Last time?! MPLS! Label distribution protocols! Multi Protocol Label Switching! Layer 2.5 protocol! LDP! RSVP!

Size: px
Start display at page:

Download "Last time?! MPLS! Label distribution protocols! Multi Protocol Label Switching! Layer 2.5 protocol! LDP! RSVP!"

Transcription

1 Part2: SDNs

2 Last time? MPLS Multi Protocol Label Switching Layer 2.5 protocol Label distribution protocols LDP RSVP

3 Per router control plane Individual routing algorithm components in each and every router interact with each other in control plane to compute forwarding tables Routing Algorithm Local forwarding table header output control plane data plane Slide 3

4 Logically centralized control plane A distinct (typically remote) controller interacts with local control agents (CAs) in routers to compute forwarding tables Remote Controller CA CA CA CA CA control plane data plane Slide 4

5 Software defined networking (SDN) 4. programmable control applications routing access control load balance 3. control plane functions external to data-plane switches Remote Controller CA CA CA CA CA control plane data plane 2. control, data plane separation 1: generalized flowbased forwarding (e.g., OpenFlow)

6 SDN perspective: data plane switches Data plane switches fast, simple, commodity switches implementing generalized data-plane forwarding (Section 4.4) in hardware switch flow table computed, installed by controller API for table-based switch control (e.g., OpenFlow) defines what is controllable and what is not protocol for communicating with controller (e.g., OpenFlow) routing network-control applications access control load balance northbound API SDN Controller (network operating system) southbound API SDN-controlled switches Slide 6 control plane data plane

7 SDN perspective: SDN controller SDN controller (network OS): maintain network state information interacts with network control applications above via northbound API interacts with network switches below via southbound API implemented as distributed system for performance, scalability, faulttolerance, robustness routing network-control applications access control load balance northbound API SDN Controller (network operating system) southbound API control plane data plane SDN-controlled switches Slide 7

8 SDN perspective: control applications network-control apps: brains of control: implement control functions using lower-level services, API provided by SND controller unbundled: can be provided by 3 rd party: distinct from routing vendor, or SDN controller routing network-control applications access control load balance northbound API control plane SDN Controller (network operating system) southbound API data plane SDN-controlled switches Slide 8

9 Generalized Forwarding Each router contains a flow table that is computed and distributed by a logically centralized routing controller and SDN logically-centralized routing controller control plane data plane local flow table headers counters actions values in arriving packet s header Slide 9

10 OpenFlow protocol OpenFlow Controller operates between controller, switch TCP used to exchange messages optional encryption OpenFlow messages: controller-to-switch Slide 10 asynchronous

11 OpenFlow: controller-to-switch messages OpenFlow Controller Key controller-to-switch messages features: controller queries switch features, switch replies configure: controller queries/sets switch configuration parameters modify-state: add, delete, modify flow entries in the OpenFlow tables packet-out: controller can send this packet out of specific switch port Slide 11

12 OpenFlow: switch-to-controller messages OpenFlow Controller Key switch-to-controller messages packet-in: transfer packet (and its control) to controller. See packet-out message from controller flow-removed: flow table entry deleted at switch port status: inform controller of a change on a port. Slide 12

13 OpenFlow data plane flow: defined by header fields abstraction generalized forwarding: simple packet-handling rules Pattern: match values in packet header fields Actions: for matched packet: drop, forward, modify, matched packet or send matched packet to controller Priority: disambiguate overlapping patterns Counters: #bytes and #packets Flow table in a router (computed and distributed by controller) define router s match+action rules Slide 13

14 OpenFlow data plane flow: defined by header fields abstraction generalized forwarding: simple packet-handling rules Pattern: match values in packet header fields Actions: for matched packet: drop, forward, modify, matched packet or send matched packet to controller Priority: disambiguate overlapping patterns Counters: #bytes and #packets * : wildcard 1. src=1.2.*.*, dest=3.4.5.* à drop 2. src = *.*.*.*, dest=3.4.*.* à forward(2) 3. src= , dest=*.*.*.* à send to controller Slide 14

15 OpenFlow: Flow Table Entries Rule Action Stats Packet + byte counters 1. Forward packet to port(s) 2. Encapsulate and forward to controller 3. Drop packet 4. Send to normal processing pipeline 5. Modify Fields Switch Port VLAN ID MAC src MAC dst Eth type IP Src IP Dst IP Prot TCP sport TCP dport Link layer Network layer Transport layer Slide 15

16 Examples Firewall: Switch MAC Port src MAC dst Eth type VLAN ID IP Src IP Dst IP Prot TCP sport TCP dport Forward * * * * * * * * * 22 drop do not forward (block) all datagrams destined to TCP port 22 Switch MAC Port src * MAC dst Eth type VLAN ID IP Src IP Dst IP Prot TCP sport TCP dport Forward * * * * 1 * * * * drop do not forward (block) all datagrams sent by host Slide 16

17 Destination-based forwarding: Switch MAC Port src MAC dst Eth type VLAN ID IP Src IP Dst IP Prot TCP sport TCP dport Action * * * * * * * * * port6 IP datagrams destined to IP address should be forwarded to router output port 6 Destination-based layer 2 (switch) forwarding: Switch MAC Port src * 22:A7:23: 11:E1:02 MAC dst Eth type VLAN ID IP Src IP Dst IP Prot TCP sport TCP dport Action * * * * * * * * port3 layer 2 frames from MAC address 22:A7:23:11:E1:02 should be forwarded to output port 6 Slide 17

18 OpenFlow abstraction match+action: unifies different kinds of devices Router match: longest destination IP prefix action: forward out a link Switch match: destination MAC address action: forward or flood Firewall match: IP addresses and TCP/UDP port numbers action: permit or deny NAT match: IP address and port action: rewrite address and port Slide 18

19 OpenFlow example match IP Src = 10.3.*.* IP Dst = 10.2.*.* action forward(3) Host h s3 4 Host h Example: datagrams from hosts h5 and h6 should be sent to h3 or h4, via s1 and from there to s2 controller match ingress port = 1 IP Src = 10.3.*.* IP Dst = 10.2.*.* 2 4 Host h Host h action forward(4) 1 s1 s2 1 2 Host h match ingress port = 2 IP Dst = ingress port = 2 IP Dst = Slide 19 Host h action forward(3) forward(4)

20 Part 3 Wireless and mobile networks: 1. Wireless technologies 2. Mobility 3. SURFnet visit on Tuesday 20

21 Block 3: Lecture 1 Part 3: Wireless networks Wireless networks

22 Optical transmission range

23 Optical Spectrum UV Visible IR 125 GHz/nm λ Light 850 nm Ultraviolet (UV) 980 nm 1310 nm Visible Infrared (IR) Communication wavelengths 850, 1310, 1550 nm 1480 nm 1550 nm 1625 nm Low-loss wavelengths Specialty wavelengths 980, 1480, 1625 nm

24 Radio range

25 Basic of transmission Antenna radiates em wave Antenna pick up em wave A radio antenna and a tuner, ie a resonator tuned on a particular frequency or frequency band Directional antennas Omnidirectional antennas

26 Wave propagation Reflection Polarization Diffraction Absorption Refraction Attenuation: Reduces power level with distance Dispersion and Nonlinearities: Erodes clarity with distance and speed

27 Wireless links

28 Noise Unwanted signal Man made Naturally occurring White noise Signal to noise ratio (SNR)

29 Interference Signals generated by communications devices operating at roughly the same frequencies may interfere with one another Signal to interference and noise ratio (SINR) is another metric used in assessment of channel quality

30 Fading Strength of the signal decreases with distance between transmitter and receiver: path loss Slow fading (shadowing) is caused by large obstructions between transmitter and receiver Fast fading is caused by scatterers in the vicinity of the transmitter

31 Wireless spectrum

32 Wireless Spectrum (1) Broadcast TV VHF: 54 to 88 MHz, 174 to 216 MHz UHF: 470 to 806 MHz 30 MHz 300 MHz 3 GHz 30 GHz FM Radio 88 to 108 MHz Digital TV 54 to 88 MHz, 174 to 216 MHz, 470 to 806 MHz

33 Wireless Spectrum (2) 3G Broadband Wireless MHz, GHz, GHz 30 MHz 300 MHz 3 GHz 30 GHz Cellular Phone MHz Personal Communication Service (PCS) GHz

34 Wireless Spectrum (3) Wireless LAN (IEEE b/g) 2.4 GHz Wireless LAN (IEEE a) 5 GHz 30 MHz 300 MHz 3 GHz 30 GHz Bluetooth 2.45 GHz Local Multipoint Distribution Services (LMDS) GHz

35 Characteristics of wireless link standards n Data rate (Mbps) a,g b a,g point-to-point (WiMAX) UMTS/WCDMA-HSPDA, CDMA2000-1xEVDO UMTS/WCDMA, CDMA2000 3G data 3G cellular enhanced.056 IS-95, CDMA, GSM 2G Indoor 10-30m Outdoor m Mid-range outdoor 200m 4 Km Long-range outdoor 5Km 20 Km

36 Wireless networks

37 Wireless networks Three types related to range of radio coverage: Wireless personal area network (WPAN) Range of ~10meters. Master device communicates with (up to) 7slave devices. Wireless LANs (WLANs) Range of 100meters. All stations communicate via an access point (AP). Cellular radio networks Large coverage, i.e. entire countries. Network is divided in smaller areas (cell) using different frequency subbands.

38 Technology space Complexity/power/cost a CC Zigbee Bluetooth 38.4 Kbps b 250 Kbps 720 Kbps 11Mbps g 54Mbps Data rate

39 Elements of a wireless network network infrastructure

40 Wireless hosts network infrastructure laptop, smartphone run applications may be stationary (nonmobile) or mobile wireless does not always mean mobility

41 Base stations network infrastructure typically connected to wired network relay - responsible for sending packets between wired network and wireless host(s) in its area e.g., cell towers, access points

42 BSS Basic Service Set (BSS): wireless hosts that can communicate to each other access point (AP): base station The BSS has an identification (ID) called the BSSID, which is: the MAC address of the access point servicing the infrastructure BSS. It is generated in an IBSS AP BSS 1

43 Ad hoc mode (IBSS) Also called Indendepent BSS. no base stations nodes can only transmit to other nodes within link coverage nodes organize themselves into a network: route among themselves

44 Infrastructure mode network infrastructure base station connects mobiles into wired network handoff: mobile changes base station providing connection into wired network

45 Bluetooth

46

47 Bluetooth characteristics Operates in the 2.4 GHz range, using FHSS Short range Up to 10 m Around 700 kbps No need for infra-structure (ad hoc) Low power consumption

48 Piconets

49 802.15: pan less than 10 m diameter replacement for cables (mouse, keyboard, headphones) ad hoc: no infrastructure master/slaves: slaves request permission to send (to master) master grants requests : evolved from Bluetooth specification GHz radio band up to 721 kbps S M S P S P M P S P Master device Slave device radius of coverage P Parked device (inactive)

50 Pause

51 WiFi

52 Wireless LANs When used? As extension/complementary to the wired LAN, for cost effectiveness. Cross building interconnects Nomadic access

53 IEEE Wireless LAN b 2.4unlicensed spectrum up to 11 Mbps a 5GHz range up to 54 Mbps g 2.4GHz range up to 54 Mbps n: multiple antennae 2.4 or 5 GHz range up to 600 Mbps

54 channels In the 2.4 GHz range: 14 channels spaced 5 MHz apart. Protocols requires 25 MHz of channel separation to function. The AP admin chooses frequency for AP Interference possible: channel can be same as that chosen by neighboring AP

55 Channel selection: 1,6,11 in the Us 1,5,9,13 in the rest of the world

56 Association A wireless host must associate with an AP. This establishes the identity and the address of host The host: scans channels, listening for beacon frames containing AP s name (SSID) and MAC address selects AP to associate with may perform authentication will typically run DHCP to get IP address in AP s subnet

57 Scanning Passive scanning 1. Beacon frames sent from APs (10beacons/sec); 2. Host listens on each channel periodically 3. Association Request frame sent: H1 to selected AP 4. Association Response frame sent: H1 to selected AP Active scanning 1. Probe Request frame broadcast from H1 2. Probes response frame sent from APs 3. Association Request frame sent 4. Association Response frame sent BBS 1 BBS 2 BBS 1 BBS 2 AP AP 2 AP AP 2 H1 H1

58 Media access

59 Motivation Can we apply media access methods from fixed networks? Example CSMA/CD Carrier Sense Multiple Access with Collision Detection send as soon as the medium is free, listen into the medium if a collision occurs (original method in IEEE 802.3) Problems in wireless networks signal strength decreases proportional to the square of the distance the sender would apply CS and CD, but the collisions happen at the receiver it might be the case that a sender cannot hear the collision, i.e., CD does not work furthermore, CS might not work if, e.g., a terminal is hidden

60 Contention for the Medium packets C A B If A and B simultaneously transmit to C over the same channel, how can C correctly decode received information? Need for medium access control mechanisms

61 Motivation - hidden and exposed terminals Hidden terminals A sends to B, C cannot receive A C wants to send to B, C senses a free medium (CS fails) collision at B, A cannot receive the collision (CD fails) A is hidden for C Exposed terminals A B C B sends to A, C wants to send to another terminal (not A or B) C has to wait, CS signals a medium in use but A is outside the radio range of C, therefore waiting is not necessary C is exposed to B

62 Motivation - near and far terminals Terminals A and B send, C receives signal strength decreases proportional to the square of the distance the signal of terminal B therefore drowns out A s signal C cannot receive A A B C

63 Collision avoidance

64 Multiple access CSMA/CA Carrier sense multiple access / Collision avoidance (Different from the CSMA/CD - collision detection - used in shared Ethernet media) Two main ideas: 1. Sense/listen before transmitting 2. don t collide with ongoing transmission by other node A C Hidden terminal problem B

65 DCF

66 Distributed Coordinated Function Supported by all wireless stations. Basic Time Parameters sender receiver Slot Time: basic unit of backoff algorithm = Time required for station to sense end of frame, start transmitting, and beginning of frame to propagate to others SIFS: Short Inter-Frame Space DIFS data = Time required for station to sense end of frame and start transmitting DIFS: DCF Inter-Frame Space = Time to wait before starting backoff interval ("contending ) = SIFS + 2 slot times ACK SIFS

67 Back-off If medium is free for DIFS transmit else back off: Wait for medium to be free for DIFS Choose a random r in [0,CW] where CW contention window While r > 0: sense medium for one slot time if medium free throughout slot r := r 1 transmit frame r=6 DIFS Busy DIFS Frame

68 A backoff illustration

69 Avoiding collisions idea: allow sender to reserve channel rather than random access of data frames: avoid collisions of long data frames sender first transmits small request-to-send (RTS) packets to BS using CSMA RTSs may still collide with each other (but they re short) BS broadcasts clear-to-send CTS in response to RTS CTS heard by all nodes sender transmits data frame other stations defer transmissions avoid data frame collisions completely using small reservation packets

70 Collision Avoidance: RTS-CTS exchange A AP B RTS(A) RTS(A) reservation collision RTS(B) CTS(A) CTS(A) DATA (A) defer time ACK(A) ACK(A)

71 sender receiver ACK idle RxBusy time-out NAK; RTS wait for ACK packet ready to send; RTS wait for the right to send CTS; data time-out; RTS data; ACK time-out data; NAK idle wait for data RTS; CTS ACK: positive acknowledgement NAK: negative acknowledgement RTS; RxBusy RxBusy: receiver busy

72 DCF scheme

73 frames

74 frame: addressing frame control duration address 1 address 2 address 3 seq control address 4 payload CRC Address 1,2,3 and 4: different meaning depending on use case: a frame sent from/to Aps or end stations General rule of thumb: address 1 receiver address 2 sender address 3 for filtering by the receiver

75 address fields

76 Addressing within subnet H2 H1 H2 MAC addr AP MAC addr H1 MAC addr address 1 address 2 address 3 AP MAC addr H1 MAC addr H2 MAC addr frame address 1 address 2 address frame

77 H1 R1 router Internet AP frame AP MAC addr H1 MAC addr R1 MAC addr address 1 address 2 address 3 R1 MAC addr H1 MAC addr dest. address source address frame

78 Mobility within same subnet H1 remains in same IP subnet: IP address can remain same switch: which AP is associated with H1? self-learning switch will see frame from H1 and remember which switch port can be used to reach H1 BBS 1 H1 BBS 2

79 Frame control duration of reserved transmission time (RTS/CTS) frame control duration address 1 address 2 address 3 seq control address 4 payload CRC Protocol version Type Subtype To AP From AP More frag 1 1 Power Retry mgt More data WEP Rsvd frame type (RTS, CTS, ACK, data) Type of encryption used

80 Tested home reading View the video: Location Identifier Separation Protocol: v=ecdadddslja (Time for fun? The GIST of LISP: v=lkrv1qb8uqa)

81 Literature Few slides were adapted from: Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009 Chapter 10 - Cellular Wireless Networks Chapter 13. Wireless LAN Technology. Chapter 14. IEEE Wireless LAN Standard. Chapter 15. Bluetooth. Chapter 6 - Wireless and mobile networks Chapter 4 - Telecommunication systems

82 Not tested reading The BSD Packet Filter: A New Architecture for User-level Packet Capture By Mc Canne and Van Jacobsen In:

Block 3: Lecture 1! Part 3: Lecture 1! Wireless networks!

Block 3: Lecture 1! Part 3: Lecture 1! Wireless networks! Block 3: Lecture 1 Part 3: Lecture 1 Wireless networks Part 3 Wireless and mobile networks: 1. Wireless technologies 2. Mobility 3. Fiber day on Friday May 22nd Long time ago... Marconi invented the wireless

More information

Wireless and Mobile Networks 7-2

Wireless and Mobile Networks 7-2 Wireless and Mobile Networks EECS3214 2018-03-26 7-1 Ch. 6: Wireless and Mobile Networks Background: # wireless (mobile) phone subscribers now exceeds # wired phone subscribers (5-to-1)! # wireless Internet-connected

More information

Wireless Networks. CSE 3461: Introduction to Computer Networking Reading: , Kurose and Ross

Wireless Networks. CSE 3461: Introduction to Computer Networking Reading: , Kurose and Ross Wireless Networks CSE 3461: Introduction to Computer Networking Reading: 6.1 6.3, Kurose and Ross 1 Wireless Networks Background: Number of wireless (mobile) phone subscribers now exceeds number of wired

More information

Topic 2b Wireless MAC. Chapter 7. Wireless and Mobile Networks. Computer Networking: A Top Down Approach

Topic 2b Wireless MAC. Chapter 7. Wireless and Mobile Networks. Computer Networking: A Top Down Approach Topic 2b Wireless MAC Chapter 7 Wireless and Mobile Networks Computer Networking: A Top Down Approach 7 th edition Jim Kurose, Keith Ross Pearson/Addison Wesley April 2016 7-1 Ch. 7: Background: # wireless

More information

Chapter 6 Wireless and Mobile Networks

Chapter 6 Wireless and Mobile Networks Chapter 6 Wireless and Mobile Networks Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2004. 6: Wireless and Mobile Networks 6

More information

Mohammad Hossein Manshaei 1393

Mohammad Hossein Manshaei 1393 Mohammad Hossein Manshaei manshaei@gmail.com 1393 Wireless Links, WiFi, Cellular Internet Access, and Mobility Slides derived from those available on the Web site of the book Computer Networking, by Kurose

More information

Shared Access Networks Wireless. 1/27/14 CS mywireless 1

Shared Access Networks Wireless. 1/27/14 CS mywireless 1 Shared Access Networks Wireless 1 Wireless and Mobile Networks Background: # wireless (mobile) phone subscribers now exceeds # wired phone subscribers (5-to-1)! # wireless Internet-connected devices equals

More information

Last Lecture: Data Link Layer

Last Lecture: Data Link Layer Last Lecture: Data Link Layer 1. Design goals and issues 2. (More on) Error Control and Detection 3. Multiple Access Control (MAC) 4. Ethernet, LAN Addresses and ARP 5. Hubs, Bridges, Switches 6. Wireless

More information

CSC 4900 Computer Networks: Wireless Networks

CSC 4900 Computer Networks: Wireless Networks CSC 4900 Computer Networks: Wireless Networks Professor Henry Carter Fall 2017 Last Time Mobile applications are taking off! What about current platforms is fueling this? How are an application s permission

More information

Data Communication & Networks G Session 5 - Main Theme Wireless Networks. Dr. Jean-Claude Franchitti

Data Communication & Networks G Session 5 - Main Theme Wireless Networks. Dr. Jean-Claude Franchitti Data Communication & Networks G22.2262-001 Session 5 - Main Theme Wireless Networks Dr. Jean-Claude Franchitti New York University Computer Science Department Courant Institute of Mathematical Sciences

More information

CS 332 Computer Networks Wireless Networks

CS 332 Computer Networks Wireless Networks CS 332 Computer Networks Wireless Networks Professor Szajda Chapter 6: Wireless and Mobile Networks Background: # wireless (mobile) phone subscribers now exceeds # wired phone subscribers! computer nets:

More information

CPSC 826 Internetworking. Wireless and Mobile Networks. Wireless Networks Wireless Hosts

CPSC 826 Internetworking. Wireless and Mobile Networks. Wireless Networks Wireless Hosts 1 CPSC 826 Intering Wireless and Mobile Networks Michele Weigle Department of Computer Science Clemson University mweigle@cs.clemson.edu November 29, 200 Wireless and Mobile Networks Background Number

More information

Multiple Access in Cellular and Systems

Multiple Access in Cellular and Systems Multiple Access in Cellular and 802.11 Systems 1 GSM The total bandwidth is divided into many narrowband channels. (200 khz in GSM) Users are given time slots in a narrowband channel (8 users) A channel

More information

COMP 3331/9331: Computer Networks and Applications

COMP 3331/9331: Computer Networks and Applications COMP 3331/9331: Computer Networks and Applications Week 10 Wireless Networks Reading Guide: Chapter 6: 6.1 6.3 Wireless Networks + Security 1 Wireless and Mobile Networks Background: # wireless (mobile)

More information

Chapter 6 Wireless and Mobile Networks. Chapter 6 outline. Chapter 6: Wireless and Mobile Networks. Elements of a wireless network.

Chapter 6 Wireless and Mobile Networks. Chapter 6 outline. Chapter 6: Wireless and Mobile Networks. Elements of a wireless network. Chapter 6 Wireless and obile Networks Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2004. Chapter 6: Wireless and obile Networks

More information

CSCI-1680 Wireless Chen Avin

CSCI-1680 Wireless Chen Avin CSCI-1680 Wireless Chen Avin Based on slides from Computer Networking: A Top Down Approach - 6th edition Administrivia TCP is due on Friday Final Project is out (fun, two weeks) Wireless and Mobile Networks

More information

Wireless Networks. CSE 3461: Introduction to Computer Networking Reading: , Kurose and Ross ( 6th ed.); , Kurose and Ross (7th ed.

Wireless Networks. CSE 3461: Introduction to Computer Networking Reading: , Kurose and Ross ( 6th ed.); , Kurose and Ross (7th ed. Wireless Networks CSE 3461: Introduction to Computer Networking Reading: 6.1 6.3, Kurose and Ross ( 6th ed.); 7.1 7.3, Kurose and Ross (7th ed.) 1 Questions How do you use wireless network technology in

More information

COMP 3331/9331: Computer Networks and Applications

COMP 3331/9331: Computer Networks and Applications COMP 3331/9331: Computer Networks and Applications Week 10 Reading Guide: Chapter 6: 6.1 6.4 1 Ch. 6: Wireless and Mobile Networks Background: v # wireless (mobile) phone subscribers now exceeds # wired

More information

ECE 4450:427/527 - Computer Networks Spring 2017

ECE 4450:427/527 - Computer Networks Spring 2017 ECE 4450:427/527 - Computer Networks Spring 2017 Dr. Nghi Tran Department of Electrical & Computer Engineering Lecture 5.6: Wireless Networks - MAC Dr. Nghi Tran (ECE-University of Akron) ECE 4450:427/527

More information

6.9 Summary. 11/20/2013 Wireless and Mobile Networks (SSL) 6-1. Characteristics of selected wireless link standards a, g point-to-point

6.9 Summary. 11/20/2013 Wireless and Mobile Networks (SSL) 6-1. Characteristics of selected wireless link standards a, g point-to-point Chapter 6 outline 6.1 Introduction Wireless 6.2 Wireless links, characteristics CDMA 6.3 IEEE 802.11 wireless LANs ( wi-fi ) 6.4 Cellular Internet Access architecture standards (e.g., GSM) Mobility 6.5

More information

Home Area Networks. Outline

Home Area Networks. Outline Home Area Networks CS 687 University of Kentucky Fall 2015 Acknowledgment: Some slides are adapted from the slides distributed with the book Computer Networking: A Top Down Approach, 5th edition. Jim Kurose,

More information

Module 6: Wireless Mobile Networks

Module 6: Wireless Mobile Networks Module 6: Wireless Mobile Networks SMD123 Computer Communications Kaustubh Phanse Department of Computer Science and Electrical Engineering Luleå University of Technology Lecture Objectives Wireless links

More information

Chapter 6 Wireless and Mobile Networks. Chapter 6 outline. Chapter 6: Wireless and Mobile Networks. Elements of a wireless network

Chapter 6 Wireless and Mobile Networks. Chapter 6 outline. Chapter 6: Wireless and Mobile Networks. Elements of a wireless network Chapter 6 Wireless and Mobile Networks Computer Networking: Top Down pproach 5 th edition. Jim Kurose, Keith Ross ddison-wesley, pril 009. Chapter 6: Wireless and Mobile Networks ackground: # wireless

More information

Elements of a wireless network. Elements of a wireless network. Characteristics of selected wireless link standards. Elements of a wireless network

Elements of a wireless network. Elements of a wireless network. Characteristics of selected wireless link standards. Elements of a wireless network wireless hosts laptop, D, I phone run applications may be stationary (non-mobile) or mobile wireless does not always mean mobility base station typically connected to wired relay - responsible for sending

More information

Mobile and Sensor Systems

Mobile and Sensor Systems Mobile and Sensor Systems Lecture 2: Mobile Medium Access Control Protocols and Wireless Systems Dr Cecilia Mascolo In this lecture We will describe medium access control protocols and wireless systems

More information

Wireless and Mobile Networks

Wireless and Mobile Networks Wireless and Mobile Networks Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@wustl.edu Audio/Video recordings of this lecture are available on-line at: http://www.cse.wustl.edu/~jain/cse473-11/

More information

Elements of a wireless network. Elements of a wireless network. Some wireless link standards. Elements of a wireless network

Elements of a wireless network. Elements of a wireless network. Some wireless link standards. Elements of a wireless network Elements of a wireless Elements of a wireless wireless hosts laptop, D, I phone run applications may be stationary (non-mobile) or mobile wireless does not always mean mobility base station typically connected

More information

M06:Wireless and Mobile Networks. Corinna Schmitt

M06:Wireless and Mobile Networks. Corinna Schmitt M06:Wireless and Mobile Networks Corinna Schmitt corinna.schmitt@unibas.ch Acknowledgement 2016 M06 2 Background q # wireless (mobile) phone subscribers now exceeds # wired phone subscribers (5-to-1)!

More information

Link Layer. 5.1 Introduction and services 5.2 Error detection and correction 5.3Multiple access protocols 5.4 Link-Layer Addressing 5.

Link Layer. 5.1 Introduction and services 5.2 Error detection and correction 5.3Multiple access protocols 5.4 Link-Layer Addressing 5. Link Layer 5.1 Introduction and services 5.2 Error detection and correction 5.3Multiple access protocols 5.4 Link-Layer Addressing 5.5 Ethernet 5.6 Link-layer switches 5.7 PPP 5.8 Link Virtualization:

More information

CSCD 433 Network Programming Fall Lecture 7 Ethernet and Wireless

CSCD 433 Network Programming Fall Lecture 7 Ethernet and Wireless CSCD 433 Network Programming Fall 2016 Lecture 7 Ethernet and Wireless 802.11 1 Topics 802 Standard MAC and LLC Sublayers Review of MAC in Ethernet MAC in 802.11 Wireless 2 IEEE Standards In 1985, Computer

More information

Chapter 5 Network Layer: The Control Plane

Chapter 5 Network Layer: The Control Plane Chapter 5 Network Layer: The Control Plane A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you

More information

Data Communications. Data Link Layer Protocols Wireless LANs

Data Communications. Data Link Layer Protocols Wireless LANs Data Communications Data Link Layer Protocols Wireless LANs Wireless Networks Several different types of communications networks are using unguided media. These networks are generally referred to as wireless

More information

Wireless and WiFi. Daniel Zappala. CS 460 Computer Networking Brigham Young University

Wireless and WiFi. Daniel Zappala. CS 460 Computer Networking Brigham Young University Wireless and WiFi Daniel Zappala CS 460 Computer Networking Brigham Young University Wireless Networks 2/28 mobile phone subscribers now outnumber wired phone subscribers similar trend likely with Internet

More information

Computer Networks. Wireless and Mobile Networks. László Böszörményi Computer Networks Mobile - 1

Computer Networks. Wireless and Mobile Networks. László Böszörményi Computer Networks Mobile - 1 Computer Networks Wireless and Mobile Networks László Böszörményi Computer Networks Mobile - 1 Background Number of wireless (mobile) phone subscribers now exceeds number of wired phone subscribers! Computer

More information

Mobile devices for wireless

Mobile devices for wireless Mobile devices for wireless Wireless sensors Limited proc. power Small battery Laptop functionally eq. to desktop standard applications TDTS04/09 Föreläsning 0/6: WLAN och TCP i trådlösa nät RFID tag A

More information

Medium Access Control

Medium Access Control Medium Access Control All material copyright 1996-2009 J.F Kurose and K.W. Ross, All Rights Reserved 5: DataLink Layer 5-1 Link Layer Introduction and services Multiple access protocols Ethernet Wireless

More information

Chapter 6 Wireless and Mobile Networks

Chapter 6 Wireless and Mobile Networks Chapter 6 Wireless and Mobile Networks A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add,

More information

CSC 8560 Computer Networks: Wireless and Mobility

CSC 8560 Computer Networks: Wireless and Mobility CSC 8560 Computer Networks: Wireless and Mobility Professor Henry Carter Fall 2017 Chapter 7: Wireless and Mobile Networks Background: # wireless (mobile) phone subscribers now exceeds # wired phone subscribers!

More information

Mohammad Hossein Manshaei 1393

Mohammad Hossein Manshaei 1393 Mohammad Hossein Manshaei manshaei@gmail.com 1393 1 802.11 History and Standardization 802.11 Architectures and Layers 802.11 Frame Format and Addressing 802.11 Mac Layer (CSMA/CA) 2 Wifi 3 twisted pair

More information

Multiple Access Links and Protocols

Multiple Access Links and Protocols Multiple Access Links and Protocols Two types of links : point-to-point PPP for dial-up access point-to-point link between Ethernet switch and host broadcast (shared wire or medium) old-fashioned Ethernet

More information

Wireless Protocols. Training materials for wireless trainers

Wireless Protocols. Training materials for wireless trainers Wireless Protocols Training materials for wireless trainers Goals The goal of this lecture is to introduce: IEEE wireless protocols coverage 802.11 radio protocols terminology WiFi modes of operation details

More information

Chapter 6 Wireless and Mobile Networks

Chapter 6 Wireless and Mobile Networks Chapter 6 Wireless and Mobile Networks A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations;

More information

Chapter 6 Wireless and Mobile Networks

Chapter 6 Wireless and Mobile Networks Chapter 6 Wireless and Mobile Networks A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations;

More information

Wireless and Mobile Networks Reading: Sections 2.8 and 4.2.5

Wireless and Mobile Networks Reading: Sections 2.8 and 4.2.5 Wireless and Mobile Networks Reading: Sections 2.8 and 4.2.5 Acknowledgments: Lecture slides are from Computer networks course thought by Jennifer Rexford at Princeton University. When slides are obtained

More information

IEEE WLANs (WiFi) Part II/III System Overview and MAC Layer

IEEE WLANs (WiFi) Part II/III System Overview and MAC Layer IEEE 802.11 WLANs (WiFi) Part II/III System Overview and MAC Layer Design goals for wireless LANs (WLANs) Global, seamless operation Low power for battery use No special permissions or licenses needed

More information

Chapter 5 Wireless and Mobile Networks

Chapter 5 Wireless and Mobile Networks Chapter 5 Wireless and Mobile Networks Reference: Computer Networking: A Top Down Approach 4 th edition. Jim Kurose, Keith Ross Addison-Wesley, July 2007. Wireless and Mobile Networks Chapter 5: Wireless

More information

MSIT 413: Wireless Technologies Week 8

MSIT 413: Wireless Technologies Week 8 MSIT 413: Wireless Technologies Week 8 Michael L. Honig Department of EECS Northwestern University November 2017 The Multiple Access Problem How can multiple mobiles access (communicate with) the same

More information

MULTIPLE ACCESS PROTOCOLS 2. 1

MULTIPLE ACCESS PROTOCOLS 2. 1 MULTIPLE ACCESS PROTOCOLS AND WIFI 1 MULTIPLE ACCESS PROTOCOLS 2. 1 MULTIPLE ACCESS LINKS, PROTOCOLS Two types of links : point-to-point broadcast (shared wire or medium) POINT-TO-POINT PPP for dial-up

More information

Wireless Internet Routing. Review of Wireless Networking (with Routing in Mind)

Wireless Internet Routing. Review of Wireless Networking (with Routing in Mind) Wireless Internet Routing Review of Wireless Networking (with Routing in Mind) 1 Review of Wireless Networking Architecture of wireless networks Wireless PHY Wireless MAC o 802.11 PHY: physical layer /

More information

Extending or Interconnecting LANS. Physical LAN segment. Virtual LAN. Forwarding Algorithm 11/9/15. segments. VLAN2, Port3. VLAN1, Port1.

Extending or Interconnecting LANS. Physical LAN segment. Virtual LAN. Forwarding Algorithm 11/9/15. segments. VLAN2, Port3. VLAN1, Port1. Physical LAN segment q Hosts connected on the same physical LAN segment q Same subnet; L2 forwarding q ARP (IPè MAC) L2 frame (S, D), send q Scale? Extending or Interconnecting LANS q q q Why not just

More information

(Wireless) Internet Routing. Review of Wireless Networking (with Routing in Mind)

(Wireless) Internet Routing. Review of Wireless Networking (with Routing in Mind) (Wireless) Internet Routing Review of Wireless Networking (with Routing in Mind) 1 Review of Wireless Networking Architecture of wireless networks Wireless PHY Wireless MAC o 802.11 PHY: physical layer

More information

Chapter 6 Wireless and Mobile Networks

Chapter 6 Wireless and Mobile Networks Chapter 6 Wireless and Mobile Networks A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add,

More information

Chapter 5 Link Layer and LANs

Chapter 5 Link Layer and LANs Chapter 5 Link Layer and LANs A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and

More information

Wireless LANs. ITS 413 Internet Technologies and Applications

Wireless LANs. ITS 413 Internet Technologies and Applications Wireless LANs ITS 413 Internet Technologies and Applications Aim: Aim and Contents Understand how IEEE 802.11 wireless LANs work Understand what influences the performance of wireless LANs Contents: IEEE

More information

CSC 498R: Internet of Things 2

CSC 498R: Internet of Things 2 CSC 498R: Internet of Things Lecture 04: Wireless Networks Instructor: Haidar M. Harmanani IoT Components Things we connect: Hardware, sensors and actuators Connectivity Medium we use to connect things

More information

Computer Networks. Wireless LANs

Computer Networks. Wireless LANs Computer Networks Wireless LANs Mobile Communication Technology according to IEEE (examples) Local wireless networks WLAN 802.11 Personal wireless nw WPAN 802.15 WiFi 802.11a 802.11b 802.11h 802.11i/e/

More information

Chapter 4 Network Layer: The Data Plane

Chapter 4 Network Layer: The Data Plane Chapter 4 Network Layer: The Data Plane A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see

More information

Chapter 6 Wireless and Mobile Networks

Chapter 6 Wireless and Mobile Networks Chapter 6 Wireless and Mobile Networks A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add,

More information

Lecture 6. Reminder: Homework 2, Programming Project 2 due on Thursday. Questions? Tuesday, September 13 CS 475 Networks - Lecture 6 1

Lecture 6. Reminder: Homework 2, Programming Project 2 due on Thursday. Questions? Tuesday, September 13 CS 475 Networks - Lecture 6 1 Lecture 6 Reminder: Homework 2, Programming Project 2 due on Thursday. Questions? Tuesday, September 13 CS 475 Networks - Lecture 6 1 Outline Chapter 2 - Getting Connected 2.1 Perspectives on Connecting

More information

standard. Acknowledgement: Slides borrowed from Richard Y. Yale

standard. Acknowledgement: Slides borrowed from Richard Y. Yale 802.11 standard Acknowledgement: Slides borrowed from Richard Y. Yang @ Yale IEEE 802.11 Requirements Design for small coverage (e.g. office, home) Low/no mobility High data rate applications Ability to

More information

CSC 4900 Computer Networks: Network Layer

CSC 4900 Computer Networks: Network Layer CSC 4900 Computer Networks: Network Layer Professor Henry Carter Fall 2017 Chapter 4: Network Layer 4. 1 Introduction 4.2 What s inside a router 4.3 IP: Internet Protocol Datagram format 4.4 Generalized

More information

Chapter 6 Wireless and Mobile Networks

Chapter 6 Wireless and Mobile Networks Chapter 6 Wireless and Mobile Networks A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add,

More information

Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ

Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ Chapter 6 Wireless and Mobile Networks Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley,

More information

Chapter 6 Wireless and Mobile Networks. Chapter 6 outline. Chapter 6: Wireless and Mobile Networks. Elements of a wireless network

Chapter 6 Wireless and Mobile Networks. Chapter 6 outline. Chapter 6: Wireless and Mobile Networks. Elements of a wireless network Chapter 6 Wireless and Mobile Networks A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add,

More information

COMP211 Chapter 4 Network Layer: The Data Plane

COMP211 Chapter 4 Network Layer: The Data Plane COMP211 Chapter 4 Network Layer: The Data Plane All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down Approach 7 th edition Jim Kurose, Keith Ross

More information

Wireless and Mobile Networks

Wireless and Mobile Networks Chapter 6 Wireless and Mobile Networks A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add,

More information

CSC 401 Data and Computer Communications Networks

CSC 401 Data and Computer Communications Networks CSC 401 Data and Computer Communications Networks Network Layer ICMP (5.6), Network Management(5.7) & SDN (5.1, 5.5, 4.4) Prof. Lina Battestilli Fall 2017 Outline 5.6 ICMP: The Internet Control Message

More information

CS118 Discussion 1A, Week 9. Zengwen Yuan Dodd Hall 78, Friday 10:00 11:50 a.m.

CS118 Discussion 1A, Week 9. Zengwen Yuan Dodd Hall 78, Friday 10:00 11:50 a.m. CS118 Discussion 1A, Week 9 Zengwen Yuan Dodd Hall 78, Friday 10:00 11:50 a.m. 1 Outline Wireless: 802.11 Mobile IP Cellular Networks: LTE Sample final 2 Wireless and Mobile Network Wireless access: WIFI

More information

Overview : Computer Networking. Spectrum Use Comments. Spectrum Allocation in US Link layer challenges and WiFi WiFi

Overview : Computer Networking. Spectrum Use Comments. Spectrum Allocation in US Link layer challenges and WiFi WiFi Overview 15-441 15-441: Computer Networking 15-641 Lecture 21: Wireless Justine Sherry Peter Steenkiste Fall 2017 www.cs.cmu.edu/~prs/15-441-f17 Link layer challenges and WiFi WiFi Basic WiFi design Some

More information

Chapter 3: Wireless and Mobile Networks

Chapter 3: Wireless and Mobile Networks Computer Network Architectures and Multimedia Guy Leduc Chapter 3 Wireless and Mobile Networks Chapter 7 of Computer Networking: A Top Down Approach, 7 th edition. Jim Kurose, Keith Ross Addison-Wesley,

More information

Chapter 6 Wireless and Mobile Networks

Chapter 6 Wireless and Mobile Networks Chapter 6 Wireless and Mobile Networks A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add,

More information

Chapter 7. Wireless and Mobile Networks 7-1

Chapter 7. Wireless and Mobile Networks 7-1 Chapter 7 Wireless and Mobile Networks A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see

More information

Computer Communication III

Computer Communication III Computer Communication III Wireless Media Access IEEE 802.11 Wireless LAN Advantages of Wireless LANs Using the license free ISM band at 2.4 GHz no complicated or expensive licenses necessary very cost

More information

Chapter 7. Wireless and Mobile Networks. Computer Networking: A Top Down Approach

Chapter 7. Wireless and Mobile Networks. Computer Networking: A Top Down Approach Chapter 7 Wireless and Mobile Networks A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see

More information

Lecture 15 Wireless and Mobility

Lecture 15 Wireless and Mobility Lecture 15 Wireless and Mobility From Kurose & Ross Book slightly modified by Romaric Duvignau duvignau@chalmers.se Thanks and enjoy! JFK/KWR All material copyright 1996-2016 J.F Kurose and K.W. Ross,

More information

Lecture 16: QoS and "

Lecture 16: QoS and Lecture 16: QoS and 802.11" CSE 123: Computer Networks Alex C. Snoeren HW 4 due now! Lecture 16 Overview" Network-wide QoS IntServ DifServ 802.11 Wireless CSMA/CA Hidden Terminals RTS/CTS CSE 123 Lecture

More information

Announcements: Assignment 4 due now Lab 4 due next Tuesday Assignment 5 posted, due next Thursday

Announcements: Assignment 4 due now Lab 4 due next Tuesday Assignment 5 posted, due next Thursday ECE/CS 372 introduction to computer networks Lecture 15 Announcements: Assignment 4 due now Lab 4 due next Tuesday Assignment 5 posted, due next Thursday Credit for lecture slides to Professor Bechir Hamdaoui

More information

Lecture 23 Overview. Last Lecture. This Lecture. Next Lecture ADSL, ATM. Wireless Technologies (1) Source: chapters 6.2, 15

Lecture 23 Overview. Last Lecture. This Lecture. Next Lecture ADSL, ATM. Wireless Technologies (1) Source: chapters 6.2, 15 Lecture 23 Overview Last Lecture ADSL, ATM This Lecture Wireless Technologies (1) Wireless LAN, CSMA/CA, Bluetooth Source: chapters 6.2, 15 Next Lecture Wireless Technologies (2) Source: chapter 16, 19.3

More information

Mobile & Wireless Networking. Lecture 7: Wireless LAN

Mobile & Wireless Networking. Lecture 7: Wireless LAN 192620010 Mobile & Wireless Networking Lecture 7: Wireless LAN [Schiller, Section 7.3] [Reader, Part 6] [Optional: "IEEE 802.11n Development: History, Process, and Technology", Perahia, IEEE Communications

More information

Data and Computer Communications. Chapter 13 Wireless LANs

Data and Computer Communications. Chapter 13 Wireless LANs Data and Computer Communications Chapter 13 Wireless LANs Wireless LAN Topology Infrastructure LAN Connect to stations on wired LAN and in other cells May do automatic handoff Ad hoc LAN No hub Peer-to-peer

More information

Wireless Network and Mobility

Wireless Network and Mobility Wireless Network and Mobility Dept. of Computer Science, University of Rochester 2008-11-17 CSC 257/457 - Fall 2008 1 Wireless Networks and Mobility Wireless networking in the data link layer Short range:

More information

Lecture Objectives. Lecture 1 Wireless Environment and Wireless LANs. Agenda (1) Agenda (2) Wireless Spectrum (1)

Lecture Objectives. Lecture 1 Wireless Environment and Wireless LANs. Agenda (1) Agenda (2) Wireless Spectrum (1) Lecture Objectives Wireless Networks and Mobile Systems Lecture 1 Wireless Environment and Wireless LANs Discuss the impact of the wireless environment on networks Explain the concept of spread spectrum,

More information

Wireless and Mobile Networks

Wireless and Mobile Networks Wireless and Mobile Networks Background: # wireless (mobile) phone subscribers now exceeds # wired phone subscribers (5-to-1)! # wireless Internet-connected devices equals # wireline Internet-connected

More information

Ethernet. Lecture 6. Outline. Ethernet - Physical Properties. Ethernet - Physical Properties. Ethernet

Ethernet. Lecture 6. Outline. Ethernet - Physical Properties. Ethernet - Physical Properties. Ethernet Lecture 6 Ethernet Reminder: Homework 2, Programming Project 2 due on 9/20/12. Thick-net Thin-net Twisted Pair Thursday, September 13 CS 475 Networks - Lecture 6 1 Thursday, September 13 CS 475 Networks

More information

Local Area Networks NETW 901

Local Area Networks NETW 901 Local Area Networks NETW 901 Lecture 4 Wireless LAN Course Instructor: Dr.-Ing. Maggie Mashaly maggie.ezzat@guc.edu.eg C3.220 1 Contents What is a Wireless LAN? Applications and Requirements Transmission

More information

Chapter 7. Wireless and Mobile Networks. Computer Networking: A Top Down Approach. Andrei Gurtov

Chapter 7. Wireless and Mobile Networks. Computer Networking: A Top Down Approach. Andrei Gurtov Chapter 7 Wireless and Mobile Networks Andrei Gurtov All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down Approach 7 th edition Jim Kurose, Keith

More information

Wireless Networks. Wireless Links. Mike Freedman hap:// Interference / bit errors

Wireless Networks. Wireless Links. Mike Freedman hap://  Interference / bit errors 1! Widespread Deployment 2! Wireless Networks COS 461: Computer Networks Spring 2013 Mike Freedman hap://www.cs.princeton.edu/courses/archive/spring13/cos461/ Worldwide cellular subscribers 1993: 34 million

More information

Internet Structure. network edge:

Internet Structure. network edge: Midterm Review Internet Structure network edge: Hosts: clients and servers Server often in data centers access networks, physical media:wired, wireless communication links network core: interconnected

More information

Wireless Security Background

Wireless Security Background Wireless Security Background Wireless Networks The need for mobile computing Laptops, PDAs, Bluetooth devices Smart phones Enabling technology Wireless communication Two important characteristics Wireless

More information

Chapter 6 Wireless and Mobile Networks (Wireless and Mobility)

Chapter 6 Wireless and Mobile Networks (Wireless and Mobility) CSF645 Mobile Computing 行動計算 Chapter 6 Wireless and Mobile Networks (Wireless and Mobility) Computer Networking: A Top Down Approach 6 th edition, Jim Kurose, Keith Ross 吳俊興國立高雄大學資訊工程學系 outline 6.1 Introduction

More information

CMPE 257: Wireless and Mobile Networking

CMPE 257: Wireless and Mobile Networking CMPE 257: Wireless and Mobile Networking Katia Obraczka Computer Engineering UCSC Baskin Engineering Lecture 3 CMPE 257 Winter'11 1 Announcements Accessing secure part of the class Web page: User id: cmpe257.

More information

Chapter 6 Medium Access Control Protocols and Local Area Networks

Chapter 6 Medium Access Control Protocols and Local Area Networks Chapter 6 Medium Access Control Protocols and Local Area Networks 802.11 Wireless LAN CSE 3213, Winter 2010 Instructor: Foroohar Foroozan Wireless Data Communications Wireless communications compelling

More information

CSMC 417. Computer Networks Prof. Ashok K Agrawala Ashok Agrawala. Fall 2018 CMSC417 Set 1 1

CSMC 417. Computer Networks Prof. Ashok K Agrawala Ashok Agrawala. Fall 2018 CMSC417 Set 1 1 CSMC 417 Computer Networks Prof. Ashok K Agrawala 2018 Ashok Agrawala Fall 2018 CMSC417 Set 1 1 The Medium Access Control Sublayer November 18 Nov 6, 2018 2 Wireless Networking Technologies November 18

More information

Chapter 7. Wireless and Mobile Networks. Computer Networking: A Top Down Approach

Chapter 7. Wireless and Mobile Networks. Computer Networking: A Top Down Approach Chapter 7 Wireless and Mobile Networks A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see

More information

Wireless Challenges : Computer Networking. Overview. Routing to Mobile Nodes. Lecture 25: Wireless Networking

Wireless Challenges : Computer Networking. Overview. Routing to Mobile Nodes. Lecture 25: Wireless Networking Wireless Challenges 15-441: Computer Networking Lecture 25: Wireless Networking Force us to rethink many assumptions Need to share airwaves rather than wire Don t know what hosts are involved Host may

More information

CSE 461: Wireless Networks

CSE 461: Wireless Networks CSE 461: Wireless Networks Wireless IEEE 802.11 A physical and multiple access layer standard for wireless local area networks (WLAN) Ad Hoc Network: no servers or access points Infrastructure Network

More information

Mobile Communications Chapter 7: Wireless LANs

Mobile Communications Chapter 7: Wireless LANs Mobile Communications Chapter 7: Wireless LANs Characteristics IEEE 802.11 (PHY, MAC, Roaming,.11a, b, g, h, i, n z) Bluetooth / IEEE 802.15.x IEEE 802.16/.20/.21/.22 RFID Comparison Prof. Jó Ueyama courtesy

More information

WiFi Networks: IEEE b Wireless LANs. Carey Williamson Department of Computer Science University of Calgary Winter 2018

WiFi Networks: IEEE b Wireless LANs. Carey Williamson Department of Computer Science University of Calgary Winter 2018 WiFi Networks: IEEE 802.11b Wireless LANs Carey Williamson Department of Computer Science University of Calgary Winter 2018 Background (1 of 2) In many respects, the IEEE 802.11b wireless LAN (WLAN) standard

More information

Mohamed Khedr.

Mohamed Khedr. Mohamed Khedr http://webmail.aast.edu/~khedr Tentatively Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week 13 Week 14 Week 15 Overview Packet Switching IP addressing

More information

ICE 1332/0715 Mobile Computing (Summer, 2008)

ICE 1332/0715 Mobile Computing (Summer, 2008) ICE 1332/0715 Mobile Computing (Summer, 2008) IEEE 802.11 Prof. Chansu Yu http://academic.csuohio.edu/yuc/ Contents Overview of IEEE 802.11 Frame formats MAC frame PHY frame IEEE 802.11 IEEE 802.11b IEEE

More information