Converged backhaul and fronthaul considerations. Jouni Korhonen Broadcom Ltd. 10/26-28/2016 IEEE TF

Size: px
Start display at page:

Download "Converged backhaul and fronthaul considerations. Jouni Korhonen Broadcom Ltd. 10/26-28/2016 IEEE TF"

Transcription

1 Converged backhaul and fronthaul considerations Jouni Korhonen Broadcom Ltd. 10/26-28/2016 IEEE TF

2 Compliance with IEEE Standards Policies and Procedures Subclause of the IEEE-SA Standards Board Bylaws states, "While participating in IEEE standards development activities, all participants...shall act in accordance with all applicable laws (nation-based and international), the IEEE Code of Ethics, and with IEEE Standards policies and procedures." The contributor acknowledges and accepts that this contribution is subject to The IEEE Standards copyright policy as stated in the IEEE-SA Standards Board Bylaws, section 7, and the IEEE- SA Standards Board Operations Manual, section 6.1, The IEEE Standards patent policy as stated in the IEEE-SA Standards Board Bylaws, section 6, and the IEEE-SA Standards Board Operations Manual, section 6.3, 2

3 IEEE TF NGFI Bomin Li Practical approach to converged FH/BH network architecture and functional partitioning Date: Author(s): Name Affiliation Phone [optional] [optional] Jouni Korhonen Broadcom Ltd dcom.com 3

4 Outline Architecture proposal for converged fronthaul and backhaul network for 4.5/5G RAN. Proposal for NGFI interfaces based on different functional splits. 4

5 Objective (same from Aug meeting) Evolutionary path from 3/4G to 5G RAN. Identify the essential features from 4.5/5G RAN transport circuit & equipment realization point of view: Flexibility vs Bandwidth/time-synchronization/complexity/cost. Propose an architecture and functional splits to 4.5/5G RAN that: Allow E2E packet & Ethernet solutions. Allow converged fronthaul and backhaul network deployments. Scale up to 5G numbers keeping align with optics evolution. Aim at transport level interoperability. 5

6 Proposal Functional splits should aim for simplicity: Identify the most common and important functions that are easy to design 5G ready. Adopt the three interfaces proposed in this contribution as a baseline: NGFI1 lower layer splits ; high volume of nodes, lower bandwidth per device but tight synchronization demands. NGFI2 lower layer splits ; aggregation, converged front- and backhaul, high aggregated traffic volumes and tight synchronization demands. NGFI3 higher layer splits ; with full service provider functions. High aggerated badwidth per node. 6

7 Functional splits and radio features.. Higher layer splits Lower layer splits User processing Cell processing RRC PDCP RLC Low- RLC MAC Low- MAC PHY Low-PHY RF Data Option 1 Option 2 Option 3 Option 4 Option 5 Option 6 Option 7 Option 8 RRC Data PDCP DC (1A like) RLC Low- RLC MAC Low- MAC PHY Low-PHY RF DC (3C like) e.g., CU: ARQ + buffering + reorder, DU: seg/reassm. Centr. ARQ,.. CU: coord. sched., ICIC,.. DU: HARQ,.. (adapted from 3GPP RAN3 #93 material these are just examples, do not take them too strictly..) DL CoMP, CA, PartialUL CoMP,.. BetterUL CoMP... UL CoMP,.. Insert Title here Insert Date here 7

8 Functional splits and impact to transport RRC PDCP RLC Low- RLC MAC Low- MAC PHY Low-PHY RF Data Option 1 Option 2 Option 3 Option 4 Option 5 Option 6 Option 7 Option 8 RRC PDCP RLC Low- RLC MAC Low- MAC PHY Low-PHY RF Data End-2-end max latency Bandwidth scales.. ~100ms >20ms >10ms ~0.2ms (~TTI) <40us (~0.2ms TTI) Tens of Gigabits(*) Tens++ of Gigabits Terabits (*) Assumption: 5G radio with 1GHz air spectrum and M-MIMO, 0.2ms TTI.. (adapted from 3GPP RAN3 #93 material) Insert Title here Insert Date here 8

9 Mapping to a high level architecture Evolved Aggregator Enterprise vran/mec DC vran/bbus/ MEC DC Intra- or Internet Old BTS Caches etc Aggregation Metro S1/NG3 Legend: IP/Eth/MPLS Backhaul Fronthaul(p2p connections) Packet-based fronthaul vran-vran X2-like midhaul 3C-like split midhaul 9

10 Mapping to a high level architecture Evolved Aggregator Enterprise vran/mec DC vran/bbus/ MEC DC Intra- or Internet High Split L2/L3 Intra- or Internet S1/NG3 Old Aggregation Metro BTS Caches etc Legend: IP/Eth/MPLS Backhaul Fronthaul(p2p connections) Packet-based fronthaul vran-vran X2-like midhaul 3C-like split midhaul 10

11 Time-synchronization accuracy requirements Evolved Aggregator High Split Old BTS Caches etc Aggregation Metro S1/NG3 Up to <12.5 ns phase/time, ~50(?)ppb (*) < 1.5 µs phase/time (*) Simplified view; sync requirement depend on used radio features and location of common masters, etc. 11

12 Latency requirements Evolved Aggregator High Split Old BTS Caches etc Aggregation Metro up to hundre(s) of microsecond(s) S1/NG3 tens of microseconds tens of milliseconds 12

13 Bandwidth requirements Evolved Aggregator High Split Old BTS Caches etc Aggregation Metro S1/NG3 Terabits.. Tens of Gigabytes or to hundreds of Gigabits(due aggregation) tens to hundres of Gigabits 13

14 Network domains per node requirements Lot of nodes Aggregation nodes 10/25G links. SyncE, preemption, (sub)ns accurate timestamping for 1588, 802.1AS,.. Eth/IP/MPLS. Evolved Aggregator (10/)25/50/100G links. (sub) ns accurate timestamping for 1588 and 802.1AS. Preemption & SyncE beneficial. Eth/IP/MPLS. Enterprise vran/mec DC vran/bbus/ MEC DC Typical service provider equipment. 100G links, Eth/IP/MPLS. Existing backhaul requirements apply. Intra- or Internet High Split L2/L3 Data center switching.. Intra- or Internet S1/NG3 Old Aggregation Metro BTS Caches etc 14

15 About interoperability targets 1/3 What are the assumptions of interoperability? Purely at the transport level? Vendor A evolved RRH Vendor A BBU Vendor A Split S1/NG3 Vendor B evolced RRH Vendor B Split (if any) Vendor B BBU 15

16 About interoperability targets 2/3 Or promoting some common split(s) that would ensure interoperability beyond transport level? Can be very(!) hard to get any agreement on.. A fixed split is dangerous regarding future proofness.. Vendor A evolved RRH Vendor A BBU Common Split S1/NG3 Vendor B evolced RRH Vendor B BBU 16

17 About interoperability targets 3/3 Accept the fact that splits are moving and evolving entities. Think a split as a side card in a networking device or an additional hop in the network.. Interoperability still remains at the transport level. Vendor A evolved RRH Vendor A BBU Common Split Aggregator Vendor B evolced RRH Vendor A split engine Vendor B split engine Vendor B BBU S1/NG3 17

18 Proposal high level architecture Radio Aggregation Units Small number of (flexible) splits Evolved Aggregator Enterprise vran/mec DC vran/bbus/ MEC DC Intra- or Internet High Split L2/L3 Intra- or Internet S1/NG3 Old Aggregation Metro Transition from 2/3/4G to 5G BTS Caches etc Xhaul support? Legend: IP/Eth/MPLS Backhaul Fronthaul(p2p connections) Packet-based fronthaul vran-vran X2-like midhaul 3C-like split midhaul 18

19 Proposal transport interfaces A *lot* of nodes, low power, simple split-l1 functions, ideally no state,.. Many nodes, mappings to RoE, advanced split-l1 functions, processing element interface,.. high bandwidth, a lot of queues, Dual Connectivity type functions,.. Fewer nodes, high bandwidth, service provider funtions NGFI1 NGFI2 NGFI3 <- Interfaces 19

20 Interface Summary NGFI1 A lot of nodes with ~10-25G links. Tight network sync requirements up to 12.5ns time alignments.. but rather homogeneous traffic profiles. End-2-end latency tens of microseconds. Network aggregared bandwidth up to Terabytes. Mainly Ethernet & MPLS over fiber. NGFI2 Many nodes up to 100G links; up to close terabit scale. Tight network sync requirements up to 12.5ns time alignments.. Heregeneous traffic profiles (converged network enabling features needed from nodes). End-2-end latency tens of microseconds. Network aggregared bandwidth in tens to hundres of Gigabytes. Ethernet/IP/MPLS over fiber. NGFI3 Fewer nodes; terabit scale; 100G links. Network sync requirements in backhaul class. Heregeneous traffic profiles. End-2-end latency measured in scales of millisecond. Network aggregared bandwidth in hundres of Gigabytes. Ethernet/IP/MPLS over fiber; service providers features required. Insert Title here Insert Date here 20

21 Motion # Agree as a baseline the high level architecture and NGFI interfaces described in slides 18 and 19 of tf1_1610_korhonen_converged_1.pdf. Mover: Jouni Korhonen Seconder: Yes: No: Abstain: (technical motion needs >= 2/3)

NGFI architecture considerations. Lujing Cai, Abdellah Tazi AT&T

NGFI architecture considerations. Lujing Cai, Abdellah Tazi AT&T NGFI architecture considerations Lujing Cai, Abdellah Tazi AT&T Compliance with IEEE Standards Policies and Procedures Subclause 5.2.1 of the IEEE-SA Standards Board Bylaws states, "While participating

More information

Summary of P Functional Split proposals. Jouni Korhonen Broadcom Ltd 9/13/2013

Summary of P Functional Split proposals. Jouni Korhonen Broadcom Ltd 9/13/2013 Summary of P1914.1 Functional Split proposals Jouni Korhonen Broadcom Ltd 9/13/2013 Compliance with IEEE Standards Policies and Procedures Subclause 5.2.1 of the IEEE-SA Standards Board Bylaws states,

More information

RAN Node Definition for NGFI. Lujing Cai, Abdellah Tazi AT&T

RAN Node Definition for NGFI. Lujing Cai, Abdellah Tazi AT&T RAN Node Definition for NGFI Lujing Cai, Abdellah Tazi AT&T Compliance with IEEE Standards Policies and Procedures Subclause 5.2.1 of the IEEE-SA Standards Board Bylaws states, "While participating in

More information

Overview and requirements

Overview and requirements Overview and requirements Aleksandra Checko, MTI Andrijana Popovska Avramova, Foxconn Morten Høgdal, Foxconn IEEE 1914 f2f meeting, Beijing, CN 01/17-19/2017 Compliance with IEEE Standards Policies and

More information

NG Fronthaul Network and Fog RAN. Tony Tam Fujitsu Network Communications 10/26-28/2016 IEEE TF

NG Fronthaul Network and Fog RAN. Tony Tam Fujitsu Network Communications 10/26-28/2016 IEEE TF NG Fronthaul Network and Fog RAN Tony Tam Fujitsu Network Communications 10/26-28/2016 IEEE 1914.1 TF Compliance with IEEE Standards Policies and Procedures Subclause 5.2.1 of the IEEE-SA Standards Board

More information

NGFI RMIX traffic profile

NGFI RMIX traffic profile NGFI RMIX traffic profile Jouni Korhonen Broadcom (Telco 3/22/2017) Compliance with IEEE Standards Policies and Procedures Subclause 5.2.1 of the IEEE-SA Standards Board Bylaws states, "While participating

More information

Priority Considerations for Fronthaul Traffic. Raghu M. Rao, Xilinx Inc.

Priority Considerations for Fronthaul Traffic. Raghu M. Rao, Xilinx Inc. Priority Considerations for Fronthaul Traffic Raghu M. Rao, Xilinx Inc. Compliance with IEEE Standards Policies and Procedures Subclause 5.2.1 of the IEEE-SA Standards Board Bylaws states, "While participating

More information

Holistic View of NG Fronthaul Network Requirements and Architecture. Tony Tam Fujitsu Network Communications 10/26-28/2016 IEEE 1914.

Holistic View of NG Fronthaul Network Requirements and Architecture. Tony Tam Fujitsu Network Communications 10/26-28/2016 IEEE 1914. Holistic View of NG Fronthaul Network Requirements and Architecture Tony Tam Fujitsu Network Communications 10/26-28/2016 IEEE 1914.1 TF Compliance with IEEE Standards Policies and Procedures Subclause

More information

Fronthaul scenarios and 1914 transport classes. Vincenzo Sestito, SM Optics June 22 nd, 2017

Fronthaul scenarios and 1914 transport classes. Vincenzo Sestito, SM Optics June 22 nd, 2017 Fronthaul scenarios and 1914 transport classes Vincenzo Sestito, SM Optics June 22 nd, 2017 Compliance with IEEE Standards Policies and Procedures Subclause5.2.1 of the IEEE-SA Standards Board Bylaws states,

More information

Throughput requirements

Throughput requirements Throughput requirements Aleksandra Checko, MTI/Foxconn IEEE 1914 f2f meeting, Dallas, TX, US 04/19-21/2017 Compliance with IEEE Standards Policies and Procedures Subclause 5.2.1 of the IEEE-SA Standards

More information

NGFI packet format for various functional splits

NGFI packet format for various functional splits Andrijana Popovska Avramova, Foxconn Aleksandra Checko, MTI Morten Høgdal, Foxconn IEEE 1914 f2f meeting, Beijing, China 01/17-19/2017 Compliance with IEEE Standards Policies and Procedures Subclause 5.2.1

More information

Flexible Ethernet Fronthaul. Philippos Assimakopoulos Communications Research Group, University of Kent, Canterbury, UK

Flexible Ethernet Fronthaul. Philippos Assimakopoulos Communications Research Group, University of Kent, Canterbury, UK Flexible Ethernet Fronthaul Philippos Assimakopoulos Communications Research Group, University of Kent, Canterbury, UK Compliance with IEEE Standards Policies and Procedures Subclause 5.2.1 of the IEEE-SA

More information

Proposal on FTS and PTS. Tim Frost, Calnex Solutions Ltd.

Proposal on FTS and PTS. Tim Frost, Calnex Solutions Ltd. Proposal on FTS and PTS Tim Frost, Calnex Solutions Ltd. Compliance with IEEE Standards Policies and Procedures Subclause 5.2.1 of the IEEE-SA Standards Board Bylaws states, "While participating in IEEE

More information

Network slicing impact on transport NW. Lujing Cai, Abdellah Tazi AT&T

Network slicing impact on transport NW. Lujing Cai, Abdellah Tazi AT&T Network slicing impact on transport NW Lujing Cai, Abdellah Tazi AT&T Compliance with IEEE Standards Policies and Procedures Subclause 5.2.1 of the IEEE-SA Standards Board Bylaws states, "While participating

More information

The Impact of 5G Air Interfaces on Converged Fronthaul/Backhaul. Jens Bartelt TU Dresden / 5G-XHaul

The Impact of 5G Air Interfaces on Converged Fronthaul/Backhaul. Jens Bartelt TU Dresden / 5G-XHaul The Impact of 5G Air Interfaces on Converged Fronthaul/Backhaul Jens Bartelt TU Dresden / 5G-XHaul Compliance with IEEE Standards Policies and Procedures Subclause 5.2.1 of the IEEE-SA Standards Board

More information

Service OAM Performance Monitoring. Leon Bruckman IP Light Ltd.

Service OAM Performance Monitoring. Leon Bruckman IP Light Ltd. Service OAM Performance Monitoring Leon Bruckman IP Light Ltd. Compliance with IEEE Standards Policies and Procedures Subclause 5.2.1 of the IEEE-SA Standards Board Bylaws states, "While participating

More information

5G transport latency requirement analysis. Lujing Cai, Abdellah Tazi AT&T

5G transport latency requirement analysis. Lujing Cai, Abdellah Tazi AT&T 5G transport latency requirement analysis Lujing Cai, Abdellah Tazi AT&T Compliance with IEEE Standards Policies and Procedures Subclause 5.2.1 of the IEEE-SA Standards Board Bylaws states, "While participating

More information

TAE Requirements. Richard Tse Microsemi Sept 25, 2017 IEEE TF

TAE Requirements. Richard Tse Microsemi Sept 25, 2017 IEEE TF TAE Requirements Richard Tse Microsemi Sept 25, 2017 IEEE 1914.1 TF Compliance with IEEE Standards Policies and Procedures Subclause 5.2.1 of the IEEE-SA Standards Board Bylaws states, "While participating

More information

5G Fronthaul Transport Classes for 3GPP Splits

5G Fronthaul Transport Classes for 3GPP Splits 5G Fronthaul Transport Classes for 3GPP Splits Discussion for the need of MAC MAC split Andrijana Popovska Avramova, Foxconn Aleksandra Checko, MTI Morten Høgdal, Foxconn IEEE 1914 f2f meeting, San Jose,

More information

Transport Requirements for a 5G Broadband Use Case. Vishwanath Ramamurthi Thomas Tan Shankar Venkatraman Verizon

Transport Requirements for a 5G Broadband Use Case. Vishwanath Ramamurthi Thomas Tan Shankar Venkatraman Verizon Transport Requirements for a 5G Broadband Use Case Vishwanath Ramamurthi Thomas Tan Shankar Venkatraman Verizon Compliance with IEEE Standards Policies and Procedures Subclause 5.2.1 of the IEEE-SA Standards

More information

Fronthaul architecture towards 5G

Fronthaul architecture towards 5G Fronthaul architecture towards 5G Multiplexing gains analysis Challenges/solutions for fronthaul network Aleksandra Checko, MTI 8/22-24/2016 In collaboration with: MTI Radiocomp: Andrijana Popovska Avramova,

More information

xran and C-RAN Integration in M-CORD

xran and C-RAN Integration in M-CORD xran and C-RAN Integration in M-CORD Dr. Sassan Ahmadi Director of 5G Wireless Systems and Standards Xilinx Inc. November 8, 2017 Outline Cloud RAN Integration in M-CORD 4G to 5G Technology Evolution 3GPP

More information

5G: an IP Engineer Perspective

5G: an IP Engineer Perspective 5G: an Engineer Perspective Igor Giangrossi Principal Consulting Engineer /Optical Networks igor.giangrossi@nokia.com 1 NANOG 75 A Brief History of Mobile Networks From analog voice to high speed Internet

More information

TAE Requirements. Richard Tse Microsemi Sept 25, 2017 IEEE TF

TAE Requirements. Richard Tse Microsemi Sept 25, 2017 IEEE TF TAE Requirements Richard Tse Microsemi Sept 25, 2017 IEEE 1914.1 TF Compliance with IEEE Standards Policies and Procedures Subclause 5.2.1 of the IEEE-SA Standards Board Bylaws states, "While participating

More information

IEEE 1914 NGFI (xhaul): efficient and scalable fronthaul transport for 5G

IEEE 1914 NGFI (xhaul): efficient and scalable fronthaul transport for 5G : efficient and scalable fronthaul transport for 5G Aleksandra Checko, PhD Editor of IEEE 1914.1/MTI Radiocomp BackNets 2017 In conjunction with IEEE VTC Fall 2017 Toronto, Canada September 24, 2017 Base

More information

NG Fronthaul Network Requirements and Architecture. Tony Tam Fujitsu Network Communications Peter K. Cho Actus Networks/HFR, Inc

NG Fronthaul Network Requirements and Architecture. Tony Tam Fujitsu Network Communications Peter K. Cho Actus Networks/HFR, Inc NG Fronthaul Network Requirements and Architecture Tony Tam Fujitsu Network Communications Peter K. Cho Actus Networks/HFR, Inc Compliance with IEEE Standards Policies and Procedures Subclause 5.2.1 of

More information

ITU-T SG15 plenary meeting June 19 th -26 th summary. Leon Bruckman IP Light Ltd.

ITU-T SG15 plenary meeting June 19 th -26 th summary. Leon Bruckman IP Light Ltd. ITU-T SG15 plenary meeting June 19 th -26 th summary Leon Bruckman IP Light Ltd. Compliance with IEEE Standards Policies and Procedures Subclause 5.2.1 of the IEEE-SA Standards Board Bylaws states, "While

More information

Proposal of frame mix profiles for NGFI. Lujing Cai, Abdellah Tazi, Dimas Noriega AT&T

Proposal of frame mix profiles for NGFI. Lujing Cai, Abdellah Tazi, Dimas Noriega AT&T Proposal of frame mix profiles for NGFI Lujing Cai, Abdellah Tazi, Dimas Noriega AT&T Compliance with IEEE Standards Policies and Procedures Subclause 5.2.1 of the IEEE-SA Standards Board Bylaws states,

More information

5G impact on FH transport & potential NGFI scenarios. Jinri Huang, China Mobile

5G impact on FH transport & potential NGFI scenarios. Jinri Huang, China Mobile 5G impact on FH transport & potential NGFI scenarios Jinri Huang, China Mobile Compliance with IEEE Standards Policies and Procedures Subclause 5.2.1 of the IEEE-SA Standards Board Bylaws states, "While

More information

Frequency domain IQ. Richard Maiden - Intel

Frequency domain IQ. Richard Maiden - Intel Frequency domain IQ Richard Maiden - Intel Compliance with IEEE Standards Policies and Procedures Subclause 5.2.1 of the IEEE-SA Standards Board Bylaws states, "While participating in IEEE standards development

More information

Applicability of OTN for NGFI / CPRI Fronthaul. Scott Wakelin Richard Tse Steve Gorshe - Microsemi

Applicability of OTN for NGFI / CPRI Fronthaul. Scott Wakelin Richard Tse Steve Gorshe - Microsemi Applicability of OTN for NGFI / CPRI Fronthaul Scott Wakelin Richard Tse Steve Gorshe - Microsemi Compliance with IEEE Standards Policies and Procedures Subclause 5.2.1 of the IEEE-SA Standards Board Bylaws

More information

Frequency domain IQ. Richard Maiden - Intel

Frequency domain IQ. Richard Maiden - Intel Frequency domain IQ Richard Maiden - Intel Compliance with IEEE Standards Policies and Procedures Subclause 5.2.1 of the IEEE-SA Standards Board Bylaws states, "While participating in IEEE standards development

More information

From virtualization, thru multivendor sharing to 5G RAN modularization. Mark Grayson Distinguished Engineer 7/8 November 2017

From virtualization, thru multivendor sharing to 5G RAN modularization. Mark Grayson Distinguished Engineer 7/8 November 2017 From virtualization, thru multivendor sharing to 5G RAN modularization Mark Grayson Distinguished Engineer 7/8 November 2017 Radio Network Evolution Hyper Dense Outdoor Network Coverage and capacity for

More information

Consideration for aspects of performance monitoring and OAM hierarchy in next CRAN architecture. Bo Lv, Junfeng Zhao CAICT

Consideration for aspects of performance monitoring and OAM hierarchy in next CRAN architecture. Bo Lv, Junfeng Zhao CAICT Consideration for aspects of performance monitoring and OAM hierarchy in next CRAN architecture Bo Lv, Junfeng Zhao CAICT Compliance with IEEE Standards Policies and Procedures Subclause 5.2.1 of the IEEE-SA

More information

Split Options for 5G Radio Access Networks. Paul Arnold, Nico Bayer, Jakob Belschner, Gerd Zimmermann Technology Innovation Deutsche Telekom AG

Split Options for 5G Radio Access Networks. Paul Arnold, Nico Bayer, Jakob Belschner, Gerd Zimmermann Technology Innovation Deutsche Telekom AG Split Options for 5G Radio Access Networks Paul Arnold, Nico Bayer, Jakob Belschner, Gerd Zimmermann Technology Innovation Deutsche Telekom AG Introduction Two splits envisioned in the 5G RAN Control-Plane

More information

Transport Network Slicing Chapter Part 1 Key Attributes & Requirements

Transport Network Slicing Chapter Part 1 Key Attributes & Requirements Transport Network Slicing Chapter Part 1 Key Attributes & Requirements Tony Tam Fujitsu Network Communications June 28-30, 2017 IEEE 1914.1 TF Compliance with IEEE Standards Policies and Procedures Subclause

More information

PoC of Structure agnostic Radio over Ethernet. Peter K. Cho, A. Kim, J. Choi Actus Networks/HFR, Inc

PoC of Structure agnostic Radio over Ethernet. Peter K. Cho, A. Kim, J. Choi Actus Networks/HFR, Inc PoC of Structure agnostic Radio over Ethernet Peter K. Cho, A. Kim, J. Choi Actus Networks/HFR, Inc Compliance with IEEE Standards Policies and Procedures Subclause 5.2.1 of the IEEE-SA Standards Board

More information

ITU-T. Technical Report GSTR-TN5G. Transport network support of IMT-2020/5G. (9 February 2018)

ITU-T. Technical Report GSTR-TN5G. Transport network support of IMT-2020/5G. (9 February 2018) I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n ITU-T TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU Technical Report (9 February 2018) GSTR-TN5G Transport network support of IMT-2020/5G

More information

Visionary Technology Presentations

Visionary Technology Presentations Visionary Technology Presentations The path toward C-RAN and V-RAN Philippe Chanclou, 5G WORLD 5G LIVE! THEATRE - DAY ONE JUNE 29th 2016 29th 30 th June 2016 London U-K Co-Ax The Radio Access Network architecture

More information

IMPACT OF 5G RAN ARCHITECTURE IN TRANSPORT

IMPACT OF 5G RAN ARCHITECTURE IN TRANSPORT IMPACT OF 5G RAN ARCHITECTURE IN TRANSPORT NETWORKS Daniel Camps (i2cat) ONDM 2018 Optical Technologies in the 5G era (Workshop) Bristol 5G city testbed with 5G-XHaul extensions OUTLINE From 4G to 5G architecture

More information

Challenges in Data-Center Technologies for Distributed Radio Signal Processing. Raymond Knopp EURECOM, Communication Systems Department

Challenges in Data-Center Technologies for Distributed Radio Signal Processing. Raymond Knopp EURECOM, Communication Systems Department Challenges in Data-Center Technologies for Distributed Radio Signal Processing Raymond Knopp EURECOM, Communication Systems Department Some visions of 5G and beyond 5G and beyond is not only New Radio

More information

Native packet types Handling frequency domain I/Q encoding. Richard Maiden

Native packet types Handling frequency domain I/Q encoding. Richard Maiden Native packet types Handling frequency domain I/Q encoding Richard Maiden Introduction I/Q encoding is in the PAR for 1914.3, but it doesn t explicitly define whether this is time-domain or frequency domain

More information

5G Standards and Outlook for 5G Unlicensed

5G Standards and Outlook for 5G Unlicensed 5G Standards and Outlook for 5G Unlicensed Antti Toskala Bell Labs Fellow Nokia Bell Labs June 1 3GPP RAN Release 15 Schedule both 5G SA and NSA specs now available! Building the baseline for next phase

More information

ITSF - TIMING FOR 5G SYNCHRONISATION REQUIREMENTS FOR 5G

ITSF - TIMING FOR 5G SYNCHRONISATION REQUIREMENTS FOR 5G ITSF - TIMING FOR 5G SYNCHRONISATION REQUIREMENTS FOR 5G Agenda LTE A-PRO What defines 5G 5G use cases Use cases mapped to capabilities Network Slicing 5G New Radio timeline 5G new interfaces & RAN functional

More information

Considerations on synchronization in next generation CRAN fronthaul architecture. Lv Bo, Hu Changjun, Lu Yang CAICT

Considerations on synchronization in next generation CRAN fronthaul architecture. Lv Bo, Hu Changjun, Lu Yang CAICT Considerations on synchronization in next generation CRAN fronthaul architecture Lv Bo, Hu Changjun, Lu Yang CAICT Compliance with IEEE Standards Policies and Procedures Subclause 5.2.1 of the IEEE-SA

More information

Examining the Fronthaul Network Segment on the 5G Road Why Hybrid Optical WDM Access and Wireless Technologies are required?

Examining the Fronthaul Network Segment on the 5G Road Why Hybrid Optical WDM Access and Wireless Technologies are required? Examining the Fronthaul Network Segment on the 5G Road Why Hybrid Optical WDM Access and Wireless Technologies are required? Philippe Chanclou, Sebastien Randazzo, 18th Annual Next Generation Optical Networking

More information

The path toward C-RAN and V-RAN: benefits and challenges from operator perspective

The path toward C-RAN and V-RAN: benefits and challenges from operator perspective TELECOM ITALIA GROUP 5G World Summit London, 29-30 June 2016 : benefits and challenges from operator perspective Marco Caretti Telecom Italia Engineering & TiLAB Agenda The drivers for the RAN evolution

More information

Connected World. Connected Experiences. Fronthaul Technologies in vran

Connected World. Connected Experiences. Fronthaul Technologies in vran Connected World. Connected Experiences. Fronthaul Technologies in vran Introduction The mobile communication industry is currently heading towards the fifth generation (5G) network. The new network strategy

More information

5G-oriented Optical Transport Network Solution

5G-oriented Optical Transport Network Solution 5G-oriented Optical Transport Network Solution Contents Overview 5G Development Brings Challenges to Bearer Networks Impact of 5G Network Architecture Changes on Bearer Networks Fronthaul Network Solutions

More information

Bidirectional 10&40 km Optical PHY for 50GbE. Xinyuan Wang Huawei Technologies

Bidirectional 10&40 km Optical PHY for 50GbE. Xinyuan Wang Huawei Technologies Bidirectional 10&40 km Optical PHY for 50GbE Xinyuan Wang Huawei Technologies Background In IEEE 802 March plenary meeting, Call For Interest Bidirectional 10Gb/s and 25Gb/s optical access PHYs is accepted

More information

ITU-T. Technical Report GSTR-TN5G. Transport network support of IMT-2020/5G. (19 October 2018)

ITU-T. Technical Report GSTR-TN5G. Transport network support of IMT-2020/5G. (19 October 2018) I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n ITU-T TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU Technical Report (19 October 2018) GSTR-TN5G Transport network support of IMT-2020/5G

More information

IEEE 1914 NGFI Partial Timing Support (PTS) in NGFI

IEEE 1914 NGFI Partial Timing Support (PTS) in NGFI IEEE 1914 NGFI Partial Timing Support (PTS) in NGFI Yongfang Xu, Nokia Shanghai Bell 4-6 December 2018 Compliance with IEEE Standards Policies and Procedures Subclause 5.2.1 of the IEEE-SA Standards Board

More information

Dual Connectivity in LTE

Dual Connectivity in LTE Dual Connectivity in LTE 1 Background Scenario Architecture User Plane feature Control Plane feature Outline 6-1 Background Scenario Architecture User Plane feature Control Plane feature Outline Background

More information

Converged Ethernet for Next- Generation x-haul

Converged Ethernet for Next- Generation x-haul intelligent Converged Network consolidating Radio and optical access arounduser equipment Converged ernet for Next- Generation x-haul Daniel Muench (EuCNCWorkshop Towards Converged X-Haul for 5G Networks

More information

5G/IMT2020 Transport Requirements Considerations and Next Steps

5G/IMT2020 Transport Requirements Considerations and Next Steps 5G/IMT2020 Transport Requirements Considerations and Next Steps Steve Gorshe Microsemi Corp. Rapporteur ITU-T Q11/15 Introduction The transport network will need to evolve for optimum support of 5G/IMT2020.

More information

Feasiblity of Radio over Ethernet -demonstration with time synch. Peter K. Cho, A. Kim, J. Choi Actus Networks/HFR, Inc

Feasiblity of Radio over Ethernet -demonstration with time synch. Peter K. Cho, A. Kim, J. Choi Actus Networks/HFR, Inc Feasiblity of Radio over Ethernet -demonstration with time synch. Peter K. Cho, A. Kim, J. Choi Actus Networks/HFR, Inc Compliance with IEEE Standards Policies and Procedures Subclause 5.2.1 of the IEEE-SA

More information

Examining The C-RAN Business Case For Mobile Operators. RAN & Backhaul Networks, Berlin May 20, 2015

Examining The C-RAN Business Case For Mobile Operators. RAN & Backhaul Networks, Berlin May 20, 2015 Examining The C-RAN Business Case For Mobile Operators RAN & Backhaul Networks, Berlin May 20, 2015 Cloud RAN Defined Stage 1 Stage 2 Centralization Virtualization Distributed RAN Baseband processing in

More information

5G Cloud-RAN and Fronthaul 5G-KS 2018 (IITM Research Park)

5G Cloud-RAN and Fronthaul 5G-KS 2018 (IITM Research Park) 5G Cloud-RAN and Fronthaul 5G-KS 2018 (IITM Research Park) RaviKanth Pasumarthy, AVP Technology Vinesh Varghese, Director Technology 5G Use-cases & Requirements Ultra Reliable Low Latency Communication

More information

New Transport Network Architectures for 5G RAN

New Transport Network Architectures for 5G RAN Independent market research and competitive analysis of next-generation business and technology solutions for service providers and vendors New Transport Network Architectures for 5G RAN A Heavy Reading

More information

Common Public Radio Interface

Common Public Radio Interface Common Public Radio Interface ecpri presentation 2018 Ericsson AB, Huawei Technologies Co. Ltd, NEC Corporation and Nokia. Background 1/2 1. Operator view of CPRI features Although CPRI has been the main

More information

Towards 5G RAN Virtualization Enabled by Intel and ASTRI*

Towards 5G RAN Virtualization Enabled by Intel and ASTRI* white paper Communications Service Providers C-RAN Towards 5G RAN Virtualization Enabled by Intel and ASTRI* ASTRI* has developed a flexible, scalable, and high-performance virtualized C-RAN solution to

More information

Bringing Field Testing Into the 5G Lab System Verification Life Cycle

Bringing Field Testing Into the 5G Lab System Verification Life Cycle White Paper Bringing Field Testing Into the 5G Lab System Verification Life Cycle VIAVI Solutions Overview 5G is revolutionizing the connected world, bringing broadband capacity, gigabit speeds, ultra-reliability,

More information

Architecture considerations

Architecture considerations Architecture considerations Aleksandra Checko, MTI Andrijana Popovska Avramova, Foxconn Morten Høgdal, Foxconn IEEE 1914 f2f meeting, Beijing, CN 01/17-19/2017 Compliance with IEEE Standards Policies and

More information

Guaranteed Service Ethernetbased DWDM co-hauling

Guaranteed Service Ethernetbased DWDM co-hauling Guaranteed Service Ethernetbased DWDM co-hauling Carla Raffaelli, Federico Tonini, University of Bologna, DEI, Italy Steinar Bjornstad, Raimena Veisllari Transpacket, Oslo, Norway This talk is To address

More information

IEEE NetSoft 2016 Keynote. June 7, 2016

IEEE NetSoft 2016 Keynote. June 7, 2016 IEEE NetSoft 2016 Keynote June 7, 2016 0 Contents Introduction - Network Evolution & Operator Challenges Re-architecting the RAN SDRAN: Software-defined RAN - Overview & Enabling Features SDRAN Opportunities

More information

Understanding LTE - Long Term Evolution - in Depth The Next Step in Mobile Evolution in Detail

Understanding LTE - Long Term Evolution - in Depth The Next Step in Mobile Evolution in Detail Understanding The Next Step in Mobile Evolution in Detail Course Description With 3G mobile technology already rolled out by over 200 operators in over 80 countries, preparations are well under way to

More information

RAN slicing as enabler for low latency services

RAN slicing as enabler for low latency services RAN slicing as enabler for low latency services Presented by A. Maeder, NOKIA Bell Labs Contributions by Z. Li, P. Rost, C. Sartori, A. Prasad, C. Mannweiler ITG 5.2.4 Fachgruppentreffen Dresden, June

More information

Multi-Layer and Cloud-Ready Radio Evolution Towards 5G

Multi-Layer and Cloud-Ready Radio Evolution Towards 5G Multi-Layer and Cloud-Ready Radio Evolution Towards 5G Nokia white paper Multi-Layer and Cloud-Ready Radio Evolution Towards 5G White Paper Contents 1. Executive summary 3 2. The path towards 5G 3 3. Centralized

More information

Packet-Optical, the Future of Transmission Networks?

Packet-Optical, the Future of Transmission Networks? Packet-Optical, the Future of Transmission Networks? Fred Masiak Expert Engineer Vodafone Group Engineering Nice, 30.06.2016 Outline What is Packet Optical? Requirements Related to Transmission Networks

More information

Network Slicing. Tony Tam. September 26, 2017 Burnaby, Canada

Network Slicing. Tony Tam. September 26, 2017 Burnaby, Canada Network Slicing Tony Tam September 26, 2017 Burnaby, Canada Network Slicing IMT-2020 Traffic bandwidth, connection density, and stringent delay has increased up to 3 order of magnitude from 4G network

More information

Evolution of OAI Software for Data Center Deployments Communication Systems Department EURECOM

Evolution of OAI Software for Data Center Deployments Communication Systems Department EURECOM Evolution of OAI Software for Data Center Deployments Communication Systems Department EURECOM Unleashing the potential of open-source in the 5G arena Some visions of 5G and beyond 5G and beyond is not

More information

Front-Haul challenges for future radio access

Front-Haul challenges for future radio access ECOC2014 Sunday Workshop, WS5 Front-Haul challenges for future radio access Sep. 21 st, 2014 Shigeru Kuwano NTT Access Network Service Systems Laboratories, NTT Corporation kuwano.shigeru@lab.ntt.co.jp

More information

DAY 2. HSPA Systems Architecture and Protocols

DAY 2. HSPA Systems Architecture and Protocols DAY 2 HSPA Systems Architecture and Protocols 1 LTE Basic Reference Model UE: User Equipment S-GW: Serving Gateway P-GW: PDN Gateway MME : Mobility Management Entity enb: evolved Node B HSS: Home Subscriber

More information

MEF 3.0 & The Road to 5G: Transport, Network Slicing, Orchestration, and Fixed- Mobile Convergence

MEF 3.0 & The Road to 5G: Transport, Network Slicing, Orchestration, and Fixed- Mobile Convergence MEF 3.0 & The Road to 5G: Transport, Network Slicing, Orchestration, and Fixed- Mobile Convergence Emerson Moura Distinguished Systems Engineer Cisco 2 What is new in 5G? 5G Is Use-Case Driven Massive

More information

METIS II and Xhaul Projects in 5G PPP. Fang-Chu Chen ICL ITRI On behave of METIS II and Xhaul Consortia

METIS II and Xhaul Projects in 5G PPP. Fang-Chu Chen ICL ITRI On behave of METIS II and Xhaul Consortia METIS II and Xhaul Projects in 5G PPP Fang-Chu Chen ICL ITRI On behave of METIS II and Xhaul Consortia Sept 22, 2015 1 ITRI s Participation in ICT-14 5GPPP Projects - METIS II and Xhaul METIS II : 5G Radio

More information

ecpri Transport Network V1.0 ( )

ecpri Transport Network V1.0 ( ) e Transport Network V.0 (0-0-) Requirements Specification Common Public Radio Interface: Requirements for the e Transport Network The e Transport Network Requirements Specification has been developed by

More information

Mobile Edge Network for Wireless 5G. Fang-Chu Chen / ITRI March Copyright 2016 ITRI 工業技術研究院

Mobile Edge Network for Wireless 5G. Fang-Chu Chen / ITRI March Copyright 2016 ITRI 工業技術研究院 Mobile Edge Network for Wireless 5G Fang-Chu Chen / ITRI March 2016 1 Keep Local Traffic in Local i.e. at the edge of the network with Direct Communications when possible and still in the control of the

More information

Access network systems for future mobile backhaul networks

Access network systems for future mobile backhaul networks Access network systems for future mobile backhaul networks Nov. 6, 2012 Seiji Yoshida NTT Network Technology Laboratories NTT Corporation 1 Outline Mobile Traffic Growth in Japan Future Mobile Base Station

More information

Development of MD8430A for LTE-Advanced Tests

Development of MD8430A for LTE-Advanced Tests Masaki Hizume, Hidenori Konno, Toshiro Miyazaki, Masato Sasaki, Katsuo Sakurai, Satoshi Wakasa, Shinichi Segawa, Tomoyuki Fujiwara, Yuji Sakai [Summary] As part of the expansion of LTE (Long Term Evolution)

More information

INTRODUCING THE 5G-PPP 5G-XHAUL PROJECT

INTRODUCING THE 5G-PPP 5G-XHAUL PROJECT INTRODUCING THE 5G-PPP 5G-XHAUL PROJECT Anna Tzanakaki (University of Bristol, NKUA) Bristol 5G city testbed with 5G-XHaul extensions www.5g-xhaul-project.eu 1. CONSORTIUM OVERVIEW IHP GmbH (Coordinator)

More information

Leading the Path to 5G

Leading the Path to 5G www.atis.org/5g2016 Follow us on Twitter @atisupdates Leading the Path to 5G Sanjeev Athalye Senior Director, Product Management, Qualcomm Dr. Arun Ghosh Director, Advanced Radio Group, AT&T 5G: From Concept

More information

Dali virtual Fronthaul Solution. Virtualizing the Fronthaul for 5G

Dali virtual Fronthaul Solution. Virtualizing the Fronthaul for 5G Dali virtual Fronthaul Solution The Dali virtual Fronthaul Solution gives operators, neutral hosts and enterprises a groundbreaking approach to meeting the intense demands placed on the network fronthaul

More information

Radio Network Evolution 4G to 5G

Radio Network Evolution 4G to 5G Security Level: Radio Network Evolution 4G to 5G Emerging Use Case(s) and RAN Deployment Topologies in the context of RAN Evolution Requirements towards a 5G System www.huawei.com Presentation at Wireless@KTH,

More information

5G-XHaul Dynamic Reconfigurable Optical-Wireless Backhaul / Fronthaul for 5G Small Cells and Cloud-RANs

5G-XHaul Dynamic Reconfigurable Optical-Wireless Backhaul / Fronthaul for 5G Small Cells and Cloud-RANs 5G-XHaul Dynamic Reconfigurable Optical-Wireless Backhaul / Fronthaul for 5G Small Cells and Cloud-RANs Presenter: Konstantinos Filis, Ph.D. R&D Senior Engineer 2/11/2016 5G-Xhaul Partners, Funding and

More information

INTRODUCING THE 5G-PPP 5G-XHAUL PROJECT Daniel Camps (i2cat) Bristol 5G city testbed with 5G-XHaul extensions

INTRODUCING THE 5G-PPP 5G-XHAUL PROJECT Daniel Camps (i2cat) Bristol 5G city testbed with 5G-XHaul extensions INTRODUCING THE 5G-PPP 5G-XHAUL PROJECT Daniel Camps (i2cat) Bristol 5G city testbed with 5G-XHaul extensions OUTLINE 1) 5G-XHaul introduction 2) 5G-XHaul architectural aspects 3) Sample of data-plane

More information

Dali Matrix. The Next Generation Platform for Wireless Coverage and Capacity

Dali Matrix. The Next Generation Platform for Wireless Coverage and Capacity Dali Matrix The Next Generation Platform for Wireless Coverage and Capacity Imagine the Possibilities Dali Matrix (Matrix) is a unified RF distribution platform capable of delivering cellular, public safety

More information

White Paper Transporting 5G from Vision to Reality

White Paper Transporting 5G from Vision to Reality White Paper Transporting 5G from Vision to Reality Page 1 of 6 As the race to deploy 5G gathers speed, the reality of building out new and different network architectures presents a variety of complex

More information

HSPA+ Advanced Smart Networks: Multipoint Transmission

HSPA+ Advanced Smart Networks: Multipoint Transmission Qualcomm Incorporated February 2011 Table of Contents 1. Introduction... 1 2. Multipoint HSPA Description... 2 Single Frequency Multipoint HSPA... 2 Dual Frequency Multipoint HSPA... 3 3. Advantages...

More information

ITSF 2007 overview of future sync applications and architecture challenges

ITSF 2007 overview of future sync applications and architecture challenges ITSF 2007 overview of future sync applications and architecture challenges Orange Labs Sébastien JOBERT, Research & Development 14/11/2007, presentation to ITSF 2007, London agenda section 1 section 2

More information

Compliance with IEEE Standards Policies and Procedures

Compliance with IEEE Standards Policies and Procedures Compliance with IEEE Standards Policies and Procedures Subclause 5.2.1 of the IEEE-SA Standards Board Bylaws states, "While participating in IEEE standards development activities, all participants...shall

More information

LTE Radio Interface Architecture. Sherif A. Elgohari

LTE Radio Interface Architecture. Sherif A. Elgohari LTE Radio Interface Architecture Sherif A. Elgohari (selgohari@ieee.org) Agenda Overall System Architecture Radio Protocol Architecture Radio Link Control Medium Access Control Physical Layer Control Plan

More information

Unified Access and Aggregation Network Allowing Fixed and Mobile Networks to Converge: The COMBO project

Unified Access and Aggregation Network Allowing Fixed and Mobile Networks to Converge: The COMBO project Unified Access and Aggregation Network Allowing Fixed and Mobile Networks to Converge: The COMBO project P. Chanclou, S. Gosselin, T. Mamouni, D. Breuer, E. Weis, J. Torrijos 1 Agenda 2 COMBO project Key

More information

Dual Connectivity in LTE 資策會智通所 魏嘉宏

Dual Connectivity in LTE 資策會智通所 魏嘉宏 Dual Connectivity in LTE 資策會智通所 魏嘉宏 1 魏嘉宏 (Chia-Hung Wei) 現職 : 資訊工業策進會 / 智慧網通系統研究所 / 標準組 / 正工程師 2010/9~2013/1 國立台灣科技大學電子工程系博士畢 2 Background Scenario Architecture User Plane feature Control Plane feature

More information

5G Transport Network Requirements, Architecture and Key Technologies

5G Transport Network Requirements, Architecture and Key Technologies 5G Transport Network Requirements, Architecture and Key Technologies Han Li,China Mobile Geneva, 2017.10 Outline Requirements Analysis on 5G Transport Network Overview of Slicing Packet Network (SPN) Architecture

More information

5G NR standards in 3GPP

5G NR standards in 3GPP 5G NR standards in 3GPP Balazs Bertenyi, Chairman of 3GPP RAN 3GPP 2017 1 Outline 3GPP facts and figures What is 5G Timeline and key technology components Where is 5G Expansion to new spectrum bands Where

More information

Examples of Time Transport

Examples of Time Transport Joint ITU-T/IEEE Workshop on The Future of Ethernet Transport (Geneva, 28 ay 2010) Examples of Time Transport ichel Ouellette Technical Advisor Huawei Technologies Co., Ltd. Geneva, 28 ay 2010 Outline

More information

BlueSPACE s SDN/NFV Architecture for 5G SDM/WDM-enabled Fronthaul with Edge Computing

BlueSPACE s SDN/NFV Architecture for 5G SDM/WDM-enabled Fronthaul with Edge Computing Building on the use of Spatial Multiplexing 5G Network Infrastructures and Showcasing Advanced Technology and Networking Capabilities 5GPPP Research and Innovation Actions EUCNC 2018 Ljubljana, Slovenia

More information

Packet-based fronthaul - a critical enabler of 5G

Packet-based fronthaul - a critical enabler of 5G Packet-based fronthaul - a critical enabler of 5G Comcores a leading supplier of IP-solutions takes a significant step towards workable 5G with Radio over Ethernet/5G NR demonstrator Comcores Authors:

More information

Introduction to Cisco ASR 9000 Series Network Virtualization Technology

Introduction to Cisco ASR 9000 Series Network Virtualization Technology White Paper Introduction to Cisco ASR 9000 Series Network Virtualization Technology What You Will Learn Service providers worldwide face high customer expectations along with growing demand for network

More information

Flexible networks for Beyond 4G Lauri Oksanen Head of Research Nokia Siemens Networks

Flexible networks for Beyond 4G Lauri Oksanen Head of Research Nokia Siemens Networks Flexible networks for Beyond 4G Lauri Oksanen Head of Research Nokia Siemens Networks 1 Nokia Siemens Networks 2012 Key requirements towards 2020 Support up to 1000 times more traffic Manage up to 10 times

More information