Dynamic Rate Adaptation in IEEE WLANs

Size: px
Start display at page:

Download "Dynamic Rate Adaptation in IEEE WLANs"

Transcription

1 Dynamic Rate Adaptation in IEEE WLANs August 10, 2008

2 References [1] On the Performance Characteristics of WLANs: Revisited (SIGMETRICS 2005) [2] CARA: Collision-Aware Rate Adaptation for IEEE WLANs (INFOCOM 2006) [3] (MOBICOM 2006) [4] IEEE Rate Adaptation: A Practical Approach (MSWiM 2004) [5] Link Adaptation Strategy for IEEE WLAN via Received Signal Strength Measurement (ICC 2003)

3 Outline Introduction of Rate Adaptation in IEEE WLANs Existing Challenges Development of Rate Adaptation Algorithms Presentative old ones New Kids in this area My Opinion

4 Outline Introduction of Rate Adaptation in IEEE WLANs Existing Challenges Development of Rate Adaptation Algorithms Presentative old ones New Kids in this area My Opinion

5 MAC (with RTS/CTS on) RTS: 20 bytes in mac CTS: 14 bytes in mac [2]

6 What is Rate Adaptation? The a/b/g/n standards allow the use of multiple transmission rates b, 4 rate options (1,2,5.5,11Mbps) a, 8 rate options (6,9,12,18,24,36,48,54 Mbps) g, 12 rate options (11a set + 11b set) The method to select the transmission rate in real time is called Rate Adaptation Rate adaptation is important yet unspecified by the standards

7 Why do we need Rate Adaptation? Access Point MN

8 Why do we need Rate Adaptation? Access Point MN

9 Why do we need Rate Adaptation? Access Point SRN Distance Effects : attenuation fading interference MN

10 Why do we need Rate Adaptation? BPSK 1Mbps QPSK 2Mbps Best throughput BPSK/QPSK/CCK Different modulation schemes [5]

11 How to adjust the rate? Rate adaptation plays a critical role to the throughput performance Rate too high Loss ratio increases Rate too low under-utilize the capacity throughput decreases Ideally, the transmission rate should be adjusted according to the channel condition

12 How to estimate channel condition? SNR of the channel SNR of receiver no feedback in fluctuation of SNR sender Modified frame receiver Symmetric link Gauging how well the currently chosen rate performs (Statistics: transmission loss/success) not timely affected by random collisions (unnecessary downshift) easy to implement

13 Outline Introduction of Rate Adaptation in IEEE WLANs Existing Challenges Development of Rate Adaptation Algorithms Presentative old ones New Kids in this area My Opinion

14 Channel Dynamics Wireless channel exhibits rich channel dynamics in practical scenarios Random channel error Mobility-induced change Collisions induced by Hidden-terminals Multiple contending clients Random collision congestion

15 Channel Dynamics When should the transmission rate be updated? too quick: perform bad when channel conditions fluctuate acutely too slow: not in time (base on a relative long history) The algorithm should be adaptive

16 Equidistant Distribution Node Contention Effects: MN1 Collisions induced by: random backoff MN4 Access Point MN2 hidden terminal MN3

17 Equidistant Distribution- random collisions means: unnecessary downshift [1]

18 Equidistant Distribution- hidden terminal means: unnecessary downshift Hidden terminal broadcast packets at a mild rate of 0.379Mbps continuously while other nodes begin with 11Mbps [3]

19 Non-equidistant Distribution Nodes Diversity Effects: collisions hidden terminal channel diversity link capture MN4 Access Point MN1 MN2 fairness MN3

20 Non-equidistant Distribution- fairness Different kinds of fairness: throughput fairness time-share fairness In single-rate networks: equivalent In multi-rate networks: time-share fairness is the one to be concerned The poor-channel flows would consume more time and system resources

21 Outline Introduction of Rate Adaptation in IEEE WLANs Existing Challenges Development of Rate Adaptation Algorithms Presentative old ones New Kids in this area My Opinion

22 Rate Adaptation Algorithms List 1997 ARF RBAR 2002 OAR 2003 LA 2004 AARF MultiRateRetry AMRR 2005 ONOE LD-ARF SampleRate 2006 CARA RRAA 2007 AORA CHARM TBC

23 Classification of existing algorithms Information channel estimation depends on: Open-loop Closed-loop Local channel estimation LA CHARM AORA (idle slots) Packet transmission situation ARF AARF MMR AMRR ONOE LD-ARF(NACK) SampleRate CARA RRAA RTS CTS RBAR OAR CARA RRAA Beacon probe response CHARM (noise)

24 Classification of existing algorithms Rate Adaptation Processing: Estimation (channel conditions) Action (how to adjust) Which layer to use Which messages to use How to estimate sequential rate adjustment best rate adjustment PHY MAC hybrid signal data mapping calculate RBAR OAR ARF/AARF MMR/AMMR LD-ARF SamleRate CARARRAA AORAONOE LACHARM RBAR OAR CARA LD-ARF RRAA CHARM probe ARF/AARF MMR/AMMR LD-ARF SampleRate AORA CHARM No probe RRAA RBAR OAR LA CHARM deterministic statistical ARF AARF LD-ARF MRR ONOE CARA AMRR SampleRate RRAA AORA CHARM ARF AARF MRR AMRR ONOE LD-ARF CARA RRAA AORA RBAR LA SampleRate CHARM

25 Trend of rate adaptation algorithms easy to implement The One improve SNR not probe compliant is the every can obtained upshift Differentiate not react on 10 with frames based current on the Symmetric performance the real time reasons link, for channel Can which packet react situation Still networks is suffer not loss quickly to mobility from suffer accurate random Increasing from collision random load collisions Too at some sensitive level to probe failure Each algorithm has its own Achille s heel open-loop & statistics based: ARF close-loop & SNR based (rts/cts): RBAR/OAR statistics & SNR based & adaptive: LA statistics based & adaptive: AARF statistics based & adaptive & estimate transimission time for different rates: SampleRate statistics based & collisions avoid/detect: CARARRAA

26 Outline Introduction of Rate Adaptation in IEEE WLANs Existing Challenges Development of Rate Adaptation Algorithms Presentative old ones New Kids in this area My Opinion

27 Presentative old ones ARF RBAR OAR LA AARF SampleRate

28 ARF- How does it work? Use packet transmission situation to estimate the channel condition: If two consecutive ACK frames are not received correctly, the second retry and subsequent transmissions are done at a lower rate and a timer is started. When the number of successfully received ACKs reaches 10 or the timer goes off, a probe frame is sent at the next higher rate. However, if an ACK is NOT received for this frame, the rate is lowered back and the timer is restarted.

29 ARF- Does it work well? Advantages: Compliant with All things can be done by the sender Easy to implement Disadvantages: Suffer from random collisions and hidden terminals Constantly upshift try when channel condition is stable Rate can only be adjusted step by step

30 RBAR- How does it work? Receivers control sender s transmission rate: RTS and CTS are modified to contain info on size and rate. Uses analysis of RTS reception to estimate SNR and send choice back to sender in CTS. Receiver picks rate based on predefined SNR thresholds.

31 RBAR- Does it work well? Advantages: Rate can be adjusted according to the real time channel condition Do not need to adjust the rate step by step Will not suffer from random collisions and hidden terminals Disadvantages: not compatible (modified RTS/CTS) The rate-snr table is obtained based on a priori channel mode SNR is not easy to get (most WLAN cards only have RSSI) RTS/CTS is seldom used (only when the frame is too large ) RTS/CTS introduce extra load

32 OAR- How does it work? Make full use of coherence times, provide time-share fairness: Improvement based on RBAR. Coherence times are durations for which mobile stations have better-than-average channels. The poor-channel flows would consume more time and system resources Grant the user during a coherence time a channel access time that allows multiple packet transmissions (Fragment mechanism in ).

33 OAR- Does it work well? Advantages: Nodes with good channels can send more packets while providing time-share fairness to all the nodes The same as RBAR Disadvantages: The same as RBAR

34 LA- How does it work? Assume that the channel is symmetric: Use RSSI to approximate SNR. Use SNR of the sender to approximate SNR of the receiver. Each node maintains 12 dynamic RSS thresholds. The thresholds are updated depending on whether the transmission is successful. Rate selection is based on both the RSS thresholds and number of retransmission attempts.

35 LA- Does it work well? Advantages: compatible. RSSI is much more easy to get. Rate can be adjusted according to the real time channel condition. Do not need to adjust the rate step by step. Can adjust the rate during network congestion. Disadvantages: The symmetric assumption is dubitable. RSSI is quite different from SNR. suffer from random collisions and hidden terminals.

36 AARF- How does it work? Dynamic adjust the upshift threshold of ARF: Improvement based on ARF. To fix one existing problem of ARF (Constantly upshift try when channel condition is stable) ARF AARF

37 AARF- Does it work well? Advantages: Compliant with All things can be done by the sender Easy to implement Disadvantages: Suffer from random collisions and hidden terminals Rate can only be adjusted step by step When channel condition gets better quickly it can not react quickly on it

38 SampleRate- How does it work? Select rate by statistic information about the transmission time for each rate: maintain the expected transmission time for each rate and update it after each transmission. (wnd=1s--10s) A frame is transmitted at the rate that currently has the smallest expected transmission time. sends one probe packet at another randomly selected rate every 10 frames. Downshift its rate every 4 consecutive transmission failure.

39 SampleRate- Does it work well? Advantages: React quickly to mobility Do not always need to adjust the rate step by step Compliant with Disadvantages: suffer from random collisions and hidden terminals (time window) Can be very sensitive to probe failure

40 Outline Introduction of Rate Adaptation in IEEE WLANs Existing Challenges Development of Rate Adaptation Algorithms Presentative old ones New Kids in this area My Opinion

41 New Kids in this area CARA - Collision Aware Rate Adaptation RRAA Robust Rate Adaptation Algorithm

42 CARA- the key idea The primary contribution is to differentiate frame collisions from frame transmission failures caused by channel error. focus on rate down only, rate up is the same as that of ARF Two methods for identifying collisions: Adaptive RTS probing Identifying collision via CCA detection

43 CARA- Adaptive RTS Probing Assumptions: All RTS transmission failures are due to collisions. Transmission failure after RTS/CTS must be due to channel errors. To reduce the signaling overhead, RTS probing that enables an RTS/CTS exchange ONLY when a data frame transmission fails.

44 CARA-with default RTS Probing Data frame transmitted without RTS/ CTS. If the transmission fails, RTS/CTS exchange is activated for the next retransmission. If this one fails again, then the rate is lowered. If retransmission is successful, stay at the same rate and send next frame without RTS/CTS.

45 CARA Identifying collision via CCA detection If the wireless channel is busy while the expected ACK reception dose not start, the station conclude that a collision has just happened to its data transmission. A transmission failure detected by CCA to be a collision will not cause a RTS Probing [2]

46 CARA- Performance evaluation 1 CARA-1: CARA with only default RTS Probing RTS/CTS: ARF scheme using RTS/CTS all the time [2]

47 CARA- Performance evaluation 2 CARA-1: with only default RTS Probing CARA-2: with both default RTS Probing and CCA detecion [2]

48 CARA-existing problems When the channel condition is so bad that even the RTS can not be sent CARA will be stuck there The network congestion can not be sensed, in which situation the rate should be downshifted when hidden terminals exist, it suffers from the drawback of RTS oscillation, which alternates on and off for RTS.

49 RRAA- the key idea Short-term statistics to handle random loss mobility drastic changes Adaptive RTS to handle collision

50 RRAA- loss estimation Instead of single probe frame. Uses a loss estimation window and computes the estimated loss ratio over the window (20-100ms). Uses upper and lower loss threshold for each rate and estimated loss ratio to decide when to switch rates. Otherwise, retain the current rate and continue sliding window

51 RRAA- Critical Loss Ratio (P*) For any rate R, let the next lower rate be R_ and the next higher rate be R+. With a loss ratio of P*, the throughput at R becomes the same as the loss-free throughput at R_.

52 RRAA- P MTL and P ORI We set P MTL = αp*(r), α 1 Decrease the rate when expected throughput is more than P MTL α = 1.25>1, to anticipate certain level of losses at R_ P ORI = P MTL (R+) / 2 increase the rate when expected throughput is less than P ORI The loss ratio at the current rate R has to be small enough such that the rate increase not quickly jump back to R

53 RRAA- Rate change loss ratio thresholds: [3]

54 RRAA- Adaptive RTS Filter Selective use of RTS/CTS Tradeoff between overhead and benefits of RTS RTSwnd (RTScounter) RTSwnd is initially set to be 0. Window is increased by one when last frame lost without RTS (potentially due to a collision) When the last frame was lost with RTS or succeeded without RTS, RTSwnd is halved (assume no collision involved).

55 RRAA- Adaptive RTS Example Collision may occur No collision More packets are sent with RTS if the collision level is high

56 RRAA- Performance evaluation Compared with ARFAARFSampleRate Static client case: Throughput gains 0.3% ~ 67.4% Mobile client case Throughput gains 10.0% ~ 27.6% Hidden-station case Throughput gains 74% ~ 101% [3]

57 RRAA- existing problems How to decide the window size under different situation The network congestion can not be sensed, when turn on RTS/CTS [3]

58 Outline Introduction of Rate Adaptation in IEEE WLANs Existing Challenges Development of Rate Adaptation Algorithms Presentative old ones New Kids in this area My Opinion

59 My Opinion The ability to differentiate the reasons for a frame loss. Link error (SNR) Random collisions/hidden terminals Network congestion (available bandwidth? CCA? Idle slots?) The speed of the adaptation (be adaptive in different situation? What happens when introduce handoffs here?) The interaction between link-layer rate adaptation and high-layer (TCP) rate adaptation An Evaluation model

60 Thanks Questions?

CARA: Collision-Aware Rate Adaptation for IEEE WLANs

CARA: Collision-Aware Rate Adaptation for IEEE WLANs : Collision-Aware Rate Adaptation for IEEE 802.11 WLANs J.Kim, S. Kim, S. Choi and D.Qiao INFOCOM 2006 Barcelona, Spain Presenter - Bob Kinicki Advanced Computer Networks Fall 2007 Background Related Work

More information

CARA: Collision-Aware Rate Adaptation for IEEE WLANs. Presented by Eric Wang

CARA: Collision-Aware Rate Adaptation for IEEE WLANs. Presented by Eric Wang CARA: Collision-Aware Rate Adaptation for IEEE 802.11 WLANs Presented by Eric Wang 1 Outline Introduction Related Work Preliminaries CARA Performance Evaluation Conclusion and Future Work 2 Basic CSMA/CA

More information

IEEE Consumer Communications & Networking Conference (CCNC) 2008, Las Vegas, USA

IEEE Consumer Communications & Networking Conference (CCNC) 2008, Las Vegas, USA RARA: Rate Adaptation Using Rate-adaptive adaptive Acknowledgment for IEEE 802.11 WLANs IEEE Consumer Communications & Networking Conference (CCNC) 2008, Las Vegas, USA 정하경 Hakyung Jung School of Computer

More information

Rate Adaptation in

Rate Adaptation in Rate Adaptation in 802.11 SAMMY KUPFER Outline Introduction Intuition Basic techniques Techniques General Designs Robust Rate Adaptation for 802.11 (2006) Efficient Channel aware Rate Adaptation in Dynamic

More information

Transport layer issues

Transport layer issues Transport layer issues Dmitrij Lagutin, dlagutin@cc.hut.fi T-79.5401 Special Course in Mobility Management: Ad hoc networks, 28.3.2007 Contents Issues in designing a transport layer protocol for ad hoc

More information

Robust Rate Adaptation for Wireless Networks

Robust Rate Adaptation for Wireless Networks Robust Rate Adaptation for 82.11 Wireless Networks Starsky H.Y. Wong 1, Hao Yang 2, Songwu Lu 1 and Vaduvur Bharghavan 3 Dept. of Computer Science, UCLA, 4732 Boelter Hall, Los Angeles, CA 925 1 IBM T.J.

More information

A HIGH TCP PERFORMANCE RATE ADAPTATION ALGORITHM FOR IEEE NETWORKS

A HIGH TCP PERFORMANCE RATE ADAPTATION ALGORITHM FOR IEEE NETWORKS A HIGH TCP PERFORMANCE RATE ADAPTATION ALGORITHM FOR IEEE 802.11 NETWORKS Kehao Zhang 1, Alvin Lim 1, Shaoen Wu 2 and Qing Yang 1 1 Department of Computer Science and Software Engineering, Auburn University,

More information

Outline. Wireless Channel Characteristics. Multi-path Fading. Opportunistic Communication - with a focus on WLAN environments -

Outline. Wireless Channel Characteristics. Multi-path Fading. Opportunistic Communication - with a focus on WLAN environments - Outline Opportunistic Communication - with a focus on WLAN environments - Jong-won Lee 2006. 02.20. Background? Wireless Channels? Opportunistic communication? Examples? Basics of WLAN Previous Works?

More information

ISSN: [Datta * et al., 7(4): April, 2018] Impact Factor: 5.164

ISSN: [Datta * et al., 7(4): April, 2018] Impact Factor: 5.164 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY RATE ADAPTATION TECHNIQUES IN WIRELESS NETWORKS (WLAN) Vishnu Datta* *DIPR, DRDO, Ministry of Defence DOI: 10.5281/zenodo.1228656

More information

Loss Differentiated Rate Adaptation in Wireless Networks

Loss Differentiated Rate Adaptation in Wireless Networks Loss Differentiated Rate Adaptation in Wireless Networks Shaoen Wu, Saâd Biaz {wushaoe,sbiaz}@eng.auburn.edu Auburn University Dept. of Computer Science and Software Engineering 17 Dunstan Hall, Auburn

More information

Lecture 16: QoS and "

Lecture 16: QoS and Lecture 16: QoS and 802.11" CSE 123: Computer Networks Alex C. Snoeren HW 4 due now! Lecture 16 Overview" Network-wide QoS IntServ DifServ 802.11 Wireless CSMA/CA Hidden Terminals RTS/CTS CSE 123 Lecture

More information

4.3 IEEE Physical Layer IEEE IEEE b IEEE a IEEE g IEEE n IEEE 802.

4.3 IEEE Physical Layer IEEE IEEE b IEEE a IEEE g IEEE n IEEE 802. 4.3 IEEE 802.11 Physical Layer 4.3.1 IEEE 802.11 4.3.2 IEEE 802.11b 4.3.3 IEEE 802.11a 4.3.4 IEEE 802.11g 4.3.5 IEEE 802.11n 4.3.6 IEEE 802.11ac,ad Andreas Könsgen Summer Term 2012 4.3.3 IEEE 802.11a Data

More information

B. Bellalta Mobile Communication Networks

B. Bellalta Mobile Communication Networks IEEE 802.11e : EDCA B. Bellalta Mobile Communication Networks Scenario STA AP STA Server Server Fixed Network STA Server Upwnlink TCP flows Downlink TCP flows STA AP STA What is the WLAN cell performance

More information

Page 1. EEC173B/ECS152C, Spring Wireless Mesh Networks. Wireless LAN or Cellular Networks. Introduction Flow Control Issues Rate Adaptation

Page 1. EEC173B/ECS152C, Spring Wireless Mesh Networks. Wireless LAN or Cellular Networks. Introduction Flow Control Issues Rate Adaptation EEC173B/ECS152C, Spring 2009 Wireless LAN or Cellular Networks Wireless Mesh Networks Introduction Flow Control Issues Rate Adaptation Access point Infrastructure Network (Internet) PSTN Network Base station

More information

Mohamed Khedr.

Mohamed Khedr. Mohamed Khedr http://webmail.aast.edu/~khedr Tentatively Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week 13 Week 14 Week 15 Overview Packet Switching IP addressing

More information

Multiple Access Links and Protocols

Multiple Access Links and Protocols Multiple Access Links and Protocols Two types of links : point-to-point PPP for dial-up access point-to-point link between Ethernet switch and host broadcast (shared wire or medium) old-fashioned Ethernet

More information

Data Communications. Data Link Layer Protocols Wireless LANs

Data Communications. Data Link Layer Protocols Wireless LANs Data Communications Data Link Layer Protocols Wireless LANs Wireless Networks Several different types of communications networks are using unguided media. These networks are generally referred to as wireless

More information

6.9 Summary. 11/20/2013 Wireless and Mobile Networks (SSL) 6-1. Characteristics of selected wireless link standards a, g point-to-point

6.9 Summary. 11/20/2013 Wireless and Mobile Networks (SSL) 6-1. Characteristics of selected wireless link standards a, g point-to-point Chapter 6 outline 6.1 Introduction Wireless 6.2 Wireless links, characteristics CDMA 6.3 IEEE 802.11 wireless LANs ( wi-fi ) 6.4 Cellular Internet Access architecture standards (e.g., GSM) Mobility 6.5

More information

Lecture 12 December 04, Wireless Access. Graduate course in Communications Engineering. University of Rome La Sapienza. Rome, Italy

Lecture 12 December 04, Wireless Access. Graduate course in Communications Engineering. University of Rome La Sapienza. Rome, Italy Lecture 12 December 04, 2017 Wireless Access Graduate course in Communications Engineering University of Rome La Sapienza Rome, Italy 2017-2018 Random Medium Access Control Part II - CSMA and Collision

More information

Experimental Study on the Performance of Rate Adaptation Algorithm in IEEE g Networks

Experimental Study on the Performance of Rate Adaptation Algorithm in IEEE g Networks Experimental Study on the Performance of Rate Adaptation Algorithm in IEEE 802.11g Networks by Dong Xia A thesis submitted to the Victoria University of Wellington in fulfilment of the requirements for

More information

Medium Access Control (MAC) Protocols for Ad hoc Wireless Networks -IV

Medium Access Control (MAC) Protocols for Ad hoc Wireless Networks -IV Medium Access Control (MAC) Protocols for Ad hoc Wireless Networks -IV CS: 647 Advanced Topics in Wireless Networks Drs. Baruch Awerbuch & Amitabh Mishra Department of Computer Science Johns Hopkins University

More information

Modeling and Simulating Packet Dispersion in Wireless Networks

Modeling and Simulating Packet Dispersion in Wireless Networks Worcester Polytechnic Institute Digital WPI Computer Science Faculty Publications Department of Computer Science 6 Modeling and Simulating Packet Dispersion in Wireless 8. Networks Mingzhe Li Worcester

More information

Experimental Performance Evaluation of Bit-Rate Selection Algorithms in Multi-Vehicular Networks

Experimental Performance Evaluation of Bit-Rate Selection Algorithms in Multi-Vehicular Networks Experimental Performance Evaluation of Bit-Rate Selection Algorithms in Multi-Vehicular Networks by Giyeong Son A thesis presented to the University of Waterloo in fulfillment of the thesis requirement

More information

Multiple Access in Cellular and Systems

Multiple Access in Cellular and Systems Multiple Access in Cellular and 802.11 Systems 1 GSM The total bandwidth is divided into many narrowband channels. (200 khz in GSM) Users are given time slots in a narrowband channel (8 users) A channel

More information

Wireless Networking & Mobile Computing

Wireless Networking & Mobile Computing Wireless Networking & Mobile Computing CS 752/852 - Spring 2012 Lec #4: Medium Access Control - II Tamer Nadeem Dept. of Computer Science IEEE 802.11 Standards Page 2 Spring 2012 CS 752/852 - Wireless

More information

ICE 1332/0715 Mobile Computing (Summer, 2008)

ICE 1332/0715 Mobile Computing (Summer, 2008) ICE 1332/0715 Mobile Computing (Summer, 2008) Medium Access Control Prof. Chansu Yu http://academic.csuohio.edu/yuc/ Simplified Reference Model Application layer Transport layer Network layer Data link

More information

Wireless Medium Access Control Protocols

Wireless Medium Access Control Protocols Wireless Medium Access Control Protocols Telecomunicazioni Undergraduate course in Electrical Engineering University of Rome La Sapienza Rome, Italy 2007-2008 Classification of wireless MAC protocols Wireless

More information

Wireless LANs. ITS 413 Internet Technologies and Applications

Wireless LANs. ITS 413 Internet Technologies and Applications Wireless LANs ITS 413 Internet Technologies and Applications Aim: Aim and Contents Understand how IEEE 802.11 wireless LANs work Understand what influences the performance of wireless LANs Contents: IEEE

More information

Computer Communication III

Computer Communication III Computer Communication III Wireless Media Access IEEE 802.11 Wireless LAN Advantages of Wireless LANs Using the license free ISM band at 2.4 GHz no complicated or expensive licenses necessary very cost

More information

MAC in /20/06

MAC in /20/06 MAC in 802.11 2/20/06 MAC Multiple users share common medium. Important issues: Collision detection Delay Fairness Hidden terminals Synchronization Power management Roaming Use 802.11 as an example to

More information

Wireless Networks. CSE 3461: Introduction to Computer Networking Reading: , Kurose and Ross

Wireless Networks. CSE 3461: Introduction to Computer Networking Reading: , Kurose and Ross Wireless Networks CSE 3461: Introduction to Computer Networking Reading: 6.1 6.3, Kurose and Ross 1 Wireless Networks Background: Number of wireless (mobile) phone subscribers now exceeds number of wired

More information

Department of Electrical and Computer Systems Engineering

Department of Electrical and Computer Systems Engineering Department of Electrical and Computer Systems Engineering Technical Report MECSE-6-2006 Medium Access Control (MAC) Schemes for Quality of Service (QoS) provision of Voice over Internet Protocol (VoIP)

More information

SENSOR-MAC CASE STUDY

SENSOR-MAC CASE STUDY SENSOR-MAC CASE STUDY Periodic Listen and Sleep Operations One of the S-MAC design objectives is to reduce energy consumption by avoiding idle listening. This is achieved by establishing low-duty-cycle

More information

Media Access Control in Ad Hoc Networks

Media Access Control in Ad Hoc Networks Media Access Control in Ad Hoc Networks The Wireless Medium is a scarce precious resource. Furthermore, the access medium is broadcast in nature. It is necessary to share this resource efficiently and

More information

MAC. Fall Data Communications II 1

MAC. Fall Data Communications II 1 802.11 MAC Fall 2005 91.564 Data Communications II 1 RF Quality (ACK) Fall 2005 91.564 Data Communications II 2 Hidden Terminal (RTS/CTS) Fall 2005 91.564 Data Communications II 3 MAC Coordination Functions

More information

L3: SampleRate (Chapter 3)

L3: SampleRate (Chapter 3) COS-598A, Spring 2017, Kyle Jamieson L3: SampleRate (Chapter 3) Indoor Network Measurements 45-node indoor wireless testbed Mesh topology Linux Soekris router with Atheros 802.11a/b/g card RTS/CTS protocol

More information

Wireless MACs: MACAW/802.11

Wireless MACs: MACAW/802.11 Wireless MACs: MACAW/802.11 Mark Handley UCL Computer Science CS 3035/GZ01 Fundamentals: Spectrum and Capacity A particular radio transmits over some range of frequencies; its bandwidth, in the physical

More information

Strengthening Unlicensed Band Wireless Backhaul

Strengthening Unlicensed Band Wireless Backhaul be in charge Strengthening Unlicensed Band Wireless Backhaul Use TDD/TDMA Based Channel Access Mechanism WHITE PAPER Strengthening Unlicensed Band Wireless Backhaul: Use TDD/TDMA Based Channel Access Mechanism

More information

Survey Topic: WiFi On The Move Presented by - Abhinav Tekumalla (atekumal) Bahula Gupta (bahulag)

Survey Topic: WiFi On The Move Presented by - Abhinav Tekumalla (atekumal) Bahula Gupta (bahulag) Outline Survey Topic: WiFi On The Move Presented by - Abhinav Tekumalla (atekumal) Bahula Gupta (bahulag) WiFi on the move : Challenges VanLAN ViFi Cabernet HSPDA/ WiMax WiFi on the move Providing WiFi

More information

Enhancing the DCF mechanism in noisy environment

Enhancing the DCF mechanism in noisy environment Enhancing the DCF mechanism in noisy environment 1 LICP EA 2175 Université de Cergy-Pontoise 3 Av Adolph Chauvin 9532 Cergy-Pontoise France Email: {adlen.ksentini, mohamed.naimi}@dept-info.u-cergy.fr Adlen

More information

Topic 2b Wireless MAC. Chapter 7. Wireless and Mobile Networks. Computer Networking: A Top Down Approach

Topic 2b Wireless MAC. Chapter 7. Wireless and Mobile Networks. Computer Networking: A Top Down Approach Topic 2b Wireless MAC Chapter 7 Wireless and Mobile Networks Computer Networking: A Top Down Approach 7 th edition Jim Kurose, Keith Ross Pearson/Addison Wesley April 2016 7-1 Ch. 7: Background: # wireless

More information

ECS-087: Mobile Computing

ECS-087: Mobile Computing ECS-087: Mobile Computing TCP over wireless TCP and mobility Most of the Slides borrowed from Prof. Sridhar Iyer s lecture IIT Bombay Diwakar Yagyasen 1 Effect of Mobility on Protocol Stack Application:

More information

Throughput Enabled Rate Adaptation in Wireless Networks

Throughput Enabled Rate Adaptation in Wireless Networks Throughput Enabled Rate Adaptation in Wireless Networks Duy Nguyen, J.J. Garcia-Luna-Aceves Computer Engineering Department University of California, Santa Cruz, CA 95064, USA Email: duy, jj, cedric @soe.ucsc.edu

More information

A Measurement Study of Multiplicative Overhead Effects in Wireless Networks

A Measurement Study of Multiplicative Overhead Effects in Wireless Networks A Measurement Study of Multiplicative Overhead Effects in Wireless Joseph Camp, Vincenzo Mancuso, Omer Gurewitz, and Edward W. Knightly INFOCOM 2008 http://networks.rice.edu System: Large-scale, Multi-tier

More information

Computer Networks. Wireless LANs

Computer Networks. Wireless LANs Computer Networks Wireless LANs Mobile Communication Technology according to IEEE (examples) Local wireless networks WLAN 802.11 Personal wireless nw WPAN 802.15 WiFi 802.11a 802.11b 802.11h 802.11i/e/

More information

Wireless and Mobile Networks 7-2

Wireless and Mobile Networks 7-2 Wireless and Mobile Networks EECS3214 2018-03-26 7-1 Ch. 6: Wireless and Mobile Networks Background: # wireless (mobile) phone subscribers now exceeds # wired phone subscribers (5-to-1)! # wireless Internet-connected

More information

CMPE 257: Wireless and Mobile Networking

CMPE 257: Wireless and Mobile Networking CMPE 257: Wireless and Mobile Networking Katia Obraczka Computer Engineering UCSC Baskin Engineering Lecture 10 CMPE 257 Spring'15 1 Student Presentations Schedule May 21: Sam and Anuj May 26: Larissa

More information

CS 43: Computer Networks. 27: Media Access Contd. December 3, 2018

CS 43: Computer Networks. 27: Media Access Contd. December 3, 2018 CS 43: Computer Networks 27: Media Access Contd. December 3, 2018 Last Class The link layer provides lots of functionality: addressing, framing, media access, error checking could be used independently

More information

Cisco Cooperative Project. Coexistence of WiFi and LAA: Detection Thresholds. Students: Li Li Advisors: Len Cimini, Chien-Chung Shen

Cisco Cooperative Project. Coexistence of WiFi and LAA: Detection Thresholds. Students: Li Li Advisors: Len Cimini, Chien-Chung Shen Cisco Cooperative Project Coexistence of WiFi and LAA: Detection Thresholds Students: Li Li Advisors: Len Cimini, Chien-Chung Shen Nov. 12, 2015 Outline Problem Review Performance of Delay A problem in

More information

Lecture 24: CSE 123: Computer Networks Stefan Savage. HW4 due NOW

Lecture 24: CSE 123: Computer Networks Stefan Savage. HW4 due NOW Lecture 24: 802.11 CSE 123: Computer Networks Stefan Savage HW4 due NOW About the final Similar in style to midterm Some combination of easy questions, short answer and more in-depth questions Sample final

More information

Evaluation of adaptive rate control scheme for ad-hoc networks in fading environments

Evaluation of adaptive rate control scheme for ad-hoc networks in fading environments Evaluation of adaptive rate control scheme for ad-hoc networks in fading environments Katsuhiro Naito, Kazuo Mori, and Hideo Kobayashi Graduate School of Engineering, Mie University Tsu, Mie, Japan, 514-857

More information

Lecture 25: CSE 123: Computer Networks Alex C. Snoeren. HW4 due NOW

Lecture 25: CSE 123: Computer Networks Alex C. Snoeren. HW4 due NOW Lecture 25: 802.11 CSE 123: Computer Networks Alex C. Snoeren HW4 due NOW Lecture 25 Overview 802.11 Wireless PHY layer overview Hidden Terminals Basic wireless challenge RTS/CTS Virtual carrier sense

More information

Outline. Lecture 16: Wireless Networking. Physical Layer (Layer 1) Ethernet: Wireless is Different. Attenuation Over Space

Outline. Lecture 16: Wireless Networking. Physical Layer (Layer 1) Ethernet: Wireless is Different. Attenuation Over Space Outline Lecture 16: Wireless Networking Wireless physical layer challenges - Signal, noise, modulation - A little bit of EE goes a long way Wireless link layers - Hidden terminals, exposed terminals -

More information

A Practical SNR-Guided Rate Adaptation

A Practical SNR-Guided Rate Adaptation A Practical SNR-Guided Rate Adaptation Jiansong Zhang Kun Tan Jun Zhao Haitao Wu Yongguang Zhang Microsoft Research Asia, Beijing, China {jiazhang, kuntan, junzhao, hwu, ygz}@microsoft.com Abstract Rate

More information

Mobile & Wireless Networking. Lecture 7: Wireless LAN

Mobile & Wireless Networking. Lecture 7: Wireless LAN 192620010 Mobile & Wireless Networking Lecture 7: Wireless LAN [Schiller, Section 7.3] [Reader, Part 6] [Optional: "IEEE 802.11n Development: History, Process, and Technology", Perahia, IEEE Communications

More information

Impact of transmission errors on TCP performance. Outline. Random Errors

Impact of transmission errors on TCP performance. Outline. Random Errors Impact of transmission errors on TCP performance 1 Outline Impact of transmission errors on TCP performance Approaches to improve TCP performance Classification Discussion of selected approaches 2 Random

More information

Performance Testing of Rate Adaptation Algorithms in WLANs

Performance Testing of Rate Adaptation Algorithms in WLANs HELSINKI UNIVERSITY OF TECHNOLOGY Department of Electrical and Communications Engineering Communications Laboratory Performance Testing of Rate Adaptation Algorithms in WLANs Muhammad Sohail Khan Masters

More information

Implementation and experimental study of rate adaptation algorithms in IEEE wireless networks

Implementation and experimental study of rate adaptation algorithms in IEEE wireless networks Graduate Theses and Dissertations Graduate College 2009 Implementation and experimental study of rate adaptation algorithms in IEEE 802.11 wireless networks Prateek Gangwal Iowa State University Follow

More information

GORA: Goodput Optimal Rate Adaptation for using Medium Status Estimation

GORA: Goodput Optimal Rate Adaptation for using Medium Status Estimation GORA: Goodput Optimal Rate Adaptation for 8.11 using Medium Status Estimation Nicola Baldo, Federico Maguolo, Simone Merlin, Andrea Zanella, Michele Zorzi,, Diego Melpignano, David Siorpaes Department

More information

CSE 461: Wireless Networks

CSE 461: Wireless Networks CSE 461: Wireless Networks Wireless IEEE 802.11 A physical and multiple access layer standard for wireless local area networks (WLAN) Ad Hoc Network: no servers or access points Infrastructure Network

More information

Collisions & Virtual collisions in IEEE networks

Collisions & Virtual collisions in IEEE networks Collisions & Virtual collisions in IEEE 82.11 networks Libin Jiang EE228a project report, Spring 26 Abstract Packet collisions lead to performance degradation in IEEE 82.11 [1] networks. The carrier-sensing

More information

Advanced Computer Networks WLAN

Advanced Computer Networks WLAN Advanced Computer Networks 263 3501 00 WLAN Patrick Stuedi Spring Semester 2014 1 Oriana Riva, Department of Computer Science ETH Zürich Last week Outlook Medium Access COPE Short Range Wireless Networks:

More information

Medium Access Control. MAC protocols: design goals, challenges, contention-based and contention-free protocols

Medium Access Control. MAC protocols: design goals, challenges, contention-based and contention-free protocols Medium Access Control MAC protocols: design goals, challenges, contention-based and contention-free protocols 1 Why do we need MAC protocols? Wireless medium is shared Many nodes may need to access the

More information

Rahman 1. Application

Rahman 1. Application Data Link layer Overview of IEEE 802.11 Application Presentation Session Transport LLC: On transmission, assemble data into a frame with address and CRC fields. On reception, disassemble frame, perform

More information

CSCD 433 Network Programming Fall Lecture 7 Ethernet and Wireless

CSCD 433 Network Programming Fall Lecture 7 Ethernet and Wireless CSCD 433 Network Programming Fall 2016 Lecture 7 Ethernet and Wireless 802.11 1 Topics 802 Standard MAC and LLC Sublayers Review of MAC in Ethernet MAC in 802.11 Wireless 2 IEEE Standards In 1985, Computer

More information

Intelligent Transportation Systems. Medium Access Control. Prof. Dr. Thomas Strang

Intelligent Transportation Systems. Medium Access Control. Prof. Dr. Thomas Strang Intelligent Transportation Systems Medium Access Control Prof. Dr. Thomas Strang Recap: Wireless Interconnections Networking types + Scalability + Range Delay Individuality Broadcast o Scalability o Range

More information

A Rate Adaptation Algorithm for IEEE WLANs Based on MAC-Layer Loss Differentiation

A Rate Adaptation Algorithm for IEEE WLANs Based on MAC-Layer Loss Differentiation A Rate Adaptation Algorithm for IEEE 8. WLANs Based on MAC-Layer Loss Differentiation Qixiang Pang, Victor C.M. Leung Department of Electrical and Computer Engineering The University of British Columbia

More information

Adap%ng to the Wireless Channel II: SampleWidth

Adap%ng to the Wireless Channel II: SampleWidth Adap%ng to the Wireless Channel II: SampleWidth M038/GZ06 Mobile and Adap-ve Systems Kyle Jamieson Lecture 8 Department of Computer Science University College London 1 Outline A Case for Adap%ng Channel

More information

IEEE , Token Rings. 10/11/06 CS/ECE UIUC, Fall

IEEE , Token Rings. 10/11/06 CS/ECE UIUC, Fall IEEE 802.11, Token Rings 10/11/06 CS/ECE 438 - UIUC, Fall 2006 1 Medium Access Control Wireless channel is a shared medium Need access control mechanism to avoid interference Why not CSMA/CD? 10/11/06

More information

Topics. Link Layer Services (more) Link Layer Services LECTURE 5 MULTIPLE ACCESS AND LOCAL AREA NETWORKS. flow control: error detection:

Topics. Link Layer Services (more) Link Layer Services LECTURE 5 MULTIPLE ACCESS AND LOCAL AREA NETWORKS. flow control: error detection: 1 Topics 2 LECTURE 5 MULTIPLE ACCESS AND LOCAL AREA NETWORKS Multiple access: CSMA/CD, CSMA/CA, token passing, channelization LAN: characteristics, i basic principles i Protocol architecture Topologies

More information

IEEE MAC Sublayer (Based on IEEE )

IEEE MAC Sublayer (Based on IEEE ) IEEE 802.11 MAC Sublayer (Based on IEEE 802.11-1999) Wireless Networking Sunghyun Choi, Associate Professor Multimedia & Wireless Networking Lab. (MWNL) School of Electrical Engineering Seoul National

More information

Embedded Internet and the Internet of Things WS 12/13

Embedded Internet and the Internet of Things WS 12/13 Embedded Internet and the Internet of Things WS 12/13 4. MAC Protocols Prof. Dr. Mesut Güneş Distributed, embedded Systems (DES) Institute of Computer Science Freie Universität Berlin Prof. Dr. Mesut Güneş

More information

Cross-Layer Wireless Bit Rate Adaptation

Cross-Layer Wireless Bit Rate Adaptation Cross-Layer Wireless Bit Rate Adaptation Mythili Vutukuru and Hari Balakrishnan MIT CSAIL {mythili,hari}@csail.mit.edu Kyle Jamieson University College London k.jamieson@cs.ucl.ac.uk ABSTRACT This paper

More information

CSC 4900 Computer Networks: Wireless Networks

CSC 4900 Computer Networks: Wireless Networks CSC 4900 Computer Networks: Wireless Networks Professor Henry Carter Fall 2017 Last Time Mobile applications are taking off! What about current platforms is fueling this? How are an application s permission

More information

TMMAC: A TDMA Based Multi-Channel MAC Protocol using a Single. Radio Transceiver for Mobile Ad Hoc Networks

TMMAC: A TDMA Based Multi-Channel MAC Protocol using a Single. Radio Transceiver for Mobile Ad Hoc Networks : A TDMA Based Multi-Channel MAC Protocol using a Single Radio Transceiver for Mobile Ad Hoc Networks Jingbin Zhang, Gang Zhou, Chengdu Huang, Ting Yan, Sang H. Son, John A. Stankovic Department of Computer

More information

6.033 Spring 2015 Lecture #11: Transport Layer Congestion Control Hari Balakrishnan Scribed by Qian Long

6.033 Spring 2015 Lecture #11: Transport Layer Congestion Control Hari Balakrishnan Scribed by Qian Long 6.033 Spring 2015 Lecture #11: Transport Layer Congestion Control Hari Balakrishnan Scribed by Qian Long Please read Chapter 19 of the 6.02 book for background, especially on acknowledgments (ACKs), timers,

More information

Rate Adaptation with NAK-Aided Loss Differentiation in Wireless Networks

Rate Adaptation with NAK-Aided Loss Differentiation in Wireless Networks Rate Adaptation with AK-Aided Loss Differentiation in 802.11 Wireless etworks Anne. gugi, uanzhu Peter Chen andqingli Computer Science Department Memorial University of ewfoundland St. John s, Canada School

More information

standard. Acknowledgement: Slides borrowed from Richard Y. Yale

standard. Acknowledgement: Slides borrowed from Richard Y. Yale 802.11 standard Acknowledgement: Slides borrowed from Richard Y. Yang @ Yale IEEE 802.11 Requirements Design for small coverage (e.g. office, home) Low/no mobility High data rate applications Ability to

More information

A Rate-adaptive MAC Protocol Based on TCP Throughput for Ad Hoc Networks in fading channels

A Rate-adaptive MAC Protocol Based on TCP Throughput for Ad Hoc Networks in fading channels A Rate-adaptive MAC Protocol Based on TCP Throughput for Ad Hoc Networks in fading channels Shoko Uchida, Katsuhiro Naito, Kazuo Mori, and Hideo Kobayashi Department of Electrical and Electronic Engineering,

More information

Last Lecture: Data Link Layer

Last Lecture: Data Link Layer Last Lecture: Data Link Layer 1. Design goals and issues 2. (More on) Error Control and Detection 3. Multiple Access Control (MAC) 4. Ethernet, LAN Addresses and ARP 5. Hubs, Bridges, Switches 6. Wireless

More information

An Efficient Rate-Adaptive MAC for IEEE

An Efficient Rate-Adaptive MAC for IEEE An Efficient Rate-Adaptive MAC for IEEE 802.11 Yuanzhu Peter Chen 1, Jian Zhang 2, and Anne N. Ngugi 1 1 Department of Computer Science, Memorial University of Newfoundland, Canada 2 CAIP, Rutgers University,

More information

Logical Link Control (LLC) Medium Access Control (MAC)

Logical Link Control (LLC) Medium Access Control (MAC) Overview of IEEE 802.11 Data Link layer Application Presentation Session Transport LLC: On transmission, assemble data into a frame with address and CRC fields. On reception, disassemble frame, perform

More information

Multi-Rated Packet Transmission Scheme for IEEE WLAN Networks

Multi-Rated Packet Transmission Scheme for IEEE WLAN Networks Multi-Rated Packet Transmission Scheme for IEEE 802.11 WLAN Networks Namgi Kim Telecommunication R&D Center, Samsung Electronics, 416, Maetan-3, Youngtong, Suwon, Kyounggi, 442-600, Korea namgi.kim@samsung.com

More information

Introduction to IEEE

Introduction to IEEE Introduction to IEEE 802.11 Characteristics of wireless LANs Advantages very flexible within the reception area Ad hoc networks without previous planning possible (almost) no wiring difficulties more robust

More information

TCP over Wireless. Protocols and Networks Hadassah College Spring 2018 Wireless Dr. Martin Land 1

TCP over Wireless. Protocols and Networks Hadassah College Spring 2018 Wireless Dr. Martin Land 1 TCP over Wireless Protocols and Networks Hadassah College Spring 218 Wireless Dr. Martin Land 1 Classic TCP-Reno Ideal operation in-flight segments = cwnd (send cwnd without stopping) Cumulative ACK for

More information

CS 43: Computer Networks Media Access. Kevin Webb Swarthmore College November 30, 2017

CS 43: Computer Networks Media Access. Kevin Webb Swarthmore College November 30, 2017 CS 43: Computer Networks Media Access Kevin Webb Swarthmore College November 30, 2017 Multiple Access Links & Protocols Two classes of links : point-to-point dial-up access link between Ethernet switch,

More information

Rate Adaptation in Congested Wireless Networks through Real-Time Measurements

Rate Adaptation in Congested Wireless Networks through Real-Time Measurements 1 Rate Adaptation in Congested Wireless Networks through Real-Time Measurements Prashanth A.K. Acharya, Ashish Sharma, Elizabeth M. Belding, Kevin C. Almeroth, Konstantina Papagiannaki Department of Computer

More information

original standard a transmission at 5 GHz bit rate 54 Mbit/s b support for 5.5 and 11 Mbit/s e QoS

original standard a transmission at 5 GHz bit rate 54 Mbit/s b support for 5.5 and 11 Mbit/s e QoS IEEE 802.11 The standard defines a wireless physical interface and the MAC layer while LLC layer is defined in 802.2. The standardization process, started in 1990, is still going on; some versions are:

More information

Payload Length and Rate Adaptation for Throughput Optimization in Wireless LANs

Payload Length and Rate Adaptation for Throughput Optimization in Wireless LANs Payload Length and Rate Adaptation for Throughput Optimization in Wireless LANs Sayantan Choudhury and Jerry D. Gibson Department of Electrical and Computer Engineering University of Califonia, Santa Barbara

More information

Leader-based Rate Adaptive Multicasting for Wireless LANs

Leader-based Rate Adaptive Multicasting for Wireless LANs Leader-based Rate Adaptive Multicasting for Wireless LANs Sungjoon Choi, Nakjung Choi, Yongho Seok, Taekyoung Kwon and Yanghee Choi School of Computer Science and Engineering, Seoul National University,

More information

Data and Computer Communications. Chapter 13 Wireless LANs

Data and Computer Communications. Chapter 13 Wireless LANs Data and Computer Communications Chapter 13 Wireless LANs Wireless LAN Topology Infrastructure LAN Connect to stations on wired LAN and in other cells May do automatic handoff Ad hoc LAN No hub Peer-to-peer

More information

CE693: Adv. Computer Networking

CE693: Adv. Computer Networking CE693: Adv. Computer Networking L-9 Wireless Fall 1389 Acknowledgments: Lecture slides are from the graduate level Computer Networks course thought by Srinivasan Seshan at CMU. When slides are obtained

More information

Wireless Networks (MAC)

Wireless Networks (MAC) 802.11 Wireless Networks (MAC) Kate Ching-Ju Lin ( 林靖茹 ) Academia Sinica 2016.03.18 CSIE, NTU Reference 1. A Technical Tutorial on the IEEE 802.11 Protocol By Pablo Brenner online: http://www.sss-mag.com/pdf/802_11tut.pdf

More information

Classifying Rate Adaptation Algorithms in IEEE b/g/n Wireless Networks. Master Thesis. Tor Martin Slåen

Classifying Rate Adaptation Algorithms in IEEE b/g/n Wireless Networks. Master Thesis. Tor Martin Slåen UNIVERSITY OF OSLO Department of Informatics Classifying Rate Adaptation Algorithms in IEEE 802.11b/g/n Wireless Networks Master Thesis Tor Martin Slåen August 15, 2012 Classifying Rate Adaptation Algorithms

More information

DOMINO: A System to Detect Greedy Behavior in IEEE Hotspots

DOMINO: A System to Detect Greedy Behavior in IEEE Hotspots DOMINO: A System to Detect Greedy Behavior in IEEE 802.11 Hotspots By Maxim Raya, Jean-Pierre Hubaux, Imad Aad Laboratory for computer Communications and Applications(LCA) School of Computer and Communication

More information

Telecommunication Services Engineering Lab. Roch H. Glitho

Telecommunication Services Engineering Lab. Roch H. Glitho 1 Congestion handling in wired TCP: Detailed treatment 1. - Fundamental assumptions and principles - Key parameters - Slow start - Congestion avoidance - Fast re-transmit and fast recovery 2 Fundamental

More information

Sample solution to Midterm

Sample solution to Midterm College of Computer & Information Science Spring 2007 Northeastern University Handout 10 CSG250: Wireless Networks 27 February 2007 Sample solution to Midterm Part I (4 4 = 16 points) 1. Explain how the

More information

Trace-based Evaluation of Rate Adaptation Schemes in Vehicular Environments

Trace-based Evaluation of Rate Adaptation Schemes in Vehicular Environments Trace-based Evaluation of Rate Adaptation Schemes in Vehicular Environments Kevin C. Lee, Juan M. Navarro, Tin Y. Chong, Uichin Lee, Mario Gerla University of California Department of Computer Science

More information

Mohammad Hossein Manshaei 1393

Mohammad Hossein Manshaei 1393 Mohammad Hossein Manshaei manshaei@gmail.com 1393 1 An Analytical Approach: Bianchi Model 2 Real Experimentations HoE on IEEE 802.11b Analytical Models Bianchi s Model Simulations ns-2 3 N links with the

More information

On the Performance Characteristics of WLANs: Revisited

On the Performance Characteristics of WLANs: Revisited On the Performance Characteristics of WLANs: Revisited S. Choi,, K. Park and C.K. Kim Sigmetrics 2005 Banff, Canada Presenter - Bob Kinicki Advanced Computer Networks Fall 2007 Outline Introduction System

More information