SHORTEST PATH TECHNIQUE FOR SWITCHING IN A MESH NETWORK

Size: px
Start display at page:

Download "SHORTEST PATH TECHNIQUE FOR SWITCHING IN A MESH NETWORK"

Transcription

1 International Conference Mathematical and Computational Biology 2011 International Journal of Modern Physics: Conference Series Vol. 9 (2012) World Scientific Publishing Company DOI: /S SHORTEST PATH TECHNIQUE FOR SWITCHING IN A MESH NETWORK WAN NOR MUNIRAH ARIFFIN Institute for Engineering Mathematics, Universiti Malaysia Perlis, Jalan Serawak, Kuala Perlis, Perlis, Malaysia munirah@unimap.edu.my SHAZALINA MAT ZIN Institute for Engineering Mathematics, Universiti Malaysia Perlis, Jalan Serawak, Kuala Perlis, Perlis, Malaysia shazalina@unimap.edu.my SHAHARUDDIN SALLEH Mathematics Department, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia ss@utm.my Switching is a technique to route data and instructions between pairs of source-destination nodes or among multiple nodes for broadcast communication. We realized that the shortest path problem has a wide application in the design of networks. Therefore, in this paper, we present a mesh network as our switching mechanism for computing the shortest path between the source and destination in our simulation model, developed using C++ on the Windows environment. The Floyd-Warshall algorithm is applied in finding the shortest path in all-pairs nodes. Keywords: Shortest path; Floyd-Warshall algorithm; C++ programming. 1. Introduction Switching often is at the heart of a test system and may adversely affect signal integrity if not correctly designed. Different types of switches are needed depending on the application being address. Switching also can be defined as a process moving data from one interface and delivering it through another interface, selecting the best paths between machines that store messages. In a telecommunications network, a switch is actually a device that channels incoming data from any of multiple input ports to the specific output port that will take the data toward its intended destination. 1 The purpose of switching is to provide interconnection between all the nodes on a network without the need for single connections between each pair of nodes. Therefore, we require switching technology that provides a mechanism to establish connectivity as and when required

2 Shortest Path Technique for Switching in a Mesh Network 489 We realized that the shortest path problem has a wide application in the design of networks. As communication between processors may incur some significant delays in the execution of tasks, finding the shortest path between them definitely contributes to reducing the cost. There are many algorithms in order to find the shortest path between two destinations such as Dijkstra s algorithm, Bellman-Ford algorithm, Johnson s algorithm and Floyd-Warshall algorithm. This paper involves the application of graph theory methods in finding the shortest path using switching. Therefore, switching and shortest path technique binds together throughout this paper. The Floyd-Warshall algorithm is applied in finding the shortest path in all-pairs nodes through switching in formulating our simulation model. The rest of this paper is organized as follows: Section 2 describes the switching that is mesh network and discusses the shortest path problem as well as the Floyd-Warshall algorithm. Section 3 shows the simulation model which is developed using C++ on the Windows environment. Section 4 gives concluding remarks. 2. Mesh Path Problem 2.1. Mesh network In a mesh network, the nodes are arranged into a q-dimensional lattice. Communication is allowed only between neighbouring nodes where the interior nodes communicate with 2q other processors. Figure 1 below illustrates a two dimensional (2-D) mesh with no wraparound connections. Fig. 1. 2D mesh of width 4 with no wraparound connections on edge or corner nodes.

3 490 W. N. M. Ariffin, S. M. Zin and S. Salleh Computing the shortest paths between all pairs of processors is a necessity in a mesh network to allow active data movement in the network. A path is defined as the route from the source node to its destination node. As we have mentioned earlier, as communication between processors may incur some insignificant delays in the execution of the tasks, therefore, finding the shortest path between them definitely contributes to reducing the cost Shortest path problem The shortest path problem can be stated as follows: Given a weighted graph, find the minimal cost linking a pair of nodes in the graph. 4 In this paper, we state our problem as, given m nodes as the source and n nodes as the destination (sink). The problem in this study is to assign each node in the source to a node in the destination through switching. The switch is made of rectangular mesh which is shown in Figure 2. The nodes in the first column denote the source while the nodes in the last column represent the destination. The intermediate nodes are the switching. SOURCE SWITCHING DESTINATION Fig. 2. The sketch of the shortest path through rectangular mesh switching. The technique of computing the all-pairs shortest paths using the Floyd-Warshall algorithm is applied to compute the shortest path between the two nodes from the source to the destination Floyd-Warshalll algorithm The Floyd-Warshall algorithm sometimes known as Roy-Floyd computes the all-pairs shortest path problem on weighted and directed graphs with a running time complexity of

4 Shortest Path Technique for Switching in a Mesh Network 491 O(N 3 ), where N is the number of nodes in our graph. The weight of a link between the nodes v i and v j is denoted w ij. So, how does this algorithm works? First, in order to compute the shortest path, w ij between v i and v j, for i = 1,2,3,,N and j = 1,2,3,,N, must be given. If the link between v i and v j does not exist, then the weight is set to be. This weight is assigned to w ij min as the initial minimal distance between v i and v j. This algorithm assumes that the links in the graph to have nonnegative weights and nonnegative cycles. 0 ; i = j wij = w( i, j) ; i j and ( i, j) E ; i j and ( i, j) E The Floyd-Warshall algorithm starts by finding all the minimal distances between the pairs of nodes without passing through any intermediate nodes. These values are recorded in a minimal distance table. The rule is then relaxed by allowing one node to be the only intermediate node, starting with v 0. We set a ijk as the shortest distance from v i to v j using only the nodes v 0, v 1,, v k as the intermediate nodes. With a k as the intermediate node, the minimal distance is a ijk. The minimal distances between the pairs of nodes are determined by comparing the previous values with the present ones. New updates are again recorded in the minimal distance table. This is followed by v 1, v 2, and so on until the last node, v N. The process repeats with two nodes and so on, using the earlier result for comparison. We consider an example as in Figure 1, but now each of the edge has its own value (weighted arc). We simplify our explanation by giving this simple example as shown in Figure 3 below. Fig. 3. Illustration of shortest path between two nodes.

5 492 W. N. M. Ariffin, S. M. Zin and S. Salleh From the Figure 3, we wish to find the shortest path between the two nodes which represented by the black nodes. The black node in the left is the source node while the right node is the destination. In order to find the shortest path between them, the Floyd- Warshall algorithm is applied. 3. Simulation Model In this section, we represent our simulation model that has been developed to simulate the shortest path in a mesh computing network. The technique of computing the all-pairs shortest paths using the Floyd-Warshall algorithm is applied to this simulation model Model description Our visualization model, simulates the standard mesh network on a 5 x 10 topology having 50 processors, as shown in Figure 4. The processors are numbered starting from the leftmost in the top row. To use this simulation model, the users need to click on the mouse s left button on the two nodes which come from the source and the destination column. After clicking the source and destination node, user needs to click the compute button in order to allow the program draw the shortest path. The intermediate nodes represent our switching, while the links represent the hops. The weights of the hops are integer numbers generated randomly from the clock cycles in the computer. 5 The communication between the processors from the source to the destination must be going through the switching. The switches will connect the source and the destination nodes with the most minimum amount or value of hops. The shortest path between the source and the destination nodes in the model is obtained by clicking the nodes consecutively using the left button of the mouse. The path is shown as a thick line from the source to the destination. The program can only work if the user clicks at the correct nodes. The first click must be any nodes at the first column, defined as our source node, while the second click must be any nodes which come from the last column namely destination. If the user clicks at the intermediate nodes, nothing will be happen. The program does not allow the click on switches. The communication model in the mesh network modeled here is in its simplest form. Factors like the initial startup cost, the transmission rate, and the physical media of links are not considered in evaluating the communication cost involving shortest paths.

6 Shortest Path Technique for Switching in a Mesh Network 493 Fig. 4. The model of computing shortest path through switching. Figure 4 above shows the shortest path between a pair of nodes through switching, which is made of 5 x 10 rectangular mesh networks. For example, the bold line shows the shortest path between node 1 and 30, passing through node 11, 12, 13, 14, 15, 16, 17, 27, 28 and 29 with the total cost is 42. This program allows up to eight shortest paths to be drawn by repeating the rule of clicking the source and the destination nodes consecutively using the left button of the mouse. The paths are drawn as thick lines using eight randomly determined colors, to differentiate one from another. Each time the shortest path is drawn, the visited nodes are also listed in the text area. 4. Conclusion and Recommendation Switches can be valuable asset to networking. Switching is a process of moving data from one interface and delivering it through another interface, selecting the best paths between machines that store messages. In this paper, we use the shortest path technique to find the shortest path between a pair of nodes where the path must go through switching arranged in a rectangular array. The simulation model which was developed for this purpose has a few weaknesses. It is not user friendly. This program does not allow user to key in the number of nodes which represent the Source, the Destination as well as the switching. As a conclusion, this simulation is still in a small scale and need effort to improve it. This simulation model is just to show the beautiful of mathematics and Visual C++ programming in computing the shortest path through switching. We will look into few real applications for our next coming papers.

7 494 W. N. M. Ariffin, S. M. Zin and S. Salleh References 1. J. Lum, The Importance of Switching, EE-Evaluation Engineering, (2001). 2. J.M.Quinn, Parallel Computing: Theory and Practice, (McGraw-Hill, Inc., United State of America). 3. Z. Ilia, SiC Schottky Diodes Improve Boost Converter Performance, Power Electronic Technology Magazine, (2003). 4. S. Salleh, et al., Numerical Simulations and Case Studies using Visual C++. Net, (John Wiley & Sons, Inc. New Jersey). 5. W.N.M. Ariffin, S. Salleh, Shortest Path Technique for Swithing in Mesh Networks, (UTM, Skudai, 2007).

Performance Analysis of Routing Techniques in Networks

Performance Analysis of Routing Techniques in Networks International Journal of Scientific and Research Publications, Volume 2, Issue 9, September 2012 1 Performance Analysis of Routing Techniques in Networks J.Mahesh, M.Antony Kumar P.M.R.Engineering College

More information

Lecture 18 Solving Shortest Path Problem: Dijkstra s Algorithm. October 23, 2009

Lecture 18 Solving Shortest Path Problem: Dijkstra s Algorithm. October 23, 2009 Solving Shortest Path Problem: Dijkstra s Algorithm October 23, 2009 Outline Lecture 18 Focus on Dijkstra s Algorithm Importance: Where it has been used? Algorithm s general description Algorithm steps

More information

DEVELOPMENT OF AN INTERACTIVE ENVIRONMENT USED FOR SIMULATION OF SHORTEST PATHS ALGORITHMS

DEVELOPMENT OF AN INTERACTIVE ENVIRONMENT USED FOR SIMULATION OF SHORTEST PATHS ALGORITHMS 1. Anca Elena IORDAN DEVELOPMENT OF AN INTERACTIVE ENVIRONMENT USED FOR SIMULATION OF SHORTEST PATHS ALGORITHMS 1. UNIVERSITY POLITEHNICA OF TIMISOARA, FACULTY OF ENGINEERING HUNEDOARA, ROMANIA ABSTRACT:

More information

Three-Dimensional Cylindrical Model for Single-Row Dynamic Routing

Three-Dimensional Cylindrical Model for Single-Row Dynamic Routing MATEMATIKA, 2014, Volume 30, Number 1a, 30-43 Department of Mathematics, UTM. Three-Dimensional Cylindrical Model for Single-Row Dynamic Routing 1 Noraziah Adzhar and 1,2 Shaharuddin Salleh 1 Department

More information

The Shortest Path Problem. The Shortest Path Problem. Mathematical Model. Integer Programming Formulation

The Shortest Path Problem. The Shortest Path Problem. Mathematical Model. Integer Programming Formulation The Shortest Path Problem jla,jc@imm.dtu.dk Department of Management Engineering Technical University of Denmark The Shortest Path Problem Given a directed network G = (V,E,w) for which the underlying

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Shortest Path Problem G. Guérard Department of Nouvelles Energies Ecole Supérieur d Ingénieurs Léonard de Vinci Lecture 3 GG A.I. 1/42 Outline 1 The Shortest Path Problem Introduction

More information

Routing. Information Networks p.1/35

Routing. Information Networks p.1/35 Routing Routing is done by the network layer protocol to guide packets through the communication subnet to their destinations The time when routing decisions are made depends on whether we are using virtual

More information

A Comparative study on Algorithms for Shortest-Route Problem and Some Extensions

A Comparative study on Algorithms for Shortest-Route Problem and Some Extensions International Journal of Basic & Applied Sciences IJBAS-IJENS Vol: No: 0 A Comparative study on Algorithms for Shortest-Route Problem and Some Extensions Sohana Jahan, Md. Sazib Hasan Abstract-- The shortest-route

More information

Van Phuc Pham Abstract

Van Phuc Pham Abstract Flight Scheduling using Dijstra s Algorithm and Empirical Modelling Van Phuc Pham 1054359 Abstract Graph theory is one of the most popular subjects in computer science. A mathematician Leonhard Euler first

More information

Algorithms. All-Pairs Shortest Paths. Dong Kyue Kim Hanyang University

Algorithms. All-Pairs Shortest Paths. Dong Kyue Kim Hanyang University Algorithms All-Pairs Shortest Paths Dong Kyue Kim Hanyang University dqkim@hanyang.ac.kr Contents Using single source shortest path algorithms Presents O(V 4 )-time algorithm, O(V 3 log V)-time algorithm,

More information

Shortest Path Algorithm

Shortest Path Algorithm Shortest Path Algorithm Shivani Sanan* 1, Leena jain 2, Bharti Kappor 3 *1 Assistant Professor, Faculty of Mathematics, Department of Applied Sciences 2 Associate Professor & Head- MCA 3 Assistant Professor,

More information

MODELLING OF AN OPTIMAL ROUTE

MODELLING OF AN OPTIMAL ROUTE Proceedings of the 6 th International Scientific Conference TRANSBALTICA 2009 Vilnius Gediminas Technical University Transport Engineering Faculty J. Basanavičiaus g. 28 LT-03224, Vilnius, Lithuania http://www.vgtu.lt/english/editions

More information

Routing algorithms. Jan Lönnberg, 51101M. October 2, Based on G. Tel: Introduction to Distributed Algorithms, chapter 4.

Routing algorithms. Jan Lönnberg, 51101M. October 2, Based on G. Tel: Introduction to Distributed Algorithms, chapter 4. Routing algorithms Jan Lönnberg, 51101M October 2, 2002 Based on G. Tel: Introduction to Distributed Algorithms, chapter 4. 1 Contents Introduction Destination-based routing Floyd-Warshall (single processor)

More information

Routing Protocols. The routers in an internet are responsible for receiving and. forwarding IP datagrams through the interconnected set of

Routing Protocols. The routers in an internet are responsible for receiving and. forwarding IP datagrams through the interconnected set of Routing Protocols MITA DUTTA The routers in an internet are responsible for receiving and forwarding IP datagrams through the interconnected set of sub-networks from source to destination. Routing protocols

More information

Module 8. Routing. Version 2 ECE, IIT Kharagpur

Module 8. Routing. Version 2 ECE, IIT Kharagpur Module 8 Routing Lesson 27 Routing II Objective To explain the concept of same popular routing protocols. 8.2.1 Routing Information Protocol (RIP) This protocol is used inside our autonomous system and

More information

Solving problems on graph algorithms

Solving problems on graph algorithms Solving problems on graph algorithms Workshop Organized by: ACM Unit, Indian Statistical Institute, Kolkata. Tutorial-3 Date: 06.07.2017 Let G = (V, E) be an undirected graph. For a vertex v V, G {v} is

More information

ACEAIT On IP Network Traffic Engineering Performance of Modified Branch Exchange and Interior Point Method

ACEAIT On IP Network Traffic Engineering Performance of Modified Branch Exchange and Interior Point Method ACEAIT-5239 On IP Network Traffic Engineering Performance of Modified Branch Exchange and Interior Point Method Kairat Jaroenrat *, Tichakon Sumrongsub, Thanachot Thitivichienlert and Natdanai Suksaeng

More information

Network Routing Protocol using Genetic Algorithms

Network Routing Protocol using Genetic Algorithms International Journal of Electrical & Computer Sciences IJECS-IJENS Vol:0 No:02 40 Network Routing Protocol using Genetic Algorithms Gihan Nagib and Wahied G. Ali Abstract This paper aims to develop a

More information

Dijkstra s Algorithm. Dijkstra s algorithm is a natural, greedy approach towards

Dijkstra s Algorithm. Dijkstra s algorithm is a natural, greedy approach towards CPSC-320: Intermediate Algorithm Design and Analysis 128 CPSC-320: Intermediate Algorithm Design and Analysis 129 Dijkstra s Algorithm Dijkstra s algorithm is a natural, greedy approach towards solving

More information

Advanced Algorithm Design and Analysis (Lecture 5) SW5 fall 2007 Simonas Šaltenis

Advanced Algorithm Design and Analysis (Lecture 5) SW5 fall 2007 Simonas Šaltenis Advanced Algorithm Design and Analysis (Lecture 5) SW5 fall 2007 Simonas Šaltenis 3.2.12 simas@cs.aau.dk All-pairs shortest paths Main goals of the lecture: to go through one more example of dynamic programming

More information

Graph Theory: Applications and Algorithms

Graph Theory: Applications and Algorithms Graph Theory: Applications and Algorithms CIS008-2 Logic and Foundations of Mathematics David Goodwin david.goodwin@perisic.com 11:00, Tuesday 21 st February 2012 Outline 1 n-cube 2 Gray Codes 3 Shortest-Path

More information

Data Partitioning. Figure 1-31: Communication Topologies. Regular Partitions

Data Partitioning. Figure 1-31: Communication Topologies. Regular Partitions Data In single-program multiple-data (SPMD) parallel programs, global data is partitioned, with a portion of the data assigned to each processing node. Issues relevant to choosing a partitioning strategy

More information

Performance of Multihop Communications Using Logical Topologies on Optical Torus Networks

Performance of Multihop Communications Using Logical Topologies on Optical Torus Networks Performance of Multihop Communications Using Logical Topologies on Optical Torus Networks X. Yuan, R. Melhem and R. Gupta Department of Computer Science University of Pittsburgh Pittsburgh, PA 156 fxyuan,

More information

COMPARISON OF OCTAGON-CELL NETWORK WITH OTHER INTERCONNECTED NETWORK TOPOLOGIES AND ITS APPLICATIONS

COMPARISON OF OCTAGON-CELL NETWORK WITH OTHER INTERCONNECTED NETWORK TOPOLOGIES AND ITS APPLICATIONS International Journal of Computer Engineering and Applications, Volume VII, Issue II, Part II, COMPARISON OF OCTAGON-CELL NETWORK WITH OTHER INTERCONNECTED NETWORK TOPOLOGIES AND ITS APPLICATIONS Sanjukta

More information

Mon Tue Wed Thurs Fri

Mon Tue Wed Thurs Fri In lieu of recitations 320 Office Hours Mon Tue Wed Thurs Fri 8 Cole 9 Dr. Georg Dr. Georg 10 Dr. Georg/ Jim 11 Ali Jim 12 Cole Ali 1 Cole/ Shannon Ali 2 Shannon 3 Dr. Georg Dr. Georg Jim 4 Upcoming Check

More information

Review of course COMP-251B winter 2010

Review of course COMP-251B winter 2010 Review of course COMP-251B winter 2010 Lecture 1. Book Section 15.2 : Chained matrix product Matrix product is associative Computing all possible ways of parenthesizing Recursive solution Worst-case running-time

More information

Communication Networks I December 4, 2001 Agenda Graph theory notation Trees Shortest path algorithms Distributed, asynchronous algorithms Page 1

Communication Networks I December 4, 2001 Agenda Graph theory notation Trees Shortest path algorithms Distributed, asynchronous algorithms Page 1 Communication Networks I December, Agenda Graph theory notation Trees Shortest path algorithms Distributed, asynchronous algorithms Page Communication Networks I December, Notation G = (V,E) denotes a

More information

Solutions for Operations Research Final Exam

Solutions for Operations Research Final Exam Solutions for Operations Research Final Exam. (a) The buffer stock is B = i a i = a + a + a + a + a + a 6 + a 7 = + + + + + + =. And the transportation tableau corresponding to the transshipment problem

More information

Network Topology Control and Routing under Interface Constraints by Link Evaluation

Network Topology Control and Routing under Interface Constraints by Link Evaluation Network Topology Control and Routing under Interface Constraints by Link Evaluation Mehdi Kalantari Phone: 301 405 8841, Email: mehkalan@eng.umd.edu Abhishek Kashyap Phone: 301 405 8843, Email: kashyap@eng.umd.edu

More information

LEAST COST ROUTING ALGORITHM WITH THE STATE SPACE RELAXATION IN A CENTRALIZED NETWORK

LEAST COST ROUTING ALGORITHM WITH THE STATE SPACE RELAXATION IN A CENTRALIZED NETWORK VOL., NO., JUNE 08 ISSN 896608 00608 Asian Research Publishing Network (ARPN). All rights reserved. LEAST COST ROUTING ALGORITHM WITH THE STATE SPACE RELAXATION IN A CENTRALIZED NETWORK Y. J. Lee Department

More information

More Graph Algorithms: Topological Sort and Shortest Distance

More Graph Algorithms: Topological Sort and Shortest Distance More Graph Algorithms: Topological Sort and Shortest Distance Topological Sort The goal of a topological sort is given a list of items with dependencies, (ie. item 5 must be completed before item 3, etc.)

More information

An Evolutionary Algorithm for the Multi-objective Shortest Path Problem

An Evolutionary Algorithm for the Multi-objective Shortest Path Problem An Evolutionary Algorithm for the Multi-objective Shortest Path Problem Fangguo He Huan Qi Qiong Fan Institute of Systems Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China

More information

Implementing Hub and Spoke topologies in Virtual Private Network using Enhanced Interior Gateway Routing Protocol

Implementing Hub and Spoke topologies in Virtual Private Network using Enhanced Interior Gateway Routing Protocol Implementing Hub and Spoke topologies in Virtual Private Network using Enhanced Interior Gateway Routing Protocol Sree Vidya T R 1, Vasanthadev Suryakala S 2, Swarnalatha M 3 ECE Department, Valliammai

More information

Application of Bounded Variable Simplex Algorithm in Solving Maximal Flow Model

Application of Bounded Variable Simplex Algorithm in Solving Maximal Flow Model Dhaka Univ. J. Sci. (): 9-, 3 (January) Application of Bounded Variable Simplex Algorithm in Solving Maximal Flow Model Sohana Jahan, Marzia Yesmin and Fatima Tuj Jahra Department of Mathematics,University

More information

SHARED MEMORY VS DISTRIBUTED MEMORY

SHARED MEMORY VS DISTRIBUTED MEMORY OVERVIEW Important Processor Organizations 3 SHARED MEMORY VS DISTRIBUTED MEMORY Classical parallel algorithms were discussed using the shared memory paradigm. In shared memory parallel platform processors

More information

Searching for Shortest Path in A Large, Sparse Graph under Memory Limitation: A Successive Mixed Bidirectional Search Method

Searching for Shortest Path in A Large, Sparse Graph under Memory Limitation: A Successive Mixed Bidirectional Search Method Searching for Shortest Path in A Large, Sparse Graph under Memory Limitation: A Successive Mixed Bidirectional Search Method Xugang Ye Department of Applied Mathematics and Statistics, The Johns Hopkins

More information

Routing in packet-switching networks

Routing in packet-switching networks Routing in packet-switching networks Circuit switching vs. Packet switching Most of WANs based on circuit or packet switching Circuit switching designed for voice Resources dedicated to a particular call

More information

A Modified Heuristic Approach of Logical Topology Design in WDM Optical Networks

A Modified Heuristic Approach of Logical Topology Design in WDM Optical Networks Proceedings of the International Conference on Computer and Communication Engineering 008 May 3-5, 008 Kuala Lumpur, Malaysia A Modified Heuristic Approach of Logical Topology Design in WDM Optical Networks

More information

Chapter 6. Delivery and Forwarding of IP Packets

Chapter 6. Delivery and Forwarding of IP Packets Chapter 6 Delivery and Forwarding of IP Packets TCP/IP Protocol Suite 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. OBJECTIVES: To discuss the delivery of

More information

Graph Algorithms (part 3 of CSC 282),

Graph Algorithms (part 3 of CSC 282), Graph Algorithms (part of CSC 8), http://www.cs.rochester.edu/~stefanko/teaching/10cs8 1 Schedule Homework is due Thursday, Oct 1. The QUIZ will be on Tuesday, Oct. 6. List of algorithms covered in the

More information

Department of Information Technology

Department of Information Technology COURSE DELIVERY PLAN - THEORY Page 1 of 6 Department of Information Technology B.Tech : Information Technology Regulation : 2013 Sub. Code / Sub. Name : CS6301 / Programming and Data Structures II Unit

More information

Arc Perturbation Algorithms for Optical Network Design

Arc Perturbation Algorithms for Optical Network Design Applied Mathematical Sciences, Vol. 1, 2007, no. 7, 301-310 Arc Perturbation Algorithms for Optical Network Design Zbigniew R. Bogdanowicz Armament Research, Development and Engineering Center Building

More information

Reload Cost Trees and Network Design

Reload Cost Trees and Network Design Reload Cost Trees and Network Design Ioannis Gamvros, ILOG, Inc., 1080 Linda Vista Avenue, Mountain View, CA 94043, USA Luis Gouveia, Faculdade de Ciencias da Universidade de Lisboa, Portugal S. Raghavan,

More information

Chapter 22 Network Layer: Delivery, Forwarding, and Routing 22.1

Chapter 22 Network Layer: Delivery, Forwarding, and Routing 22.1 Chapter 22 Network Layer: Delivery, Forwarding, and Routing 22.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 22-3 UNICAST ROUTING PROTOCOLS 22.2 A routing

More information

International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS)

International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS) International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Journal of Emerging Technologies in Computational

More information

A New Energy Efficient and Scalable Multicasting Algorithm for Hierarchical Networks

A New Energy Efficient and Scalable Multicasting Algorithm for Hierarchical Networks International Journal of Engineering Research and Development ISSN: 2278-067X, Volume 1, Issue 5 (June 2012), PP.12-17 www.ijerd.com A New Energy Efficient and Scalable Multicasting Algorithm for Hierarchical

More information

Modified Q-learning Routing Algorithm in Fixed Networks

Modified Q-learning Routing Algorithm in Fixed Networks Australian Journal of Basic and Applied Sciences, 5(12): 2699-2703, 2011 ISSN 1991-8178 Modified Q-learning Routing Algorithm in Fixed Networks 1 Mahmoud Alilou, 2 Mohammad Ali Jabraeil Jamali, 3 Behrooz

More information

Routing in Switched Data Networks

Routing in Switched Data Networks in Switched Data Networks ITS323: Introduction to Data Communications Sirindhorn International Institute of Technology Thammasat University Prepared by Steven Gordon on 23 May 2012 ITS323Y12S1L10, Steve/Courses/2012/s1/its323/lectures/routing.tex,

More information

Dynamic Programming II

Dynamic Programming II Lecture 11 Dynamic Programming II 11.1 Overview In this lecture we continue our discussion of dynamic programming, focusing on using it for a variety of path-finding problems in graphs. Topics in this

More information

Coordinator Location Effects in AODV Routing Protocol in ZigBee Mesh Network

Coordinator Location Effects in AODV Routing Protocol in ZigBee Mesh Network Coordinator Location Effects in AODV Routing Protocol in ZigBee Mesh Network Abla Hussein Department of Computer Science Zarqa University Zarqa, Jordan Ghassan Samara Internet Technology Department, Faculty

More information

Routing. Directly Connected IP Networks. Data link layer routing. ifconfig command

Routing. Directly Connected IP Networks. Data link layer routing. ifconfig command Routing Basic principles dr. C. P. J. Koymans Informatics Institute University of Amsterdam (version 1.1, 2010/02/19 12:21:58) Monday, February 22, 2010 Basic setup Directly connected Not directly connected

More information

Discrete Particle Swarm Optimization for Solving a Single to Multiple Destinations in Evacuation Planning

Discrete Particle Swarm Optimization for Solving a Single to Multiple Destinations in Evacuation Planning Discrete Particle Swarm Optimization for Solving a Single to Multiple Destinations in Evacuation Planning 1 MARINA YUSOFF, 2 JUNAIDAH ARIFFIN, 1 AZLINAH MOHAMED 1 Faculty of Computer and Mathematical Sciences

More information

Chapter 25: All-Pairs Shortest-Paths

Chapter 25: All-Pairs Shortest-Paths Chapter : All-Pairs Shortest-Paths When no negative edges Some Algorithms Using Dijkstra s algorithm: O(V ) Using Binary heap implementation: O(VE lg V) Using Fibonacci heap: O(VE + V log V) When no negative

More information

Figure (5) Kohonen Self-Organized Map

Figure (5) Kohonen Self-Organized Map 2- KOHONEN SELF-ORGANIZING MAPS (SOM) - The self-organizing neural networks assume a topological structure among the cluster units. - There are m cluster units, arranged in a one- or two-dimensional array;

More information

Mathematics for Decision Making: An Introduction. Lecture 18

Mathematics for Decision Making: An Introduction. Lecture 18 Mathematics for Decision Making: An Introduction Lecture 18 Matthias Köppe UC Davis, Mathematics March 5, 2009 18 1 Augmenting Circuit Algorithm for Min Cost Flow Augmenting Circuit Algorithm, Kantoróvich

More information

Routing Algorithms McGraw-Hill The McGraw-Hill Companies, Inc., 2001

Routing Algorithms McGraw-Hill The McGraw-Hill Companies, Inc., 2001 Routing Algorithms Main issue is how the routers that constitute the network layer of a network cooperate to find the best routes between all pairs of stations. Routing algorithm at a router decides which

More information

Lecture 4 Wide Area Networks - Routing

Lecture 4 Wide Area Networks - Routing DATA AND COMPUTER COMMUNICATIONS Lecture 4 Wide Area Networks - Routing Mei Yang Based on Lecture slides by William Stallings 1 ROUTING IN PACKET SWITCHED NETWORK key design issue for (packet) switched

More information

MOST attention in the literature of network codes has

MOST attention in the literature of network codes has 3862 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 8, AUGUST 2010 Efficient Network Code Design for Cyclic Networks Elona Erez, Member, IEEE, and Meir Feder, Fellow, IEEE Abstract This paper introduces

More information

UNIT 2 ROUTING ALGORITHMS

UNIT 2 ROUTING ALGORITHMS UNIT ROUTING ALGORITHMS Routing Algorithms Structure Page Nos..0 Introduction 3. Objectives 3. Flooding 3.3 Shortest Path Routing Algorithm 5.4 Distance Vector Routing 6.4. Comparison.4. The Count-to-Infinity

More information

Applying Kohonen Network in Organising Unstructured Data for Talus Bone

Applying Kohonen Network in Organising Unstructured Data for Talus Bone 212 Third International Conference on Theoretical and Mathematical Foundations of Computer Science Lecture Notes in Information Technology, Vol.38 Applying Kohonen Network in Organising Unstructured Data

More information

Dynamic Programming: 1D Optimization. Dynamic Programming: 2D Optimization. Fibonacci Sequence. Crazy 8 s. Edit Distance

Dynamic Programming: 1D Optimization. Dynamic Programming: 2D Optimization. Fibonacci Sequence. Crazy 8 s. Edit Distance Dynamic Programming: 1D Optimization Fibonacci Sequence To efficiently calculate F [x], the xth element of the Fibonacci sequence, we can construct the array F from left to right (or bottom up ). We start

More information

The ESB dynamic routing strategy in the low bandwidth network environment

The ESB dynamic routing strategy in the low bandwidth network environment Journal of Network Computing and Applications (2016) 1: 26-32 Clausius Scientific Press, Canada The ESB dynamic routing strategy in the low bandwidth network environment Wei Huang1,a, Kangyi Luo1, Baocheng

More information

ECE 158A - Data Networks

ECE 158A - Data Networks ECE 158A - Data Networks Homework 2 - due Tuesday Nov 5 in class Problem 1 - Clustering coefficient and diameter In this problem, we will compute the diameter and the clustering coefficient of a set of

More information

Generalized Finite Sequence of Fuzzy Topographic Topological Mapping

Generalized Finite Sequence of Fuzzy Topographic Topological Mapping Journal of Mathematics and Statistics 6 (2): 151-156, 2010 ISSN 1549-3644 2010 Science Publications Generalized Finite Sequence of Fuzzy Topographic Topological Mapping 1,2 Tahir Ahmad, 2 Siti Suhana Jamian

More information

Routing. Directly Connected IP Networks. Data link layer routing. ifconfig command

Routing. Directly Connected IP Networks. Data link layer routing. ifconfig command outing Basic principles dr. C. P. J. Koymans Informatics Institute University of Amsterdam February 20, 2008 Basic setup Directly connected Not directly connected Unix and Linux routing commands oute selection

More information

Using Hybrid Algorithm in Wireless Ad-Hoc Networks: Reducing the Number of Transmissions

Using Hybrid Algorithm in Wireless Ad-Hoc Networks: Reducing the Number of Transmissions Using Hybrid Algorithm in Wireless Ad-Hoc Networks: Reducing the Number of Transmissions R.Thamaraiselvan 1, S.Gopikrishnan 2, V.Pavithra Devi 3 PG Student, Computer Science & Engineering, Paavai College

More information

The Computation of Some Properties of Additive and Multiplicative Groups of Integers Modulo n Using C++ Programming

The Computation of Some Properties of Additive and Multiplicative Groups of Integers Modulo n Using C++ Programming Full paper Sains Humanika The Computation of Some Properties of Additive and Multiplicative Groups of Integers Modulo n Using C++ Programming Nor Muhainiah Mohd Ali *, Nur Azura Noor Azhuan, Nor Haniza

More information

An Experiment on the Performance of Shortest Path Algorithm

An Experiment on the Performance of Shortest Path Algorithm An Experiment on the Performa of Shortest Path Algorithm Simon Chan Yew Meng, Nur ayuni Adnan, Syazwan Syafiqah Sukri, and Wan Mohd Nazmee Wan Zainon Universiti Sains Malaysia, Malaysia {simon.ucom13;

More information

CS420/520 Algorithm Analysis Spring 2009 Lecture 14

CS420/520 Algorithm Analysis Spring 2009 Lecture 14 CS420/520 Algorithm Analysis Spring 2009 Lecture 14 "A Computational Analysis of Alternative Algorithms for Labeling Techniques for Finding Shortest Path Trees", Dial, Glover, Karney, and Klingman, Networks

More information

FUZZY DIJKSTRA ALGORITHM FOR SHORTEST PATH PROBLEM IN GEOGRAPHIC INFORMATION SYSTEMS

FUZZY DIJKSTRA ALGORITHM FOR SHORTEST PATH PROBLEM IN GEOGRAPHIC INFORMATION SYSTEMS ENGLISH SEMINAR FUZZY DIJKSTRA ALGORITHM FOR SHORTEST PATH PROBLEM IN GEOGRAPHIC INFORMATION SYSTEMS Presenter: Huy Nguyen Phuong Contents 1. Introduction to GIS 2. Shortest Path Problem in GIS 3. Dijkstra's

More information

2.3 Optimal paths. E. Amaldi Foundations of Operations Research Politecnico di Milano 1

2.3 Optimal paths. E. Amaldi Foundations of Operations Research Politecnico di Milano 1 . Optimal paths E. Amaldi Foundations of Operations Research Politecnico di Milano Optimal (minimum or maximum) paths have a wide range of applications: Google maps, GPS navigators planning and management

More information

Directed Graphs. DSA - lecture 5 - T.U.Cluj-Napoca - M. Joldos 1

Directed Graphs. DSA - lecture 5 - T.U.Cluj-Napoca - M. Joldos 1 Directed Graphs Definitions. Representations. ADT s. Single Source Shortest Path Problem (Dijkstra, Bellman-Ford, Floyd-Warshall). Traversals for DGs. Parenthesis Lemma. DAGs. Strong Components. Topological

More information

Single Source Shortest Path (SSSP) Problem

Single Source Shortest Path (SSSP) Problem Single Source Shortest Path (SSSP) Problem Single Source Shortest Path Problem Input: A directed graph G = (V, E); an edge weight function w : E R, and a start vertex s V. Find: for each vertex u V, δ(s,

More information

1 More on the Bellman-Ford Algorithm

1 More on the Bellman-Ford Algorithm CS161 Lecture 12 Shortest Path and Dynamic Programming Algorithms Scribe by: Eric Huang (2015), Anthony Kim (2016), M. Wootters (2017) Date: May 15, 2017 1 More on the Bellman-Ford Algorithm We didn t

More information

of optimization problems. In this chapter, it is explained that what network design

of optimization problems. In this chapter, it is explained that what network design CHAPTER 2 Network Design Network design is one of the most important and most frequently encountered classes of optimization problems. In this chapter, it is explained that what network design is? The

More information

Applications of Linear Programming

Applications of Linear Programming Applications of Linear Programming lecturer: András London University of Szeged Institute of Informatics Department of Computational Optimization Lecture 6 based on Juraj Stacho s lecture notes ad the

More information

OPTIMAL MULTI-CHANNEL ASSIGNMENTS IN VEHICULAR AD-HOC NETWORKS

OPTIMAL MULTI-CHANNEL ASSIGNMENTS IN VEHICULAR AD-HOC NETWORKS Chapter 2 OPTIMAL MULTI-CHANNEL ASSIGNMENTS IN VEHICULAR AD-HOC NETWORKS Hanan Luss and Wai Chen Telcordia Technologies, Piscataway, New Jersey 08854 hluss@telcordia.com, wchen@research.telcordia.com Abstract:

More information

CALCULATION OF INFERENCE IN AD-HOC NETWORK

CALCULATION OF INFERENCE IN AD-HOC NETWORK CALCULATION OF INFERENCE IN AD-HOC NETWORK POOJA GROVER, 2 NEHA GUPTA, 3 RANJIT KUMAR Asst. Prof., Department of Computer Science & Engineering, MDU, Rohtak, India-3300 2 Lecturer, Department of Information

More information

2.3 Optimal paths. Optimal (shortest or longest) paths have a wide range of applications:

2.3 Optimal paths. Optimal (shortest or longest) paths have a wide range of applications: . Optimal paths Optimal (shortest or longest) paths have a wide range of applications: Google maps, GPS navigators planning and management of transportation, electrical and telecommunication networks project

More information

Energy Consumption Analysis of modified AODV Routing protocol under Random Waypoint and Reference point Group Mobility Models

Energy Consumption Analysis of modified AODV Routing protocol under Random Waypoint and Reference point Group Mobility Models ICACSIS 2012 ISBN: 978-979-1421-15-7 Energy Consumption Analysis of modified AODV Routing protocol under Random Waypoint and Reference point Group Mobility Models Harris Simaremare*, Abdusy Syarif**, Abdelhafid

More information

Cost-based Pricing for Multicast Streaming Services

Cost-based Pricing for Multicast Streaming Services Cost-based Pricing for Multicast Streaming Services Eiji TAKAHASHI, Takaaki OHARA, Takumi MIYOSHI,, and Yoshiaki TANAKA Global Information and Telecommunication Institute, Waseda Unviersity 29-7 Bldg.,

More information

Investigation on OLSR Routing Protocol Efficiency

Investigation on OLSR Routing Protocol Efficiency Investigation on OLSR Routing Protocol Efficiency JIRI HOSEK 1, KAROL MOLNAR 2 Department of Telecommunications Faculty of Electrical Engineering and Communication, Brno University of Technology Purkynova

More information

Department of Mathematics Oleg Burdakov of 30 October Consider the following linear programming problem (LP):

Department of Mathematics Oleg Burdakov of 30 October Consider the following linear programming problem (LP): Linköping University Optimization TAOP3(0) Department of Mathematics Examination Oleg Burdakov of 30 October 03 Assignment Consider the following linear programming problem (LP): max z = x + x s.t. x x

More information

The Multi-Constrained Dynamic Programming Problem in View of Routing Strategies in Wireless Mesh Networks

The Multi-Constrained Dynamic Programming Problem in View of Routing Strategies in Wireless Mesh Networks Volume No., June 0 ISSN -985 The Multi-Constrained Dynamic Programming Problem in View of Routing Strategies in Wireless Mesh Networks Sabreen M. Shukr, Nuha A. S. Alwan, Ibraheem K. Ibraheem Department

More information

Fuzzy type-2 in Shortest Path and Maximal Flow Problems

Fuzzy type-2 in Shortest Path and Maximal Flow Problems Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 13, Number 9 (2017), pp. 6595-6607 Research India Publications http://www.ripublication.com Fuzzy type-2 in Shortest Path and Maximal

More information

All Shortest Paths. Questions from exercises and exams

All Shortest Paths. Questions from exercises and exams All Shortest Paths Questions from exercises and exams The Problem: G = (V, E, w) is a weighted directed graph. We want to find the shortest path between any pair of vertices in G. Example: find the distance

More information

8. The Postman Problems

8. The Postman Problems 8. The Postman Problems The Chinese postman problem (CPP) A postal carrier must pick up the mail at the post office, deliver the mail along blocks on the route, and finally return to the post office. To

More information

PATH FINDING AND GRAPH TRAVERSAL

PATH FINDING AND GRAPH TRAVERSAL GRAPH TRAVERSAL PATH FINDING AND GRAPH TRAVERSAL Path finding refers to determining the shortest path between two vertices in a graph. We discussed the Floyd Warshall algorithm previously, but you may

More information

Adaptive Weight Functions for Shortest Path Routing Algorithms for Multi-Wavelength Optical WDM Networks

Adaptive Weight Functions for Shortest Path Routing Algorithms for Multi-Wavelength Optical WDM Networks Adaptive Weight Functions for Shortest Path Routing Algorithms for Multi-Wavelength Optical WDM Networks Tibor Fabry-Asztalos, Nilesh Bhide and Krishna M. Sivalingam School of Electrical Engineering &

More information

Smooth rounded corner. Smooth rounded corner. Smooth rounded corner

Smooth rounded corner. Smooth rounded corner. Smooth rounded corner 3.2 Graphs of Higher Degree Polynomial Functions Definition of a Polynomial Function Let n be a nonnegative integer and let a n, a n-1,,a 2, a 1, a 0, be real numbers with a n 0. The function defined by

More information

Lecture I: Shortest Path Algorithms

Lecture I: Shortest Path Algorithms Lecture I: Shortest Path Algorithms Dr Kieran T. Herley Department of Computer Science University College Cork October 201 KH (21/10/1) Lecture I: Shortest Path Algorithms October 201 1 / 28 Background

More information

CS 6143 COMPUTER ARCHITECTURE II SPRING 2014

CS 6143 COMPUTER ARCHITECTURE II SPRING 2014 CS 6143 COMPUTER ARCHITECTURE II SPRING 2014 DUE : April 9, 2014 HOMEWORK IV READ : - Related portions of Chapter 5 and Appendces F and I of the Hennessy book - Related portions of Chapter 1, 4 and 6 of

More information

MA 252: Data Structures and Algorithms Lecture 36. Partha Sarathi Mandal. Dept. of Mathematics, IIT Guwahati

MA 252: Data Structures and Algorithms Lecture 36. Partha Sarathi Mandal. Dept. of Mathematics, IIT Guwahati MA 252: Data Structures and Algorithms Lecture 36 http://www.iitg.ernet.in/psm/indexing_ma252/y12/index.html Partha Sarathi Mandal Dept. of Mathematics, IIT Guwahati The All-Pairs Shortest Paths Problem

More information

Memory, Area and Power Optimization of Digital Circuits

Memory, Area and Power Optimization of Digital Circuits Memory, Area and Power Optimization of Digital Circuits Laxmi Gupta Electronics and Communication Department Jaypee Institute of Information Technology Noida, Uttar Pradesh, India Ankita Bharti Electronics

More information

Algorithms for Data Science

Algorithms for Data Science Algorithms for Data Science CSOR W4246 Eleni Drinea Computer Science Department Columbia University Shortest paths in weighted graphs (Bellman-Ford, Floyd-Warshall) Outline 1 Shortest paths in graphs with

More information

Lecture 6: Shortest distance, Eulerian cycles, Maxflow

Lecture 6: Shortest distance, Eulerian cycles, Maxflow DD2458, Problem Solving and Programming Under Pressure Lecture 6: Shortest distance, Eulerian cycles, Maxflow Date: 2008-10-06 Scribe(s): Adam Kull, David Vuorio Lecturer: Douglas Wikström 1 Shortest path

More information

APPLICATION OF GRAPH THEORY IN COMMUNICATION NETWORKS

APPLICATION OF GRAPH THEORY IN COMMUNICATION NETWORKS APPLICATION OF GRAPH THEORY IN COMMUNICATION NETWORKS Suman Deswal 1 and Anita Singhrova 2 1,2 Deenbandhu Chottu Ram University of Sc. & Tech., Murthal, Sonipat. Haryana, India. ABSTRACT The use of mathematics

More information

Module 5 Local Area Networks

Module 5 Local Area Networks Module 5 Local Area Networks Lesson 15 LAN Topologies, Access Mechanisms And Media 5.1.1 INTRODUCTION Microelectronics brought a great revolution in computer technology. While the processing power of the

More information

1 Dynamic Programming

1 Dynamic Programming CS161 Lecture 13 Dynamic Programming and Greedy Algorithms Scribe by: Eric Huang Date: May 13, 2015 1 Dynamic Programming The idea of dynamic programming is to have a table of solutions of subproblems

More information

Dynamic Update of Shortest Path Tree in OSPF

Dynamic Update of Shortest Path Tree in OSPF Dynamic Update of Shortest ath Tree in OSF Bin Xiao, Jiannong Cao Department of Computing Hong ong olytechnic University Hung Hom, owloon, Hong ong {csbxiao, csjcao}@comp.polyu.edu.hk Qingfeng Zhuge, Zili

More information