CISC 879 Software Support for Multicore Architectures Spring Student Presentation 6: April 8. Presenter: Pujan Kafle, Deephan Mohan

Size: px
Start display at page:

Download "CISC 879 Software Support for Multicore Architectures Spring Student Presentation 6: April 8. Presenter: Pujan Kafle, Deephan Mohan"

Transcription

1 CISC 879 Software Support for Multicore Architectures Spring 2008 Student Presentation 6: April 8 Presenter: Pujan Kafle, Deephan Mohan Scribe: Kanik Sem The following two papers were presented: A Synchronous Mode MPI Implementation on the Cell BE Architecture: Presented by Pujan Kafle MPI Design In implementing MPI, it is tempting to view the main memory as the shared memory of an SMP, and hide the local store from the application. This will alleviate the challenges of programming the Cell. However, there are several challenges to overcome. Some of these require new features to the compiler and the Linux implementation on the Cell, which have recently become available. MPI Communication Modes MPI provides different options for the communication mode chosen for the basic blocking point to point operations, MPI_Send and MPI_Recv. Implementations can use either the buffered mode or the synchronous mode. A safe application should not make any assumption on the choice made by the implementation. In the buffered mode, the message to be sent is copied into a buffer, and then the call can return. Thus, the send operation is local, and can complete before the matching receive operation have been posted. Implementations often use this for small messages. For large messages, they avoid the extra buffer copy overhead by using synchronous mode. Here, the send can complete only after the matching receive has been posted. MPI Initialization A user can run an MPI application, provided it uses only features that we have currently implemented, by compiling the application for the SPE and executing the following command on the PPE: mpirun n <N> executable arguments where <N> is the number of SPEs on which the code is to be run. The mpirun process spawns the desired number of threads on the SPE. Note that only one thread can be spawned on an SPE, and so <N> cannot exceed eight on a single processor or sixteen for a blade. Communication Architecture Associated with each message is meta-data that contains the following information about the message: Address of the memory location that contains the data4, sender s rank, tag, message size, datatype ID, MPI communicator ID, and an error field. For each pair of SPE threads, we allocate space for two meta-data entries, one in each of the SPE local stores, for a total of N(N-1) entries, with (N-1) entries in each SPE local store; entry Bij is used to store meta-data for a message from process i to process j, i!=j.

2 Send Protocol The send operation from Pi to Pj proceeds as follows. The send operation first puts the meta-data entry into buffer Bij through a DMA operation. The send operation then waits for a signal from Pj notifying that Pj has copied the message. The signal obtained from Pj contains the error value. It is set to MPI_SUCCESS on successful completion of the receive operation and the appropriate error value on failure. In the synchronous mode, an SPE is waiting for acknowledgment for exactly one send, at any given point in time, and so all the bits of the receive signal register can be used. Receive Protocol The receive operation has four flavors. (i) It can receive a message with a specific tag from a specific source, (ii) It can receive a message with any tag (MPI_ANY_TAG) from a specific source, (iii) It can receive a message with a specific tag from any source (MPI_ANY_SOURCE), or (iv) It can receive a message with any tag from any source. In the first case, the meta-data entry in Bij is continuously polled, until the flag field is set. The tag value in the meta-data entry is checked. If the application truly did not assume any particular communication mode, then this tag should match, and the check is superfluous. The receive call then transfers data from the source SPE's application buffer to its own buffer and signals Pi's signal register to indicate that the data has been copied. The second case is handled in a manner similar to the first, except that any tag matches. The third and fourth cases are similar to the first two respectively, as far as tags are concerned. However, messages from any source can match. So the receive operation checks the meta-data entry flags for each sender, repeatedly, in a round robin fashion, to avoid starvation, even though the MPI standard does not guarantee against starvation. Performance Evaluation The latency results for point to point communication on the pingpong test, in the presence and absence of congestion. The congested test involved dividing the SPEs into pairs, and having each pair exchanging messages. The throughput results for the same tests as above for large messages, where the overhead of exchanging meta-data and signals can be expected to be relatively insignificant. The maximum throughput observed is around 6 GB/s. Conclusion The authors have described an efficient implementation of synchronous mode MPI communication on the Cell processor. It is a part of an MPI implementation that demonstrates that an efficient MPI implementation is possible on the Cell processor, using just the SPEs, even though they are not full-featured cores.

3 Limitations of PlayStation 3 for High Performance Cluster Computing: Presented by Deephan Mohan Cell Evaluation Cell addresses the following two main problems: Memory Wall: The Cell Broadband Engine s SPEs use two mechanisms to deal with long main-memory latencies: (a) A 3-level memory structure (main storage, local stores in each SPE, and large register files in each SPE), and (b) Asynchronous DMA transfers between main storage and local stores. These features allow programmers to schedule simultaneous data and code transfers to cover long latencies effectively. Frequency Wall: By specializing the PPE and the SPEs for control and computeintensive tasks, respectively, the Cell Broadband Engine Architecture, on which the Cell Broadband Engine is based, allows both the PPE and the SPEs to be designed for high frequency without excessive overhead. The PPE achieves efficiency primarily by executing two threads simultaneously rather than by optimizing single-thread performance. Cell Application Features Vectorize: the SPEs are vector units. This means that, in a code that is not vectorized, every scalar operation must be promoted to a vector operation which results in a considerable performance loss. Keep data aligned: In order to achieve the best transfer rates, data accesses must be aligned both on the main memory and the SPEs local memories. Alignment will provide a better exploitation of the memory banks and a better performance of the DMA engine. Implement double buffering: In order to hide the cost of the latencies and memory transfers, DMA transfers can be overlapped with SPE local computations. If these local computations are more expensive than a single data transfer, the communication phase can be completely hidden. This technique is known as double buffering. Improve data reuse: to reduce the number of memory transfers, it is important to arrange the instructions in order to maximize the reuse of data once it has been brought into the SPEs local memories. Explicitly unroll: due to the high number of registers on the SPEs and to the simplicity of SPEs architecture (no register renaming, no speculative execution, no dynamic branch prediction etc.), explicit unrolling provides considerable improvements in performance. Reduce branches in the code: SPEs can only do static branch prediction. Since these prediction schemes are rather inefficient on programs that have a complex execution flow, reducing the number of branches in the code usually provides performance improvements.

4 A PlayStation3 cluster hardware/software details Hardware: Cell BE processor: the Cell processor on each node has only six SPEs accessible to the user out of eight. Dual-channel Rambus Extreme Data Rate: For all practical purposes the memory can provide the bandwidth of 25.6 GB/s to the SPEs through the EIB, provided that accesses are distributed evenly across all the 16 banks. Built in GigaBit Ethernet network card: The network card has a dedicated DMA unit, which permits data transfer without the PPE s intervention. Software: The Linux operating system runs on the PS3 on top of a virtualization layer (also called hypervisor) that Sony refers to as Game OS. This means that all the hardware is accessible only through the hypervisor calls. The hardware signals the kernel through virtualized interrupts. The interrupts are used to implement callbacks for non-blocking system calls. Parallel Matrix-Matrix Product Matrix-matrix product is one of the most important linear algebra kernels since it represents the most computationally intensive operation on many applications. The Cannon, the PUMMA and the SUMMA algorithms are still extensively adopted in many high performance, linear algebra applications run on parallel architectures. Algorithm SUMMA 1: for i = 1 to n/nb do 2: if I own A*i then 3: Copy A*i in buf1 4: Bcast buf1 to my proc row 5: end if 6: if I own Bi* then 7: Copy bi* in buf2 8: Bcast buf2 to my proc column 9: end if 10: C = C + buf1 * buf2 11: end for Performance Evaluation Double Buffering: Performance can be improved by communications/computations overlap Computations offloaded to SPEs Communications taken care by PPE Data for step k+1 broadcasted at step k Performance Result Cost of Local Computations is small

5 Surface-to-Volume effect props up for large problem sizes Memory Limitations inhibit best performance Conclusion Limitations: * Main memory access rate fp execution faster than peak transfer rate * Network Interconnect speed Capacity of interconnect out of balance * Main memory size Serious limitation * Double precision performance Lower performance than sp * Programming paradigm Write low level code

A Synchronous Mode MPI Implementation on the Cell BE Architecture

A Synchronous Mode MPI Implementation on the Cell BE Architecture A Synchronous Mode MPI Implementation on the Cell BE Architecture Murali Krishna 1, Arun Kumar 1, Naresh Jayam 1, Ganapathy Senthilkumar 1, Pallav K Baruah 1, Raghunath Sharma 1, Shakti Kapoor 2, Ashok

More information

A Buffered-Mode MPI Implementation for the Cell BE Processor

A Buffered-Mode MPI Implementation for the Cell BE Processor A Buffered-Mode MPI Implementation for the Cell BE Processor Arun Kumar 1, Ganapathy Senthilkumar 1, Murali Krishna 1, Naresh Jayam 1, Pallav K Baruah 1, Raghunath Sharma 1, Ashok Srinivasan 2, Shakti

More information

IBM Cell Processor. Gilbert Hendry Mark Kretschmann

IBM Cell Processor. Gilbert Hendry Mark Kretschmann IBM Cell Processor Gilbert Hendry Mark Kretschmann Architectural components Architectural security Programming Models Compiler Applications Performance Power and Cost Conclusion Outline Cell Architecture:

More information

The Pennsylvania State University. The Graduate School. College of Engineering PFFTC: AN IMPROVED FAST FOURIER TRANSFORM

The Pennsylvania State University. The Graduate School. College of Engineering PFFTC: AN IMPROVED FAST FOURIER TRANSFORM The Pennsylvania State University The Graduate School College of Engineering PFFTC: AN IMPROVED FAST FOURIER TRANSFORM FOR THE IBM CELL BROADBAND ENGINE A Thesis in Computer Science and Engineering by

More information

High Performance Computing. University questions with solution

High Performance Computing. University questions with solution High Performance Computing University questions with solution Q1) Explain the basic working principle of VLIW processor. (6 marks) The following points are basic working principle of VLIW processor. The

More information

Parallel Computing: Parallel Architectures Jin, Hai

Parallel Computing: Parallel Architectures Jin, Hai Parallel Computing: Parallel Architectures Jin, Hai School of Computer Science and Technology Huazhong University of Science and Technology Peripherals Computer Central Processing Unit Main Memory Computer

More information

Evaluating the Portability of UPC to the Cell Broadband Engine

Evaluating the Portability of UPC to the Cell Broadband Engine Evaluating the Portability of UPC to the Cell Broadband Engine Dipl. Inform. Ruben Niederhagen JSC Cell Meeting CHAIR FOR OPERATING SYSTEMS Outline Introduction UPC Cell UPC on Cell Mapping Compiler and

More information

Cell Programming Tips & Techniques

Cell Programming Tips & Techniques Cell Programming Tips & Techniques Course Code: L3T2H1-58 Cell Ecosystem Solutions Enablement 1 Class Objectives Things you will learn Key programming techniques to exploit cell hardware organization and

More information

The University of Texas at Austin

The University of Texas at Austin EE382N: Principles in Computer Architecture Parallelism and Locality Fall 2009 Lecture 24 Stream Processors Wrapup + Sony (/Toshiba/IBM) Cell Broadband Engine Mattan Erez The University of Texas at Austin

More information

high performance medical reconstruction using stream programming paradigms

high performance medical reconstruction using stream programming paradigms high performance medical reconstruction using stream programming paradigms This Paper describes the implementation and results of CT reconstruction using Filtered Back Projection on various stream programming

More information

CellSs Making it easier to program the Cell Broadband Engine processor

CellSs Making it easier to program the Cell Broadband Engine processor Perez, Bellens, Badia, and Labarta CellSs Making it easier to program the Cell Broadband Engine processor Presented by: Mujahed Eleyat Outline Motivation Architecture of the cell processor Challenges of

More information

Computer and Hardware Architecture I. Benny Thörnberg Associate Professor in Electronics

Computer and Hardware Architecture I. Benny Thörnberg Associate Professor in Electronics Computer and Hardware Architecture I Benny Thörnberg Associate Professor in Electronics Hardware architecture Computer architecture The functionality of a modern computer is so complex that no human can

More information

( ZIH ) Center for Information Services and High Performance Computing. Event Tracing and Visualization for Cell Broadband Engine Systems

( ZIH ) Center for Information Services and High Performance Computing. Event Tracing and Visualization for Cell Broadband Engine Systems ( ZIH ) Center for Information Services and High Performance Computing Event Tracing and Visualization for Cell Broadband Engine Systems ( daniel.hackenberg@zih.tu-dresden.de ) Daniel Hackenberg Cell Broadband

More information

Programming for Performance on the Cell BE processor & Experiences at SSSU. Sri Sathya Sai University

Programming for Performance on the Cell BE processor & Experiences at SSSU. Sri Sathya Sai University Programming for Performance on the Cell BE processor & Experiences at SSSU Sri Sathya Sai University THE STI CELL PROCESSOR The Inevitable Shift to the era of Multi-Core Computing The 9-core Cell Microprocessor

More information

Lessons learned from MPI

Lessons learned from MPI Lessons learned from MPI Patrick Geoffray Opinionated Senior Software Architect patrick@myri.com 1 GM design Written by hardware people, pre-date MPI. 2-sided and 1-sided operations: All asynchronous.

More information

Massively Parallel Architectures

Massively Parallel Architectures Massively Parallel Architectures A Take on Cell Processor and GPU programming Joel Falcou - LRI joel.falcou@lri.fr Bat. 490 - Bureau 104 20 janvier 2009 Motivation The CELL processor Harder,Better,Faster,Stronger

More information

Design guidelines for embedded real time face detection application

Design guidelines for embedded real time face detection application Design guidelines for embedded real time face detection application White paper for Embedded Vision Alliance By Eldad Melamed Much like the human visual system, embedded computer vision systems perform

More information

CUDA GPGPU Workshop 2012

CUDA GPGPU Workshop 2012 CUDA GPGPU Workshop 2012 Parallel Programming: C thread, Open MP, and Open MPI Presenter: Nasrin Sultana Wichita State University 07/10/2012 Parallel Programming: Open MP, MPI, Open MPI & CUDA Outline

More information

CS6303 Computer Architecture Regulation 2013 BE-Computer Science and Engineering III semester 2 MARKS

CS6303 Computer Architecture Regulation 2013 BE-Computer Science and Engineering III semester 2 MARKS CS6303 Computer Architecture Regulation 2013 BE-Computer Science and Engineering III semester 2 MARKS UNIT-I OVERVIEW & INSTRUCTIONS 1. What are the eight great ideas in computer architecture? The eight

More information

RDMA Read Based Rendezvous Protocol for MPI over InfiniBand: Design Alternatives and Benefits

RDMA Read Based Rendezvous Protocol for MPI over InfiniBand: Design Alternatives and Benefits RDMA Read Based Rendezvous Protocol for MPI over InfiniBand: Design Alternatives and Benefits Sayantan Sur Hyun-Wook Jin Lei Chai D. K. Panda Network Based Computing Lab, The Ohio State University Presentation

More information

EE/CSCI 451: Parallel and Distributed Computation

EE/CSCI 451: Parallel and Distributed Computation EE/CSCI 451: Parallel and Distributed Computation Lecture #15 3/7/2017 Xuehai Qian Xuehai.qian@usc.edu http://alchem.usc.edu/portal/xuehaiq.html University of Southern California 1 From last class Outline

More information

Computer Systems Architecture I. CSE 560M Lecture 19 Prof. Patrick Crowley

Computer Systems Architecture I. CSE 560M Lecture 19 Prof. Patrick Crowley Computer Systems Architecture I CSE 560M Lecture 19 Prof. Patrick Crowley Plan for Today Announcement No lecture next Wednesday (Thanksgiving holiday) Take Home Final Exam Available Dec 7 Due via email

More information

Distributed Computing: PVM, MPI, and MOSIX. Multiple Processor Systems. Dr. Shaaban. Judd E.N. Jenne

Distributed Computing: PVM, MPI, and MOSIX. Multiple Processor Systems. Dr. Shaaban. Judd E.N. Jenne Distributed Computing: PVM, MPI, and MOSIX Multiple Processor Systems Dr. Shaaban Judd E.N. Jenne May 21, 1999 Abstract: Distributed computing is emerging as the preferred means of supporting parallel

More information

Roadrunner. By Diana Lleva Julissa Campos Justina Tandar

Roadrunner. By Diana Lleva Julissa Campos Justina Tandar Roadrunner By Diana Lleva Julissa Campos Justina Tandar Overview Roadrunner background On-Chip Interconnect Number of Cores Memory Hierarchy Pipeline Organization Multithreading Organization Roadrunner

More information

Lecture 13: March 25

Lecture 13: March 25 CISC 879 Software Support for Multicore Architectures Spring 2007 Lecture 13: March 25 Lecturer: John Cavazos Scribe: Ying Yu 13.1. Bryan Youse-Optimization of Sparse Matrix-Vector Multiplication on Emerging

More information

PCAP Assignment I. 1. A. Why is there a large performance gap between many-core GPUs and generalpurpose multicore CPUs. Discuss in detail.

PCAP Assignment I. 1. A. Why is there a large performance gap between many-core GPUs and generalpurpose multicore CPUs. Discuss in detail. PCAP Assignment I 1. A. Why is there a large performance gap between many-core GPUs and generalpurpose multicore CPUs. Discuss in detail. The multicore CPUs are designed to maximize the execution speed

More information

5/5/2012. Message Passing Programming Model Blocking communication. Non-Blocking communication Introducing MPI. Non-Buffered Buffered

5/5/2012. Message Passing Programming Model Blocking communication. Non-Blocking communication Introducing MPI. Non-Buffered Buffered Lecture 7: Programming Using the Message-Passing Paradigm 1 Message Passing Programming Model Blocking communication Non-Buffered Buffered Non-Blocking communication Introducing MPI 2 1 Programming models

More information

Multiprocessors and Thread Level Parallelism Chapter 4, Appendix H CS448. The Greed for Speed

Multiprocessors and Thread Level Parallelism Chapter 4, Appendix H CS448. The Greed for Speed Multiprocessors and Thread Level Parallelism Chapter 4, Appendix H CS448 1 The Greed for Speed Two general approaches to making computers faster Faster uniprocessor All the techniques we ve been looking

More information

COSC 6374 Parallel Computation. Performance Modeling and 2 nd Homework. Edgar Gabriel. Spring Motivation

COSC 6374 Parallel Computation. Performance Modeling and 2 nd Homework. Edgar Gabriel. Spring Motivation COSC 6374 Parallel Computation Performance Modeling and 2 nd Homework Spring 2007 Motivation Can we estimate the costs for a parallel code in order to Evaluate quantitative and qualitative differences

More information

Spring 2011 Prof. Hyesoon Kim

Spring 2011 Prof. Hyesoon Kim Spring 2011 Prof. Hyesoon Kim PowerPC-base Core @3.2GHz 1 VMX vector unit per core 512KB L2 cache 7 x SPE @3.2GHz 7 x 128b 128 SIMD GPRs 7 x 256KB SRAM for SPE 1 of 8 SPEs reserved for redundancy total

More information

Computer Systems Architecture

Computer Systems Architecture Computer Systems Architecture Lecture 24 Mahadevan Gomathisankaran April 29, 2010 04/29/2010 Lecture 24 CSCE 4610/5610 1 Reminder ABET Feedback: http://www.cse.unt.edu/exitsurvey.cgi?csce+4610+001 Student

More information

Complexity and Advanced Algorithms. Introduction to Parallel Algorithms

Complexity and Advanced Algorithms. Introduction to Parallel Algorithms Complexity and Advanced Algorithms Introduction to Parallel Algorithms Why Parallel Computing? Save time, resources, memory,... Who is using it? Academia Industry Government Individuals? Two practical

More information

Hardware-based Speculation

Hardware-based Speculation Hardware-based Speculation Hardware-based Speculation To exploit instruction-level parallelism, maintaining control dependences becomes an increasing burden. For a processor executing multiple instructions

More information

Lecture 7: More about MPI programming. Lecture 7: More about MPI programming p. 1

Lecture 7: More about MPI programming. Lecture 7: More about MPI programming p. 1 Lecture 7: More about MPI programming Lecture 7: More about MPI programming p. 1 Some recaps (1) One way of categorizing parallel computers is by looking at the memory configuration: In shared-memory systems

More information

Parallel Computer Architecture and Programming Written Assignment 3

Parallel Computer Architecture and Programming Written Assignment 3 Parallel Computer Architecture and Programming Written Assignment 3 50 points total. Due Monday, July 17 at the start of class. Problem 1: Message Passing (6 pts) A. (3 pts) You and your friend liked the

More information

INSTITUTO SUPERIOR TÉCNICO. Architectures for Embedded Computing

INSTITUTO SUPERIOR TÉCNICO. Architectures for Embedded Computing UNIVERSIDADE TÉCNICA DE LISBOA INSTITUTO SUPERIOR TÉCNICO Departamento de Engenharia Informática Architectures for Embedded Computing MEIC-A, MEIC-T, MERC Lecture Slides Version 3.0 - English Lecture 12

More information

Document Classification

Document Classification Document Classification Introduction Search engine on web Search directories, subdirectories for documents Search for documents with extensions.html,.txt, and.tex Using a dictionary of key words, create

More information

ENGN1640: Design of Computing Systems Topic 06: Advanced Processor Design

ENGN1640: Design of Computing Systems Topic 06: Advanced Processor Design ENGN1640: Design of Computing Systems Topic 06: Advanced Processor Design Professor Sherief Reda http://scale.engin.brown.edu Electrical Sciences and Computer Engineering School of Engineering Brown University

More information

Lecture 16: Recapitulations. Lecture 16: Recapitulations p. 1

Lecture 16: Recapitulations. Lecture 16: Recapitulations p. 1 Lecture 16: Recapitulations Lecture 16: Recapitulations p. 1 Parallel computing and programming in general Parallel computing a form of parallel processing by utilizing multiple computing units concurrently

More information

Tutorial 2: MPI. CS486 - Principles of Distributed Computing Papageorgiou Spyros

Tutorial 2: MPI. CS486 - Principles of Distributed Computing Papageorgiou Spyros Tutorial 2: MPI CS486 - Principles of Distributed Computing Papageorgiou Spyros What is MPI? An Interface Specification MPI = Message Passing Interface Provides a standard -> various implementations Offers

More information

CS4961 Parallel Programming. Lecture 19: Message Passing, cont. 11/5/10. Programming Assignment #3: Simple CUDA Due Thursday, November 18, 11:59 PM

CS4961 Parallel Programming. Lecture 19: Message Passing, cont. 11/5/10. Programming Assignment #3: Simple CUDA Due Thursday, November 18, 11:59 PM Parallel Programming Lecture 19: Message Passing, cont. Mary Hall November 4, 2010 Programming Assignment #3: Simple CUDA Due Thursday, November 18, 11:59 PM Today we will cover Successive Over Relaxation.

More information

Optimization of Collective Communication in Intra- Cell MPI

Optimization of Collective Communication in Intra- Cell MPI Optimization of Collective Communication in Intra- Cell MPI M. K. Velamati 1, A. Kumar 1, N. Jayam 1, G. Senthilkumar 1, P.K. Baruah 1, R. Sharma 1, S. Kapoor 2, and A. Srinivasan 3 1 Dept. of Mathematics

More information

Compilation for Heterogeneous Platforms

Compilation for Heterogeneous Platforms Compilation for Heterogeneous Platforms Grid in a Box and on a Chip Ken Kennedy Rice University http://www.cs.rice.edu/~ken/presentations/heterogeneous.pdf Senior Researchers Ken Kennedy John Mellor-Crummey

More information

Master Informatics Eng.

Master Informatics Eng. Advanced Architectures Master Informatics Eng. 207/8 A.J.Proença The Roofline Performance Model (most slides are borrowed) AJProença, Advanced Architectures, MiEI, UMinho, 207/8 AJProença, Advanced Architectures,

More information

CSE. Parallel Algorithms on a cluster of PCs. Ian Bush. Daresbury Laboratory (With thanks to Lorna Smith and Mark Bull at EPCC)

CSE. Parallel Algorithms on a cluster of PCs. Ian Bush. Daresbury Laboratory (With thanks to Lorna Smith and Mark Bull at EPCC) Parallel Algorithms on a cluster of PCs Ian Bush Daresbury Laboratory I.J.Bush@dl.ac.uk (With thanks to Lorna Smith and Mark Bull at EPCC) Overview This lecture will cover General Message passing concepts

More information

EN164: Design of Computing Systems Topic 08: Parallel Processor Design (introduction)

EN164: Design of Computing Systems Topic 08: Parallel Processor Design (introduction) EN164: Design of Computing Systems Topic 08: Parallel Processor Design (introduction) Professor Sherief Reda http://scale.engin.brown.edu Electrical Sciences and Computer Engineering School of Engineering

More information

Accelerated Library Framework for Hybrid-x86

Accelerated Library Framework for Hybrid-x86 Software Development Kit for Multicore Acceleration Version 3.0 Accelerated Library Framework for Hybrid-x86 Programmer s Guide and API Reference Version 1.0 DRAFT SC33-8406-00 Software Development Kit

More information

10-Gigabit iwarp Ethernet: Comparative Performance Analysis with InfiniBand and Myrinet-10G

10-Gigabit iwarp Ethernet: Comparative Performance Analysis with InfiniBand and Myrinet-10G 10-Gigabit iwarp Ethernet: Comparative Performance Analysis with InfiniBand and Myrinet-10G Mohammad J. Rashti and Ahmad Afsahi Queen s University Kingston, ON, Canada 2007 Workshop on Communication Architectures

More information

Computer Architecture

Computer Architecture Computer Architecture Slide Sets WS 2013/2014 Prof. Dr. Uwe Brinkschulte M.Sc. Benjamin Betting Part 10 Thread and Task Level Parallelism Computer Architecture Part 10 page 1 of 36 Prof. Dr. Uwe Brinkschulte,

More information

Discussion: MPI Basic Point to Point Communication I. Table of Contents. Cornell Theory Center

Discussion: MPI Basic Point to Point Communication I. Table of Contents. Cornell Theory Center 1 of 14 11/1/2006 3:58 PM Cornell Theory Center Discussion: MPI Point to Point Communication I This is the in-depth discussion layer of a two-part module. For an explanation of the layers and how to navigate

More information

Multiprocessing and Scalability. A.R. Hurson Computer Science and Engineering The Pennsylvania State University

Multiprocessing and Scalability. A.R. Hurson Computer Science and Engineering The Pennsylvania State University A.R. Hurson Computer Science and Engineering The Pennsylvania State University 1 Large-scale multiprocessor systems have long held the promise of substantially higher performance than traditional uniprocessor

More information

Point-to-Point Communication. Reference:

Point-to-Point Communication. Reference: Point-to-Point Communication Reference: http://foxtrot.ncsa.uiuc.edu:8900/public/mpi/ Introduction Point-to-point communication is the fundamental communication facility provided by the MPI library. Point-to-point

More information

Double-Precision Matrix Multiply on CUDA

Double-Precision Matrix Multiply on CUDA Double-Precision Matrix Multiply on CUDA Parallel Computation (CSE 60), Assignment Andrew Conegliano (A5055) Matthias Springer (A995007) GID G--665 February, 0 Assumptions All matrices are square matrices

More information

Processor Architecture and Interconnect

Processor Architecture and Interconnect Processor Architecture and Interconnect What is Parallelism? Parallel processing is a term used to denote simultaneous computation in CPU for the purpose of measuring its computation speeds. Parallel Processing

More information

Lecture 4: Principles of Parallel Algorithm Design (part 4)

Lecture 4: Principles of Parallel Algorithm Design (part 4) Lecture 4: Principles of Parallel Algorithm Design (part 4) 1 Mapping Technique for Load Balancing Minimize execution time Reduce overheads of execution Sources of overheads: Inter-process interaction

More information

xsim The Extreme-Scale Simulator

xsim The Extreme-Scale Simulator www.bsc.es xsim The Extreme-Scale Simulator Janko Strassburg Severo Ochoa Seminar @ BSC, 28 Feb 2014 Motivation Future exascale systems are predicted to have hundreds of thousands of nodes, thousands of

More information

A Message Passing Standard for MPP and Workstations

A Message Passing Standard for MPP and Workstations A Message Passing Standard for MPP and Workstations Communications of the ACM, July 1996 J.J. Dongarra, S.W. Otto, M. Snir, and D.W. Walker Message Passing Interface (MPI) Message passing library Can be

More information

More about MPI programming. More about MPI programming p. 1

More about MPI programming. More about MPI programming p. 1 More about MPI programming More about MPI programming p. 1 Some recaps (1) One way of categorizing parallel computers is by looking at the memory configuration: In shared-memory systems, the CPUs share

More information

Linux Network Tuning Guide for AMD EPYC Processor Based Servers

Linux Network Tuning Guide for AMD EPYC Processor Based Servers Linux Network Tuning Guide for AMD EPYC Processor Application Note Publication # 56224 Revision: 1.00 Issue Date: November 2017 Advanced Micro Devices 2017 Advanced Micro Devices, Inc. All rights reserved.

More information

Introduction to parallel computing concepts and technics

Introduction to parallel computing concepts and technics Introduction to parallel computing concepts and technics Paschalis Korosoglou (support@grid.auth.gr) User and Application Support Unit Scientific Computing Center @ AUTH Overview of Parallel computing

More information

Computer System Architecture Quiz #2 April 5th, 2019

Computer System Architecture Quiz #2 April 5th, 2019 Computer System Architecture 6.823 Quiz #2 April 5th, 2019 Name: This is a closed book, closed notes exam. 80 Minutes 16 Pages (+2 Scratch) Notes: Not all questions are of equal difficulty, so look over

More information

Parallel Computing. Hwansoo Han (SKKU)

Parallel Computing. Hwansoo Han (SKKU) Parallel Computing Hwansoo Han (SKKU) Unicore Limitations Performance scaling stopped due to Power consumption Wire delay DRAM latency Limitation in ILP 10000 SPEC CINT2000 2 cores/chip Xeon 3.0GHz Core2duo

More information

Data Parallel Architectures

Data Parallel Architectures EE392C: Advanced Topics in Computer Architecture Lecture #2 Chip Multiprocessors and Polymorphic Processors Thursday, April 3 rd, 2003 Data Parallel Architectures Lecture #2: Thursday, April 3 rd, 2003

More information

Topics. Lecture 6. Point-to-point Communication. Point-to-point Communication. Broadcast. Basic Point-to-point communication. MPI Programming (III)

Topics. Lecture 6. Point-to-point Communication. Point-to-point Communication. Broadcast. Basic Point-to-point communication. MPI Programming (III) Topics Lecture 6 MPI Programming (III) Point-to-point communication Basic point-to-point communication Non-blocking point-to-point communication Four modes of blocking communication Manager-Worker Programming

More information

Optimization of MPI Applications Rolf Rabenseifner

Optimization of MPI Applications Rolf Rabenseifner Optimization of MPI Applications Rolf Rabenseifner University of Stuttgart High-Performance Computing-Center Stuttgart (HLRS) www.hlrs.de Optimization of MPI Applications Slide 1 Optimization and Standardization

More information

Introduction to CELL B.E. and GPU Programming. Agenda

Introduction to CELL B.E. and GPU Programming. Agenda Introduction to CELL B.E. and GPU Programming Department of Electrical & Computer Engineering Rutgers University Agenda Background CELL B.E. Architecture Overview CELL B.E. Programming Environment GPU

More information

Software Development Kit for Multicore Acceleration Version 3.0

Software Development Kit for Multicore Acceleration Version 3.0 Software Development Kit for Multicore Acceleration Version 3.0 Programming Tutorial SC33-8410-00 Software Development Kit for Multicore Acceleration Version 3.0 Programming Tutorial SC33-8410-00 Note

More information

Chapter 13: I/O Systems

Chapter 13: I/O Systems COP 4610: Introduction to Operating Systems (Spring 2015) Chapter 13: I/O Systems Zhi Wang Florida State University Content I/O hardware Application I/O interface Kernel I/O subsystem I/O performance Objectives

More information

Introduction to the Message Passing Interface (MPI)

Introduction to the Message Passing Interface (MPI) Introduction to the Message Passing Interface (MPI) CPS343 Parallel and High Performance Computing Spring 2018 CPS343 (Parallel and HPC) Introduction to the Message Passing Interface (MPI) Spring 2018

More information

Executing Stream Joins on the Cell Processor

Executing Stream Joins on the Cell Processor Executing Stream Joins on the Cell Processor Buğra Gedik bgedik@us.ibm.com Philip S. Yu psyu@us.ibm.com Thomas J. Watson Research Center IBM Research, Hawthorne, NY, 1532, USA Rajesh R. Bordawekar bordaw@us.ibm.com

More information

How to Write Fast Code , spring th Lecture, Mar. 31 st

How to Write Fast Code , spring th Lecture, Mar. 31 st How to Write Fast Code 18-645, spring 2008 20 th Lecture, Mar. 31 st Instructor: Markus Püschel TAs: Srinivas Chellappa (Vas) and Frédéric de Mesmay (Fred) Introduction Parallelism: definition Carrying

More information

The Multikernel: A new OS architecture for scalable multicore systems Baumann et al. Presentation: Mark Smith

The Multikernel: A new OS architecture for scalable multicore systems Baumann et al. Presentation: Mark Smith The Multikernel: A new OS architecture for scalable multicore systems Baumann et al. Presentation: Mark Smith Review Introduction Optimizing the OS based on hardware Processor changes Shared Memory vs

More information

MPI 2. CSCI 4850/5850 High-Performance Computing Spring 2018

MPI 2. CSCI 4850/5850 High-Performance Computing Spring 2018 MPI 2 CSCI 4850/5850 High-Performance Computing Spring 2018 Tae-Hyuk (Ted) Ahn Department of Computer Science Program of Bioinformatics and Computational Biology Saint Louis University Learning Objectives

More information

A Transport Kernel on the Cell Broadband Engine

A Transport Kernel on the Cell Broadband Engine A Transport Kernel on the Cell Broadband Engine Paul Henning Los Alamos National Laboratory LA-UR 06-7280 Cell Chip Overview Cell Broadband Engine * (Cell BE) Developed under Sony-Toshiba-IBM efforts Current

More information

Outline EEL 5764 Graduate Computer Architecture. Chapter 3 Limits to ILP and Simultaneous Multithreading. Overcoming Limits - What do we need??

Outline EEL 5764 Graduate Computer Architecture. Chapter 3 Limits to ILP and Simultaneous Multithreading. Overcoming Limits - What do we need?? Outline EEL 7 Graduate Computer Architecture Chapter 3 Limits to ILP and Simultaneous Multithreading! Limits to ILP! Thread Level Parallelism! Multithreading! Simultaneous Multithreading Ann Gordon-Ross

More information

Memory Management Virtual Memory

Memory Management Virtual Memory Memory Management Virtual Memory Part of A3 course (by Theo Schouten) Biniam Gebremichael http://www.cs.ru.nl/~biniam/ Office: A6004 April 4 2005 Content Virtual memory Definition Advantage and challenges

More information

Portland State University ECE 588/688. Graphics Processors

Portland State University ECE 588/688. Graphics Processors Portland State University ECE 588/688 Graphics Processors Copyright by Alaa Alameldeen 2018 Why Graphics Processors? Graphics programs have different characteristics from general purpose programs Highly

More information

Programming with MPI

Programming with MPI Programming with MPI p. 1/?? Programming with MPI Miscellaneous Guidelines Nick Maclaren Computing Service nmm1@cam.ac.uk, ext. 34761 March 2010 Programming with MPI p. 2/?? Summary This is a miscellaneous

More information

Computer Architecture A Quantitative Approach, Fifth Edition. Chapter 2. Memory Hierarchy Design. Copyright 2012, Elsevier Inc. All rights reserved.

Computer Architecture A Quantitative Approach, Fifth Edition. Chapter 2. Memory Hierarchy Design. Copyright 2012, Elsevier Inc. All rights reserved. Computer Architecture A Quantitative Approach, Fifth Edition Chapter 2 Memory Hierarchy Design 1 Introduction Programmers want unlimited amounts of memory with low latency Fast memory technology is more

More information

Blocking SEND/RECEIVE

Blocking SEND/RECEIVE Message Passing Blocking SEND/RECEIVE : couple data transfer and synchronization - Sender and receiver rendezvous to exchange data P P SrcP... x : =... SEND(x, DestP)... DestP... RECEIVE(y,SrcP)... M F

More information

TDT Coarse-Grained Multithreading. Review on ILP. Multi-threaded execution. Contents. Fine-Grained Multithreading

TDT Coarse-Grained Multithreading. Review on ILP. Multi-threaded execution. Contents. Fine-Grained Multithreading Review on ILP TDT 4260 Chap 5 TLP & Hierarchy What is ILP? Let the compiler find the ILP Advantages? Disadvantages? Let the HW find the ILP Advantages? Disadvantages? Contents Multi-threading Chap 3.5

More information

Mapping the AVS Video Decoder on a Heterogeneous Dual-Core SIMD Processor. NikolaosBellas, IoannisKatsavounidis, Maria Koziri, Dimitris Zacharis

Mapping the AVS Video Decoder on a Heterogeneous Dual-Core SIMD Processor. NikolaosBellas, IoannisKatsavounidis, Maria Koziri, Dimitris Zacharis Mapping the AVS Video Decoder on a Heterogeneous Dual-Core SIMD Processor NikolaosBellas, IoannisKatsavounidis, Maria Koziri, Dimitris Zacharis University of Thessaly Greece 1 Outline Introduction to AVS

More information

Operating System Review Part

Operating System Review Part Operating System Review Part CMSC 602 Operating Systems Ju Wang, 2003 Fall Virginia Commonwealth University Review Outline Definition Memory Management Objective Paging Scheme Virtual Memory System and

More information

Blue-Steel Ray Tracer

Blue-Steel Ray Tracer MIT 6.189 IAP 2007 Student Project Blue-Steel Ray Tracer Natalia Chernenko Michael D'Ambrosio Scott Fisher Russel Ryan Brian Sweatt Leevar Williams Game Developers Conference March 7 2007 1 Imperative

More information

Lightweight Remote Procedure Call

Lightweight Remote Procedure Call Lightweight Remote Procedure Call Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, Henry M. Levy ACM Transactions Vol. 8, No. 1, February 1990, pp. 37-55 presented by Ian Dees for PSU CS533, Jonathan

More information

All-Pairs Shortest Paths - Floyd s Algorithm

All-Pairs Shortest Paths - Floyd s Algorithm All-Pairs Shortest Paths - Floyd s Algorithm Parallel and Distributed Computing Department of Computer Science and Engineering (DEI) Instituto Superior Técnico October 31, 2011 CPD (DEI / IST) Parallel

More information

Main Points of the Computer Organization and System Software Module

Main Points of the Computer Organization and System Software Module Main Points of the Computer Organization and System Software Module You can find below the topics we have covered during the COSS module. Reading the relevant parts of the textbooks is essential for a

More information

COSC 6385 Computer Architecture - Data Level Parallelism (III) The Intel Larrabee, Intel Xeon Phi and IBM Cell processors

COSC 6385 Computer Architecture - Data Level Parallelism (III) The Intel Larrabee, Intel Xeon Phi and IBM Cell processors COSC 6385 Computer Architecture - Data Level Parallelism (III) The Intel Larrabee, Intel Xeon Phi and IBM Cell processors Edgar Gabriel Fall 2018 References Intel Larrabee: [1] L. Seiler, D. Carmean, E.

More information

MPI Optimisation. Advanced Parallel Programming. David Henty, Iain Bethune, Dan Holmes EPCC, University of Edinburgh

MPI Optimisation. Advanced Parallel Programming. David Henty, Iain Bethune, Dan Holmes EPCC, University of Edinburgh MPI Optimisation Advanced Parallel Programming David Henty, Iain Bethune, Dan Holmes EPCC, University of Edinburgh Overview Can divide overheads up into four main categories: Lack of parallelism Load imbalance

More information

SHARCNET Workshop on Parallel Computing. Hugh Merz Laurentian University May 2008

SHARCNET Workshop on Parallel Computing. Hugh Merz Laurentian University May 2008 SHARCNET Workshop on Parallel Computing Hugh Merz Laurentian University May 2008 What is Parallel Computing? A computational method that utilizes multiple processing elements to solve a problem in tandem

More information

Accelerating the Implicit Integration of Stiff Chemical Systems with Emerging Multi-core Technologies

Accelerating the Implicit Integration of Stiff Chemical Systems with Emerging Multi-core Technologies Accelerating the Implicit Integration of Stiff Chemical Systems with Emerging Multi-core Technologies John C. Linford John Michalakes Manish Vachharajani Adrian Sandu IMAGe TOY 2009 Workshop 2 Virginia

More information

Crypto On the Playstation 3

Crypto On the Playstation 3 Crypto On the Playstation 3 Neil Costigan School of Computing, DCU. neil.costigan@computing.dcu.ie +353.1.700.6916 PhD student / 2 nd year of research. Supervisor : - Dr Michael Scott. IRCSET funded. Playstation

More information

Copyright 2012, Elsevier Inc. All rights reserved.

Copyright 2012, Elsevier Inc. All rights reserved. Computer Architecture A Quantitative Approach, Fifth Edition Chapter 2 Memory Hierarchy Design 1 Introduction Programmers want unlimited amounts of memory with low latency Fast memory technology is more

More information

Computer System Architecture Final Examination Spring 2002

Computer System Architecture Final Examination Spring 2002 Computer System Architecture 6.823 Final Examination Spring 2002 Name: This is an open book, open notes exam. 180 Minutes 22 Pages Notes: Not all questions are of equal difficulty, so look over the entire

More information

OpenMP on the IBM Cell BE

OpenMP on the IBM Cell BE OpenMP on the IBM Cell BE PRACE Barcelona Supercomputing Center (BSC) 21-23 October 2009 Marc Gonzalez Tallada Index OpenMP programming and code transformations Tiling and Software Cache transformations

More information

EE/CSCI 451 Midterm 1

EE/CSCI 451 Midterm 1 EE/CSCI 451 Midterm 1 Spring 2018 Instructor: Xuehai Qian Friday: 02/26/2018 Problem # Topic Points Score 1 Definitions 20 2 Memory System Performance 10 3 Cache Performance 10 4 Shared Memory Programming

More information

Optimizing Assignment of Threads to SPEs on the Cell BE Processor

Optimizing Assignment of Threads to SPEs on the Cell BE Processor Optimizing Assignment of Threads to SPEs on the Cell BE Processor T. Nagaraju P.K. Baruah Ashok Srinivasan Abstract The Cell is a heterogeneous multicore processor that has attracted much attention in

More information

I/O Systems. Jo, Heeseung

I/O Systems. Jo, Heeseung I/O Systems Jo, Heeseung Today's Topics Device characteristics Block device vs. Character device Direct I/O vs. Memory-mapped I/O Polling vs. Interrupts Programmed I/O vs. DMA Blocking vs. Non-blocking

More information

Re-architecting Virtualization in Heterogeneous Multicore Systems

Re-architecting Virtualization in Heterogeneous Multicore Systems Re-architecting Virtualization in Heterogeneous Multicore Systems Himanshu Raj, Sanjay Kumar, Vishakha Gupta, Gregory Diamos, Nawaf Alamoosa, Ada Gavrilovska, Karsten Schwan, Sudhakar Yalamanchili College

More information

I/O Systems. Amir H. Payberah. Amirkabir University of Technology (Tehran Polytechnic)

I/O Systems. Amir H. Payberah. Amirkabir University of Technology (Tehran Polytechnic) I/O Systems Amir H. Payberah amir@sics.se Amirkabir University of Technology (Tehran Polytechnic) Amir H. Payberah (Tehran Polytechnic) I/O Systems 1393/9/15 1 / 57 Motivation Amir H. Payberah (Tehran

More information