE Basic Reference Model UE: User Equipment S-GW: Serving Gateway P-GW: PDN Gateway MME : Mobility Management Entity enb: evolved Node B HSS: Home Subscriber

More information

Converged backhaul and fronthaul considerations. Jouni Korhonen Broadcom Ltd. 10/26-28/2016 IEEE TF

Converged backhaul and fronthaul considerations. Jouni Korhonen Broadcom Ltd. 10/26-28/2016 IEEE TF Converged backhaul and fronthaul considerations Jouni Korhonen Broadcom Ltd. 10/26-28/2016 IEEE 1914.1 TF Compliance with IEEE Standards Policies and Procedures Subclause 5.2.1 of the IEEE-SA Standards

More information

Towards 5G RAN Virtualization Enabled by Intel and ASTRI*

Towards 5G RAN Virtualization Enabled by Intel and ASTRI* white paper Communications Service Providers C-RAN Towards 5G RAN Virtualization Enabled by Intel and ASTRI* ASTRI* has developed a flexible, scalable, and high-performance virtualized C-RAN solution to

More information

Split Options for 5G Radio Access Networks. Paul Arnold, Nico Bayer, Jakob Belschner, Gerd Zimmermann Technology Innovation Deutsche Telekom AG

Split Options for 5G Radio Access Networks. Paul Arnold, Nico Bayer, Jakob Belschner, Gerd Zimmermann Technology Innovation Deutsche Telekom AG Split Options for 5G Radio Access Networks Paul Arnold, Nico Bayer, Jakob Belschner, Gerd Zimmermann Technology Innovation Deutsche Telekom AG Introduction Two splits envisioned in the 5G RAN Control-Plane

More information

RAN slicing as enabler for low latency services

RAN slicing as enabler for low latency services RAN slicing as enabler for low latency services Presented by A. Maeder, NOKIA Bell Labs Contributions by Z. Li, P. Rost, C. Sartori, A. Prasad, C. Mannweiler ITG 5.2.4 Fachgruppentreffen Dresden, June

More information

Network slicing impact on transport NW. Lujing Cai, Abdellah Tazi AT&T

Network slicing impact on transport NW. Lujing Cai, Abdellah Tazi AT&T Network slicing impact on transport NW Lujing Cai, Abdellah Tazi AT&T Compliance with IEEE Standards Policies and Procedures Subclause 5.2.1 of the IEEE-SA Standards Board Bylaws states, "While participating

More information

Front-Haul challenges for future radio access

Front-Haul challenges for future radio access ECOC2014 Sunday Workshop, WS5 Front-Haul challenges for future radio access Sep. 21 st, 2014 Shigeru Kuwano NTT Access Network Service Systems Laboratories, NTT Corporation kuwano.shigeru@lab.ntt.co.jp

More information

5G-oriented Optical Transport Network Solution

5G-oriented Optical Transport Network Solution 5G-oriented Optical Transport Network Solution Contents Overview 5G Development Brings Challenges to Bearer Networks Impact of 5G Network Architecture Changes on Bearer Networks Fronthaul Network Solutions

More information

New Transport Network Architectures for 5G RAN

New Transport Network Architectures for 5G RAN Independent market research and competitive analysis of next-generation business and technology solutions for service providers and vendors New Transport Network Architectures for 5G RAN A Heavy Reading

More information

Minimum Technical Performance Requirements for IMT-2020 radio interface(s)

Minimum Technical Performance Requirements for IMT-2020 radio interface(s) Minimum Technical Performance Requirements for IMT-2020 radio interface(s) Eiman Mohyeldin ITU-R Workshop on IMT-2020 terrestrial radio interfaces 1 Nokia 2016 Introduction The capabilities of IMT-2020

More information

Session 7: 5G networks and 3GPP Release 15

Session 7: 5G networks and 3GPP Release 15 Session 7: 5G networks and 3GPP Release 15 ITU Asia-Pacific Centre of Excellence Training On Traffic engineering and advanced wireless network planning 17-19 October 2018, Suva, Fiji Sami Tabbane 1 Objectives

More information

Bidirectional 10&40 km Optical PHY for 50GbE. Xinyuan Wang Huawei Technologies

Bidirectional 10&40 km Optical PHY for 50GbE. Xinyuan Wang Huawei Technologies Bidirectional 10&40 km Optical PHY for 50GbE Xinyuan Wang Huawei Technologies Background In IEEE 802 March plenary meeting, Call For Interest Bidirectional 10Gb/s and 25Gb/s optical access PHYs is accepted

More information

Front-haul networking for 5G: An analysis of technologies and standardization

Front-haul networking for 5G: An analysis of technologies and standardization Front-haul networking for 5G: An analysis of technologies and standardization HUAWEI TECHNOLOGIES CO., LTD. Hassan Halabian hassan.halabian@huawei.com Canada Research Center November 2017 Cloud-RAN Advantages:

More information

Multi-Layer and Cloud-Ready Radio Evolution Towards 5G

Multi-Layer and Cloud-Ready Radio Evolution Towards 5G Multi-Layer and Cloud-Ready Radio Evolution Towards 5G Nokia white paper Multi-Layer and Cloud-Ready Radio Evolution Towards 5G White Paper Contents 1. Executive summary 3 2. The path towards 5G 3 3. Centralized

More information

Flexible Ethernet Fronthaul. Philippos Assimakopoulos Communications Research Group, University of Kent, Canterbury, UK

Flexible Ethernet Fronthaul. Philippos Assimakopoulos Communications Research Group, University of Kent, Canterbury, UK Flexible Ethernet Fronthaul Philippos Assimakopoulos Communications Research Group, University of Kent, Canterbury, UK Compliance with IEEE Standards Policies and Procedures Subclause 5.2.1 of the IEEE-SA

More information

The path toward C-RAN and V-RAN: benefits and challenges from operator perspective

The path toward C-RAN and V-RAN: benefits and challenges from operator perspective TELECOM ITALIA GROUP 5G World Summit London, 29-30 June 2016 : benefits and challenges from operator perspective Marco Caretti Telecom Italia Engineering & TiLAB Agenda The drivers for the RAN evolution

More information

INTRODUCING THE 5G-PPP 5G-XHAUL PROJECT

INTRODUCING THE 5G-PPP 5G-XHAUL PROJECT INTRODUCING THE 5G-PPP 5G-XHAUL PROJECT Anna Tzanakaki (University of Bristol, NKUA) Bristol 5G city testbed with 5G-XHaul extensions www.5g-xhaul-project.eu 1. CONSORTIUM OVERVIEW IHP GmbH (Coordinator)

More information

Towards 5G: Advancements from IoT to mmwave Communcations. Next Generation and Standards Princeton IEEE 5G Summit May 26, 2015

Towards 5G: Advancements from IoT to mmwave Communcations. Next Generation and Standards Princeton IEEE 5G Summit May 26, 2015 Towards 5G: Advancements from IoT to mmwave Communcations Next Generation and Standards Princeton IEEE 5G Summit May 26, 2015 5G requirements and challenges 1000x network capacity 10x higher data rate,

More information

Connected World. Connected Experiences. Fronthaul Technologies in vran

Connected World. Connected Experiences. Fronthaul Technologies in vran Connected World. Connected Experiences. Fronthaul Technologies in vran Introduction The mobile communication industry is currently heading towards the fifth generation (5G) network. The new network strategy

More information

5G Core Network Standardization

5G Core Network Standardization 5G Core Network Standardization 2018.09.18 @TAICS For TAICS Sharing 2018.07.26 New Business Opportunities in 5G Era 2 Wearables VR/AR/MR Automotive Smart City Data,, Data,, Data 2/3/4G establish the value

More information

Possible network parameters on IMT-2020/5G transport network

Possible network parameters on IMT-2020/5G transport network Possible network parameters on IMT-2020/5G transport network 16 th, October, 2017 KDDI (Japan) Noboru Yoshikane Agenda 1. Introduction ITU-R IMT vision Possible usage scenarios 2. Possible 5G network deployment

More information

1.1 Beyond 3G systems

1.1 Beyond 3G systems 1 Introduction The cellular wireless communications industry witnessed tremendous growth in the past decade with over four billion wireless subscribers worldwide. The first generation (1G) analog cellular

More information

Network Slicing. Tony Tam. September 26, 2017 Burnaby, Canada

Network Slicing. Tony Tam. September 26, 2017 Burnaby, Canada Network Slicing Tony Tam September 26, 2017 Burnaby, Canada Network Slicing IMT-2020 Traffic bandwidth, connection density, and stringent delay has increased up to 3 order of magnitude from 4G network

More information

5G E2E Slicing Technology Update

5G E2E Slicing Technology Update 5G E2E Slicing Technology Update Jianjun Wu Director, Future Arch. Lab, Huawei June 28 th, 2018 frequency Major Components of 5G Slicing EMBB time (( MEC MMTC 2 1 3 SDN 5G - UE URLLC other 5 5G air(s)

More information

Bringing Field Testing Into the 5G Lab System Verification Life Cycle

Bringing Field Testing Into the 5G Lab System Verification Life Cycle White Paper Bringing Field Testing Into the 5G Lab System Verification Life Cycle VIAVI Solutions Overview 5G is revolutionizing the connected world, bringing broadband capacity, gigabit speeds, ultra-reliability,

More information

The Impact of 5G Air Interfaces on Converged Fronthaul/Backhaul. Jens Bartelt TU Dresden / 5G-XHaul

The Impact of 5G Air Interfaces on Converged Fronthaul/Backhaul. Jens Bartelt TU Dresden / 5G-XHaul The Impact of 5G Air Interfaces on Converged Fronthaul/Backhaul Jens Bartelt TU Dresden / 5G-XHaul Compliance with IEEE Standards Policies and Procedures Subclause 5.2.1 of the IEEE-SA Standards Board

More information

5G NETWORK ARCHITECTURE

5G NETWORK ARCHITECTURE 09 5G NETWORK ARCHITECTURE The 20th December 2017 will be remembered as an important day in telecommunications history as, on this day, during a meeting in Lisbon, Portugal, 3GPP (3rd Generation Partnership

More information

Evolution of OAI Software towards 5G NR Raymond Knopp Communication Systems Department EURECOM

Evolution of OAI Software towards 5G NR Raymond Knopp Communication Systems Department EURECOM Evolution of OAI Software towards 5G NR Raymond Knopp Communication Systems Department EURECOM Unleashing the potential of open-source in the 5G arena Outline Overview of 5G NR Network Evolution (very

More information

5G transport latency requirement analysis. Lujing Cai, Abdellah Tazi AT&T

5G transport latency requirement analysis. Lujing Cai, Abdellah Tazi AT&T 5G transport latency requirement analysis Lujing Cai, Abdellah Tazi AT&T Compliance with IEEE Standards Policies and Procedures Subclause 5.2.1 of the IEEE-SA Standards Board Bylaws states, "While participating

More information

Provide One Year Free Update!

Provide One Year Free Update! QUESTION & ANSWER HIGHER QUALITY, BETTER SERVICE Provide One Year Free Update! https://www.passquestion.com Exam : NCS_20020301010 Title : NCSS LTE RA OaM 2.0 Version : DEMO 1 / 5 1.What is the main motivation

More information

Timing & Synchronization in Wireless Infrastructure

Timing & Synchronization in Wireless Infrastructure Timing & Synchronization in Wireless Infrastructure Harpinder Singh Matharu Senior Product Manager, Comms Division, ilinx 11/4/2010 Copyright 2010 ilinx Topics Wireless Infrastructure Market Trends Timing

More information

ecpri Specification V1.0 ( )

ecpri Specification V1.0 ( ) e Specification V.0 (0-0-) Interface Specification Common Public Radio Interface: e Interface Specification The e specification has been developed by Ericsson AB, Huawei Technologies Co. Ltd, NEC Corporation

More information

5G Impact: Remote Surgery Enabled via InterDigital s EdgeLink mmw Transport InterDigital, Inc. All Rights Reserved.

5G Impact: Remote Surgery Enabled via InterDigital s EdgeLink mmw Transport InterDigital, Inc. All Rights Reserved. 5G Impact: Remote Surgery Enabled via InterDigital s EdgeLink mmw Transport For over four decades, InterDigital has been a pioneer in mobile technology and a key contributor to global wireless standards.

More information

White Paper Transporting 5G from Vision to Reality

White Paper Transporting 5G from Vision to Reality White Paper Transporting 5G from Vision to Reality Page 1 of 6 As the race to deploy 5G gathers speed, the reality of building out new and different network architectures presents a variety of complex

More information

LTE-Advanced Relay. Oct 18, 2011

LTE-Advanced Relay. Oct 18, 2011 LTE-Advanced Relay Oct 18, 2011 LTE/LTE-A Overview 3GPP Rel-10 Relay LTE-A Relay 3GPP Rel-11 Relay 2 LTE/LTE-A Overview 3GPP Rel-10 Relay LTE-A Relay 3GPP Rel-11 Relay 3 Cellular Roadmap Spectrum Efficiency

More information

Requirements for 5G Fronthaul

Requirements for 5G Fronthaul Requirements for 5G Fronthaul L. Valcarenghi, K. Kondepu, F. Giannone, A. Marotta*, P. Castoldi Scuola Superiore Sant Anna, Pisa, Italy Università degli studi dell Aquila IEEE SA P1914.1 presentation Conference

More information

Fronthaul architecture towards 5G

Fronthaul architecture towards 5G Fronthaul architecture towards 5G Multiplexing gains analysis Challenges/solutions for fronthaul network Aleksandra Checko, MTI 8/22-24/2016 In collaboration with: MTI Radiocomp: Andrijana Popovska Avramova,

More information

Fronthaul and Backhaul for 5G and Beyond

Fronthaul and Backhaul for 5G and Beyond Fronthaul and Backhaul for 5G and Beyond Alain Mourad COST IRACON, Durham, October 2016 A Presence Focused on the World s Wireless Centers Asia, Seoul 2015 InterDigital, Inc. All Rights Reserved. InterDigital

More information

From virtualization, thru multivendor sharing to 5G RAN modularization. Mark Grayson Distinguished Engineer 7/8 November 2017

From virtualization, thru multivendor sharing to 5G RAN modularization. Mark Grayson Distinguished Engineer 7/8 November 2017 From virtualization, thru multivendor sharing to 5G RAN modularization Mark Grayson Distinguished Engineer 7/8 November 2017 Radio Network Evolution Hyper Dense Outdoor Network Coverage and capacity for

More information

Converged Ethernet for Next- Generation x-haul

Converged Ethernet for Next- Generation x-haul intelligent Converged Network consolidating Radio and optical access arounduser equipment Converged ernet for Next- Generation x-haul Daniel Muench (EuCNCWorkshop Towards Converged X-Haul for 5G Networks

More information

Brainstorming Workshop on 5G Standardization: WISDOM. by A.K.MITTAL Sr. Deputy Director General Telecom Engineering Centre, K.L.

Brainstorming Workshop on 5G Standardization: WISDOM. by A.K.MITTAL Sr. Deputy Director General Telecom Engineering Centre, K.L. Brainstorming Workshop on 5G Standardization: WISDOM by A.K.MITTAL Sr. Deputy Director General Telecom Engineering Centre, K.L. Bhawan, Delhi 1 st September, 2014 Index 3G and Beyond ITU Work on Future

More information

Why Synchronization Is Important to 5G

Why Synchronization Is Important to 5G Why Synchronization Is Important to 5G Greg Armstrong Principal System Architect - Precision Time Synchronization June 19, 2018 1 Introduction Source: The METIS 5G Architecture: A Summary of METIS Work

More information

5G-XHaul Dynamic Reconfigurable Optical-Wireless Backhaul / Fronthaul for 5G Small Cells and Cloud-RANs

5G-XHaul Dynamic Reconfigurable Optical-Wireless Backhaul / Fronthaul for 5G Small Cells and Cloud-RANs 5G-XHaul Dynamic Reconfigurable Optical-Wireless Backhaul / Fronthaul for 5G Small Cells and Cloud-RANs Presenter: Konstantinos Filis, Ph.D. R&D Senior Engineer 2/11/2016 5G-Xhaul Partners, Funding and

More information

IEEE NetSoft 2016 Keynote. June 7, 2016

IEEE NetSoft 2016 Keynote. June 7, 2016 IEEE NetSoft 2016 Keynote June 7, 2016 0 Contents Introduction - Network Evolution & Operator Challenges Re-architecting the RAN SDRAN: Software-defined RAN - Overview & Enabling Features SDRAN Opportunities

More information

INTRODUCING THE 5G-PPP 5G-XHAUL PROJECT Daniel Camps (i2cat) Bristol 5G city testbed with 5G-XHaul extensions

INTRODUCING THE 5G-PPP 5G-XHAUL PROJECT Daniel Camps (i2cat) Bristol 5G city testbed with 5G-XHaul extensions INTRODUCING THE 5G-PPP 5G-XHAUL PROJECT Daniel Camps (i2cat) Bristol 5G city testbed with 5G-XHaul extensions OUTLINE 1) 5G-XHaul introduction 2) 5G-XHaul architectural aspects 3) Sample of data-plane

More information

Examining The C-RAN Business Case For Mobile Operators. RAN & Backhaul Networks, Berlin May 20, 2015

Examining The C-RAN Business Case For Mobile Operators. RAN & Backhaul Networks, Berlin May 20, 2015 Examining The C-RAN Business Case For Mobile Operators RAN & Backhaul Networks, Berlin May 20, 2015 Cloud RAN Defined Stage 1 Stage 2 Centralization Virtualization Distributed RAN Baseband processing in

More information

Mobile-CORD Enable 5G. ONOS/CORD Collaboration

Mobile-CORD Enable 5G. ONOS/CORD Collaboration Mobile-CORD Enable 5G ONOS/CORD Collaboration http://opencord.org/ M-CORD Drivers = Operator Challenges In the last 5 years 100,000% Increase in Wireless Data Traffic $50 Billion Spectrum investment (~50

More information

ecpri Transport Network V1.0 ( )

ecpri Transport Network V1.0 ( ) e Transport Network V.0 (0-0-) Requirements Specification Common Public Radio Interface: Requirements for the e Transport Network The e Transport Network Requirements Specification has been developed by

More information

5G NSA for MME. Feature Summary and Revision History

5G NSA for MME. Feature Summary and Revision History Feature Summary and Revision History, on page 1 Feature Description, on page 2 How It Works, on page 5 Configuring, on page 10 Monitoring and Troubleshooting, on page 13 Feature Summary and Revision History

More information

Performance Analysis of Cloud Radio Access Network

Performance Analysis of Cloud Radio Access Network Performance Analysis of Cloud Radio Access Network Asrat Temare Chekol Master of Science in Telematics - Communication Networks and Networked Submission date: August 2017 Supervisor: Eirik Larsen Følstad,

More information

5g and standards: managing complexity, ensuring interoperability

5g and standards: managing complexity, ensuring interoperability 5g and standards: managing complexity, ensuring interoperability SHIV K. BAKHSHI, Ph.D., VP, INDUSTY RELATIONS, GROUP FUNCTION TECHNOLOGY ITU-D regional workshop on emerging technologies, algiers, Algeria,

More information

Leading the Path to 5G

Leading the Path to 5G www.atis.org/5g2016 Follow us on Twitter @atisupdates Leading the Path to 5G Sanjeev Athalye Senior Director, Product Management, Qualcomm Dr. Arun Ghosh Director, Advanced Radio Group, AT&T 5G: From Concept

More information

5G Mobile Core Networks: Migration From NSA to SA 5G Core

5G Mobile Core Networks: Migration From NSA to SA 5G Core Independent market research and competitive analysis of next-generation business and technology solutions for service providers and vendors 5G Mobile Core Networks: Migration From NSA to SA 5G Core A Heavy

More information

Dali virtual Fronthaul Solution. Virtualizing the Fronthaul for 5G

Dali virtual Fronthaul Solution. Virtualizing the Fronthaul for 5G Dali virtual Fronthaul Solution The Dali virtual Fronthaul Solution gives operators, neutral hosts and enterprises a groundbreaking approach to meeting the intense demands placed on the network fronthaul

More information

Roadmap for 5G Enhancements to Communication Technology

Roadmap for 5G Enhancements to Communication Technology Roadmap for 5G Enhancements to Communication Technology FIIF Future Avenues - Aalto University October 25 th, 2016 Harri Holma, Fellow Nokia Bell Labs Finland #1 in Mobile Data Usage Great Starting Point

More information

Toward 5G Deployment in 2020 and Beyond

Toward 5G Deployment in 2020 and Beyond 2016 NTT DOCOMO, INC. All Rights Reserved. Toward Deployment in 2020 and Beyond Takehiro Nakamura NTT DOCOMO, Inc. Time Plan for and + 2016 NTT DOCOMO, INC. All Rights Reserved. 2 2014 2015 2016 2017 2018

More information

RAN Node Definition for NGFI. Lujing Cai, Abdellah Tazi AT&T

RAN Node Definition for NGFI. Lujing Cai, Abdellah Tazi AT&T RAN Node Definition for NGFI Lujing Cai, Abdellah Tazi AT&T Compliance with IEEE Standards Policies and Procedures Subclause 5.2.1 of the IEEE-SA Standards Board Bylaws states, "While participating in

More information

5G and Open Source Networking

5G and Open Source Networking #Generation5G 5G and Open Source Networking Jamil Chawki Contributor: Vincent Colas From 1G to 5G 5G Customer expectation, usage & main challenges 5G core network transformation Network Slicing Service-Based

More information

What is the status of 5G standardiza2on. Sofie Pollin ESAT TELEMIC, KU Leuven

What is the status of 5G standardiza2on. Sofie Pollin ESAT TELEMIC, KU Leuven What is the status of 5G standardiza2on Sofie Pollin ESAT TELEMIC, KU Leuven 1 ITU Vision for IMT-2020 and Beyond > 10 Gbps Peak rates > 1M / km 2 Connec?ons < 1 ms Latency 2 [Source: Na?onal Instruments]

More information

5G Standards and Outlook for 5G Unlicensed

5G Standards and Outlook for 5G Unlicensed 5G Standards and Outlook for 5G Unlicensed Antti Toskala Bell Labs Fellow Nokia Bell Labs June 1 3GPP RAN Release 15 Schedule both 5G SA and NSA specs now available! Building the baseline for next phase

More information

Questions about LAA deployment scenarios

Questions about LAA deployment scenarios Questions about LAA deployment scenarios Document IEEE 802.19-15-0060-00-0000 Submitted 2015-07-14 Source Roger B. Marks BaiCells r.b.marks@ieee.org +1-802-capable Abstract Purpose This document discusses

More information

ITU Arab Forum on Future Networks: "Broadband Networks in the Era of App Economy", Tunis - Tunisia, Feb. 2017

ITU Arab Forum on Future Networks: Broadband Networks in the Era of App Economy, Tunis - Tunisia, Feb. 2017 On the ROAD to 5G Ines Jedidi Network Products, Ericsson Maghreb ITU Arab Forum on Future Networks: "Broadband Networks in the Era of App Economy", Tunis - Tunisia, 21-22 Feb. 2017 agenda Why 5G? What

More information

BROWSING Feature phones and mobile broadband introduction. VIDEO Smartphone popularization and mobile data traffic exponentially increase

BROWSING Feature phones and mobile broadband introduction. VIDEO Smartphone popularization and mobile data traffic exponentially increase this is 5g what is 5g? Previous generations of mobile networks addressed consumers predominantly for voice and SMS in 2G, web-browsing in 3G and higherspeed data and video streaming in 4G. The transition

More information

GETTING NETWORK INFRASTRUCTURE READY FOR 5G

GETTING NETWORK INFRASTRUCTURE READY FOR 5G GETTING NETWORK INFRASTRUCTURE READY FOR 5G Sergiy Bityukov Senior Marketing Manager May 19, 2018 www.utstar.com UTStarcom a global telecom infrastructure provider Founded in 1991, started trading on NASDAQ

More information

6th Global 5G Event Brazil - Versão de 30 ago

6th Global 5G Event Brazil - Versão de 30 ago 6th Global 5G Event Brazil - Versão de 30 ago 2018 1 CONTENTS 5G VISION ENHANCEMENT FROM IMT-ADVANCED 5G ENABLING TECHNOLOGIES 5G TRIAL IN KOREA 5G VERTICAL SMART-CITY 5G VERTICAL AUTONOMOUS-DRIVING, SMART-FACTORY

More information

SK Telecom proprietary

SK Telecom proprietary 0 2016 SK Telecom proprietary Mobile network evolution 5G will require an All-IT infra to support services such as VR and mission-critical IoT services 1G 2G 3G 4G 5G Tech Digital Packet LTE All-IP New

More information

Transport Network Slicing Chapter Part 1 Key Attributes & Requirements

Transport Network Slicing Chapter Part 1 Key Attributes & Requirements Transport Network Slicing Chapter Part 1 Key Attributes & Requirements Tony Tam Fujitsu Network Communications June 28-30, 2017 IEEE 1914.1 TF Compliance with IEEE Standards Policies and Procedures Subclause

More information

Path to 5G: A Control Plane Perspective

Path to 5G: A Control Plane Perspective Path to 5G: A Control Plane Perspective Erik Guttman 1 and Irfan Ali 2 1 Chairman of 3GPP TSG-SA, Samsung Electronics, Germany 2 Senior 5G architect at Cisco Systems, USA E-mail: erik.guttman@samsung.com;

More information

Softwarized LTE Self-Backhauling Solution and Its Evaluation

Softwarized LTE Self-Backhauling Solution and Its Evaluation Softwarized LTE Self-Backhauling Solution and Its Evaluation José Gamboa, Ilker Demirkol Department of Network Engineering Universitat Politecnica de Catalunya, Barcelona, Spain Email: {jose.umberto.gamboa,

More information

5G Vision. Ali Khayrallah Ericsson Research San Jose, CA

5G Vision. Ali Khayrallah Ericsson Research San Jose, CA 5G Vision Ali Khayrallah Ericsson Research San Jose, CA Industry transformation Traditional Industries Digitalize & Mobilize Transformed Industries Operators & Network Devices Applications Ericsson 2015

More information

Access network systems for future mobile backhaul networks

Access network systems for future mobile backhaul networks Access network systems for future mobile backhaul networks Nov. 6, 2012 Seiji Yoshida NTT Network Technology Laboratories NTT Corporation 1 Outline Mobile Traffic Growth in Japan Future Mobile Base Station

More information

R&D Status of IMT-2020 (5G) Promotion Group. WANG Zhiqin May 24, 2017

R&D Status of IMT-2020 (5G) Promotion Group. WANG Zhiqin May 24, 2017 R&D Status of IMT-2020 (5G) Promotion Group WANG Zhiqin May 24, 2017 Table of Contents General Aspects of IMT-2020 PG 5G R&D Progress of IMT-2020 PG Technology & Standards Network & Security Technology

More information

LTE system performance optimization by RED based PDCP buffer management

LTE system performance optimization by RED based PDCP buffer management LTE system performance optimization by RED based PDCP buffer management Umar Toseef 1,2, Thushara Weerawardane 2, Andreas Timm-Giel 2, Carmelita Görg 1 1, University of Bremen, Bremen, Germany 2, TUHH,

More information

ENABLING 5G NETWORKS & MULTI-ACCESS EDGE CLOUD

ENABLING 5G NETWORKS & MULTI-ACCESS EDGE CLOUD ENABLING 5G NETWORKS & MULTI-ACCESS EDGE CLOUD OĞUZ SUNAY CHIEF ARCHITECT OPEN NETWORKING FOUNDATION 5G & NETWORK 1 TRANSFORMATION CONFERENCE OCTOBER 17, 2018 OUTLINE WHY DO TELCOS NEED AN EDGE CLOUD?

More information

Bringing 5G into Reality

Bringing 5G into Reality Bringing 5G into Reality Dr. Wen Tong Huawei Fellow, CTO Huawei Wireless March 22 nd, 2016 www.huawei.com HUAWEI TECHNOLOGIES CO., LTD. Page 1 A Tip of Iceberg Paradigm for Connected People embb 3D Video,

More information

5G Transport Network Requirements, Architecture and Key Technologies

5G Transport Network Requirements, Architecture and Key Technologies 5G Transport Network Requirements, Architecture and Key Technologies Han Li,China Mobile Geneva, 2017.10 Outline Requirements Analysis on 5G Transport Network Overview of Slicing Packet Network (SPN) Architecture

More information

INICTEL-UNI 15/11/2010. Tecnología de Banda Ancha Inalámbrica LTE

INICTEL-UNI 15/11/2010. Tecnología de Banda Ancha Inalámbrica LTE INICTEL-UNI 15/11/2010 Tecnología de Banda Ancha Inalámbrica LTE 1 2Market Overview 2 LTE Presentation / Alcatel-Lucent. Title January 2008 Market Trends iphone (Apple) and G1 (Google) are bandwidth drivers

More information

Evolving to an Open C-RAN Architecture for 5G

Evolving to an Open C-RAN Architecture for 5G Independent market research and competitive analysis of next-generation business and technology solutions for service providers and vendors Evolving to an Open C-RAN Architecture for 5G A Heavy Reading

More information

Dali Matrix. The Next Generation Platform for Wireless Coverage and Capacity

Dali Matrix. The Next Generation Platform for Wireless Coverage and Capacity Dali Matrix The Next Generation Platform for Wireless Coverage and Capacity Imagine the Possibilities Dali Matrix (Matrix) is a unified RF distribution platform capable of delivering cellular, public safety

More information