UCB CS61C : Machine Structures

Size: px
Start display at page:

Download "UCB CS61C : Machine Structures"

Transcription

1 inst.eecs.bekeley.edu/~cs61c UCB CS61C : Machine Stuctues Lectue SOE Dan Gacia Lectue 28 CPU Design : Pipelining to Impove Pefomance Stanfod Reseaches have invented a monitoing technique called Instuction Footpint Recoding and Analysis (IFRA) that collects info about the hadwae when it s actually unning (as opposed to vey slow simulations) to help pinpoint hadwae eos. When eos ae detected, it takes a snapshot of the cuent state to help epoduce it. It can locate 96% of bugs, 80% w/time & location.

2 Review: Single cycle datapath 5 steps to design a pocesso 1. Analyze instuction set datapath equiements 2. Select set of datapath components & establish clock methodology 3. Assemble datapath meeting the equiements 4. Analyze implementation of each instuction to detemine setting of contol points that effects the egiste tansfe. 5. Assemble the contol logic Contol is the had pat MIPS makes that easie Instuctions same size Souce egistes always in same place Immediates same size, location Opeations always on egistes/immediates Pocesso Contol Datapath Memoy Input Output CS61C L28 CPU Design : Pipelining to Impove Pefomance I (2)

3 How We Build The Contolle opcode" func" RegDst = add + sub add" Sc = oi + lw + sw sub" MemtoReg = lw oi" RegWite = add + sub + oi + lw lw" AND logic" MemWite = sw sw" OR logic" beq" npcsel = beq jump" Jump = jump ExtOp = lw + sw ct[0] = sub + beq (assume ct is 0 ADD, 01: SUB, 10: OR) ct[1] = o whee, type = ~op 5 ~op 4 ~op 3 ~op 2 ~op 1 ~op 0, oi = ~op 5 ~op 4 op 3 op 2 ~op 1 op 0 lw = op 5 ~op 4 ~op 3 ~op 2 op 1 op 0 sw = op 5 ~op 4 op 3 ~op 2 op 1 op 0 beq = ~op 5 ~op 4 ~op 3 op 2 ~op 1 ~op 0 jump = ~op 5 ~op 4 ~op 3 ~op 2 op 1 ~op 0 add = type func 5 ~func 4 ~func 3 ~func 2 ~func 1 ~func 0 sub = type func 5 ~func 4 ~func 3 ~func 2 func 1 ~func 0 RegDst" Sc" MemtoReg" RegWite" MemWite" npcsel" Jump" ExtOp" ct[0]" ct[1]" Omigosh omigosh, do you know what this means? CS61C L28 CPU Design : Pipelining to Impove Pefomance I (3)

4 Call home, we ve made HW/SW contact! High Level Language Pogam (e.g., C)# Compile! Assembly Language Pogam (e.g.,mips)# Assemble! Machine Language Pogam (MIPS)# temp = v[k];# v[k] = v[k+1];# v[k+1] = temp;" lw lw sw sw $t0, 0($2) $t1, 4($2) $t1, 0($2) $t0, 4($2) ! Machine Intepetation! Hadwae Achitectue Desciption (e.g., block diagams) " Achitectue Implementation! Logic Cicuit Desciption (Cicuit Schematic Diagams)# CS61C L28 CPU Design : Pipelining to Impove Pefomance I (4)

5 Pocesso Pefomance Can we estimate the clock ate (fequency) of ou single-cycle pocesso? We know: 1 cycle pe instuction lw is the most demanding instuction. Assume these delays fo majo pieces of the datapath: Inst. Mem,, Data Mem : 2ns each, egfile 1ns Instuction execution equies: = 8ns 125 MHz What can we do to impove clock ate? Will this impove pefomance as well? We want inceases in clock ate to esult in pogams executing quicke. CS61C L28 CPU Design : Pipelining to Impove Pefomance I (5)

6 Gotta Do Laundy Ann, Bian, Cathy, Dave each have one load of clothes to wash, dy, fold, and put away Washe takes 30 minutes A B C D Dye takes 30 minutes Folde takes 30 minutes Stashe takes 30 minutes to put clothes into dawes CS61C L28 CPU Design : Pipelining to Impove Pefomance I (6)

7 Sequential Laundy 6 PM AM T a s k O d e A B C D Time Sequential laundy takes 8 hous fo 4 loads CS61C L28 CPU Design : Pipelining to Impove Pefomance I (7)

8 Pipelined Laundy 12 2 AM 6 PM T a s k O d e A B C D Pipelined laundy takes 3.5 hous fo 4 loads! Time CS61C L28 CPU Design : Pipelining to Impove Pefomance I (8)

9 Geneal Definitions Latency: time to completely execute a cetain task fo example, time to ead a secto fom disk is disk access time o disk latency Thoughput: amount of wok that can be done ove a peiod of time CS61C L28 CPU Design : Pipelining to Impove Pefomance I (9)

10 Pipelining Lessons (1/2) T a s k O d e 6 PM A B C D Time Pipelining doesn t help latency of single task, it helps thoughput of entie wokload Multiple tasks opeating simultaneously using diffeent esouces Potential speedup = Numbe pipe stages Time to fill pipeline and time to dain it educes speedup: 2.3X v. 4X in this example CS61C L28 CPU Design : Pipelining to Impove Pefomance I (10)

11 Pipelining Lessons (2/2) T a s k O d e 6 PM A B C D Time Suppose new Washe takes 20 minutes, new Stashe takes 20 minutes. How much faste is pipeline? Pipeline ate limited by slowest pipeline stage Unbalanced lengths of pipe stages educes speedup CS61C L28 CPU Design : Pipelining to Impove Pefomance I (11)

12 Steps in Executing MIPS 1) IFtch: Instuction Fetch, Incement PC 2) Dcd: Instuction Decode, Read Registes 3) Exec: Mem-ef: Calculate Addess Aith-log: Pefom Opeation 4) Mem: Load: Read Data fom Memoy Stoe: Wite Data to Memoy 5) WB: Wite Data Back to Registe CS61C L28 CPU Design : Pipelining to Impove Pefomance I (12)

13 Pipelined Execution Repesentation Time# IFtch#Dcd# Exec# Mem# WB# IFtch#Dcd# Exec# Mem# WB# IFtch#Dcd# Exec# Mem# WB# IFtch#Dcd# Exec# Mem# WB# IFtch#Dcd# Exec# Mem# WB# IFtch#Dcd# Exec# Mem# WB# Evey instuction must take same numbe of steps, also called pipeline stages, so some will go idle sometimes CS61C L28 CPU Design : Pipelining to Impove Pefomance I (13)

14 Review: Datapath fo MIPS PC" instuction" memoy" d" s" t" egistes" Data" memoy" +4" imm" 1. Instuction" Fetch" 2. Decode/" Registe Read" 5. Wite 3. Execute" 4. Memoy" Back" Use datapath figue to epesent pipeline IFtch#Dcd# Exec# Mem# WB# I$ Reg D$ Reg CS61C L28 CPU Design : Pipelining to Impove Pefomance I (14)

15 Gaphical Pipeline Repesentation (In Reg, ight half highlight ead, left half wite)" Time (clock cycles) I n I$ Reg D$ Reg s Load t Add I$ Reg D$ Reg. Stoe I$ Reg D$ Reg O I$ Reg D$ Reg Sub d e O I$ Reg D$ Reg CS61C L28 CPU Design : Pipelining to Impove Pefomance I (15)

16 Example Suppose 2 ns fo memoy access, 2 ns fo opeation, and 1 ns fo egiste file ead o wite; compute instuction ate Nonpipelined Execution: lw : IF + Read Reg + + Memoy + Wite Reg = = 8 ns add: IF + Read Reg + + Wite Reg = = 6 ns (ecall 8ns fo single-cycle pocesso) Pipelined Execution: Max(IF,Read Reg,,Memoy,Wite Reg) = 2 ns CS61C L28 CPU Design : Pipelining to Impove Pefomance I (16)

17 Pipeline Hazad: Matching socks in late load 12 2 AM 6 PM T a s k O d e A B C D E F bubble Time A depends on D; stall since folde tied up CS61C L28 CPU Design : Pipelining to Impove Pefomance I (17)

18 Administivia Administivia? CS61C L28 CPU Design : Pipelining to Impove Pefomance I (18)

19 Poblems fo Pipelining CPUs Limits to pipelining: Hazads pevent next instuction fom executing duing its designated clock cycle Stuctual hazads: HW cannot suppot some combination of instuctions (single peson to fold and put clothes away) Contol hazads: Pipelining of banches causes late instuction fetches to wait fo the esult of the banch Data hazads: Instuction depends on esult of pio instuction still in the pipeline (missing sock) These might esult in pipeline stalls o bubbles in the pipeline. CS61C L28 CPU Design : Pipelining to Impove Pefomance I (19)

20 Stuctual Hazad #1: Single Memoy (1/2) I n I$ Reg D$ Reg s Load t Inst 1 I$ Reg D$ Reg. Inst 2 I$ Reg D$ Reg O I$ Reg D$ Reg Inst 3 d Inst 4 I$ Reg D$ Reg e Read same memoy twice in same clock cycle# CS61C L28 CPU Design : Pipelining to Impove Pefomance I (20) Time (clock cycles)

21 Stuctual Hazad #1: Single Memoy (2/2) Solution: infeasible and inefficient to ceate second memoy (We ll lean about this moe next week) so simulate this by having two Level 1 Caches (a tempoay smalle [of usually most ecently used] copy of memoy) have both an L1 Instuction Cache and an L1 Data Cache need moe complex hadwae to contol when both caches miss CS61C L28 CPU Design : Pipelining to Impove Pefomance I (21)

22 Stuctual Hazad #2: Registes (1/2) I n s t. O d e sw Inst 1 Inst 2 Inst 3 Inst 4 Time (clock cycles) I$ Reg D$ Reg I$ Reg D$ Reg I$ I$ Reg D$ Reg Reg D$ Reg I$ Reg D$ Reg Can we ead and wite to egistes simultaneously?# CS61C L28 CPU Design : Pipelining to Impove Pefomance I (22)

23 Stuctual Hazad #2: Registes (2/2) Two diffeent solutions have been used: 1) RegFile access is VERY fast: takes less than half the time of stage Wite to Registes duing fist half of each clock cycle Read fom Registes duing second half of each clock cycle 2) Build RegFile with independent ead and wite pots Result: can pefom Read and Wite duing same clock cycle CS61C L28 CPU Design : Pipelining to Impove Pefomance I (23)

24 Pee Instuction 1) Thanks to pipelining, I have educed the time it took me to wash my one shit. 2) Longe pipelines ae always a win (since less wok pe stage & a faste clock). 12 a) FF b) FT c) TF d) TT CS61C L28 CPU Design : Pipelining to Impove Pefomance I (24)

25 Pee Instuction Answe 1) Thoughput bette, not execution time 2) longe pipelines do usually mean faste clock, but banches cause poblems! F A L S E# F A L S E# 1) Thanks to pipelining, I have educed the time it took me to wash my one shit. 2) Longe pipelines ae always a win (since less wok pe stage & a faste clock). 12 a) FF b) FT c) TF d) TT CS61C L28 CPU Design : Pipelining to Impove Pefomance I (25)

26 Things to Remembe Optimal Pipeline Each stage is executing pat of an instuction each clock cycle. One instuction finishes duing each clock cycle. On aveage, execute fa moe quickly. What makes this wok? Similaities between instuctions allow us to use same stages fo all instuctions (geneally). Each stage takes about the same amount of time as all othes: little wasted time. CS61C L28 CPU Design : Pipelining to Impove Pefomance I (26)

Lecture 8 Introduction to Pipelines Adapated from slides by David Patterson

Lecture 8 Introduction to Pipelines Adapated from slides by David Patterson Lectue 8 Intoduction to Pipelines Adapated fom slides by David Patteson http://www-inst.eecs.bekeley.edu/~cs61c/ * 1 Review (1/3) Datapath is the hadwae that pefoms opeations necessay to execute pogams.

More information

ECE331: Hardware Organization and Design

ECE331: Hardware Organization and Design ECE331: Hadwae Oganization and Design Lectue 16: Pipelining Adapted fom Compute Oganization and Design, Patteson & Hennessy, UCB Last time: single cycle data path op System clock affects pimaily the Pogam

More information

Introduction To Pipelining. Chapter Pipelining1 1

Introduction To Pipelining. Chapter Pipelining1 1 Intoduction To Pipelining Chapte 6.1 - Pipelining1 1 Mooe s Law Mooe s Law says that the numbe of pocessos on a chip doubles about evey 18 months. Given the data on the following two slides, is this tue?

More information

Computer Science 141 Computing Hardware

Computer Science 141 Computing Hardware Compute Science 141 Computing Hadwae Fall 2006 Havad Univesity Instucto: Pof. David Books dbooks@eecs.havad.edu [MIPS Pipeline Slides adapted fom Dave Patteson s UCB CS152 slides and May Jane Iwin s CSE331/431

More information

CS 61C: Great Ideas in Computer Architecture. Pipelining Hazards. Instructor: Senior Lecturer SOE Dan Garcia

CS 61C: Great Ideas in Computer Architecture. Pipelining Hazards. Instructor: Senior Lecturer SOE Dan Garcia CS 61C: Geat Ideas in Compute Achitectue Pipelining Hazads Instucto: Senio Lectue SOE Dan Gacia 1 Geat Idea #4: Paallelism So9wae Paallel Requests Assigned to compute e.g. seach Gacia Paallel Theads Assigned

More information

COSC 6385 Computer Architecture. - Pipelining

COSC 6385 Computer Architecture. - Pipelining COSC 6385 Compute Achitectue - Pipelining Sping 2012 Some of the slides ae based on a lectue by David Culle, Pipelining Pipelining is an implementation technique wheeby multiple instuctions ae ovelapped

More information

CMCS Mohamed Younis CMCS 611, Advanced Computer Architecture 1

CMCS Mohamed Younis CMCS 611, Advanced Computer Architecture 1 CMCS 611-101 Advanced Compute Achitectue Lectue 6 Intoduction to Pipelining Septembe 23, 2009 www.csee.umbc.edu/~younis/cmsc611/cmsc611.htm Mohamed Younis CMCS 611, Advanced Compute Achitectue 1 Pevious

More information

CISC 662 Graduate Computer Architecture Lecture 6 - Hazards

CISC 662 Graduate Computer Architecture Lecture 6 - Hazards CISC 662 Gaduate Compute Achitectue Lectue 6 - Hazads Michela Taufe http://www.cis.udel.edu/~taufe/teaching/cis662f07 Powepoint Lectue Notes fom John Hennessy and David Patteson s: Compute Achitectue,

More information

Lecture Topics ECE 341. Lecture # 12. Control Signals. Control Signals for Datapath. Basic Processing Unit. Pipelining

Lecture Topics ECE 341. Lecture # 12. Control Signals. Control Signals for Datapath. Basic Processing Unit. Pipelining EE 341 Lectue # 12 Instucto: Zeshan hishti zeshan@ece.pdx.edu Novembe 10, 2014 Potland State Univesity asic Pocessing Unit ontol Signals Hadwied ontol Datapath contol signals Dealing with memoy delay Pipelining

More information

The Processor: Improving Performance Data Hazards

The Processor: Improving Performance Data Hazards The Pocesso: Impoving Pefomance Data Hazads Monday 12 Octobe 15 Many slides adapted fom: and Design, Patteson & Hennessy 5th Edition, 2014, MK and fom Pof. May Jane Iwin, PSU Summay Pevious Class Pipeline

More information

Lecture #22 Pipelining II, Cache I

Lecture #22 Pipelining II, Cache I inst.eecs.bekeley.edu/~cs61c CS61C : Machine Stuctues Lectue #22 Pipelining II, Cache I Wiewold cicuits 2008-7-29 http://www.maa.og/editoial/mathgames/mathgames_05_24_04.html http://www.quinapalus.com/wi-index.html

More information

Computer Architecture. Pipelining and Instruction Level Parallelism An Introduction. Outline of This Lecture

Computer Architecture. Pipelining and Instruction Level Parallelism An Introduction. Outline of This Lecture Compute Achitectue Pipelining and nstuction Level Paallelism An ntoduction Adapted fom COD2e by Hennessy & Patteson Slide 1 Outline of This Lectue ntoduction to the Concept of Pipelined Pocesso Pipelined

More information

Administrivia. CMSC 411 Computer Systems Architecture Lecture 5. Data Hazard Even with Forwarding Figure A.9, Page A-20

Administrivia. CMSC 411 Computer Systems Architecture Lecture 5. Data Hazard Even with Forwarding Figure A.9, Page A-20 Administivia CMSC 411 Compute Systems Achitectue Lectue 5 Basic Pipelining (cont.) Alan Sussman als@cs.umd.edu as@csu dedu Homewok poblems fo Unit 1 due today Homewok poblems fo Unit 3 posted soon CMSC

More information

COEN-4730 Computer Architecture Lecture 2 Review of Instruction Sets and Pipelines

COEN-4730 Computer Architecture Lecture 2 Review of Instruction Sets and Pipelines 1 COEN-4730 Compute Achitectue Lectue 2 Review of nstuction Sets and Pipelines Cistinel Ababei Dept. of Electical and Compute Engineeing Maquette Univesity Cedits: Slides adapted fom pesentations of Sudeep

More information

User Visible Registers. CPU Structure and Function Ch 11. General CPU Organization (4) Control and Status Registers (5) Register Organisation (4)

User Visible Registers. CPU Structure and Function Ch 11. General CPU Organization (4) Control and Status Registers (5) Register Organisation (4) PU Stuctue and Function h Geneal Oganisation Registes Instuction ycle Pipelining anch Pediction Inteupts Use Visible Registes Vaies fom one achitectue to anothe Geneal pupose egiste (GPR) ata, addess,

More information

CS 61C: Great Ideas in Computer Architecture Control and Pipelining

CS 61C: Great Ideas in Computer Architecture Control and Pipelining CS 6C: Great Ideas in Computer Architecture Control and Pipelining Instructors: Vladimir Stojanovic and Nicholas Weaver http://inst.eecs.berkeley.edu/~cs6c/sp6 Datapath Control Signals ExtOp: zero, sign

More information

Chapter 4 (Part III) The Processor: Datapath and Control (Pipeline Hazards)

Chapter 4 (Part III) The Processor: Datapath and Control (Pipeline Hazards) Chapte 4 (Pat III) The Pocesso: Datapath and Contol (Pipeline Hazads) 陳瑞奇 (J.C. Chen) 亞洲大學資訊工程學系 Adapted fom class notes by Pof. M.J. Iwin, PSU and Pof. D. Patteson, UCB 1 吃感冒藥副作用怎麼辦? http://big5.sznews.com/health/images/attachement/jpg/site3/20120319/001558d90b3310d0c1683e.jpg

More information

CENG 3420 Computer Organization and Design. Lecture 07: MIPS Processor - II. Bei Yu

CENG 3420 Computer Organization and Design. Lecture 07: MIPS Processor - II. Bei Yu CENG 3420 Compute Oganization and Design Lectue 07: MIPS Pocesso - II Bei Yu CEG3420 L07.1 Sping 2016 Review: Instuction Citical Paths q Calculate cycle time assuming negligible delays (fo muxes, contol

More information

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Instruc>on Level Parallelism

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Instruc>on Level Parallelism Agenda CS 61C: Geat Ideas in Compute Achitectue (Machine Stuctues) Instuc>on Level Paallelism Instuctos: Randy H. Katz David A. PaJeson hjp://inst.eecs.bekeley.edu/~cs61c/fa10 Review Instuc>on Set Design

More information

You Are Here! Review: Hazards. Agenda. Agenda. Review: Load / Branch Delay Slots 7/28/2011

You Are Here! Review: Hazards. Agenda. Agenda. Review: Load / Branch Delay Slots 7/28/2011 CS 61C: Geat Ideas in Compute Achitectue (Machine Stuctues) Instuction Level Paallelism: Multiple Instuction Issue Guest Lectue: Justin Hsia Softwae Paallel Requests Assigned to compute e.g., Seach Katz

More information

CENG 3420 Lecture 07: Pipeline

CENG 3420 Lecture 07: Pipeline CENG 3420 Lectue 07: Pipeline Bei Yu byu@cse.cuhk.edu.hk CENG3420 L07.1 Sping 2017 Outline q Review: Flip-Flop Contol Signals q Pipeline Motivations q Pipeline Hazads q Exceptions CENG3420 L07.2 Sping

More information

CS 2461: Computer Architecture 1 Program performance and High Performance Processors

CS 2461: Computer Architecture 1 Program performance and High Performance Processors Couse Objectives: Whee ae we. CS 2461: Pogam pefomance and High Pefomance Pocessos Instucto: Pof. Bhagi Naahai Bits&bytes: Logic devices HW building blocks Pocesso: ISA, datapath Using building blocks

More information

CS 110 Computer Architecture. Pipelining. Guest Lecture: Shu Yin. School of Information Science and Technology SIST

CS 110 Computer Architecture. Pipelining. Guest Lecture: Shu Yin.   School of Information Science and Technology SIST CS 110 Computer Architecture Pipelining Guest Lecture: Shu Yin http://shtech.org/courses/ca/ School of Information Science and Technology SIST ShanghaiTech University Slides based on UC Berkley's CS61C

More information

CSE4201. Computer Architecture

CSE4201. Computer Architecture CSE 4201 Compute Achitectue Pof. Mokhta Aboelaze Pats of these slides ae taken fom Notes by Pof. David Patteson at UCB Outline MIPS and instuction set Simple pipeline in MIPS Stuctual and data hazads Fowading

More information

CS 61C: Great Ideas in Computer Architecture Instruc(on Level Parallelism: Mul(ple Instruc(on Issue

CS 61C: Great Ideas in Computer Architecture Instruc(on Level Parallelism: Mul(ple Instruc(on Issue CS 61C: Geat Ideas in Compute Achitectue Instuc(on Level Paallelism: Mul(ple Instuc(on Issue Instuctos: Kste Asanovic, Randy H. Katz hbp://inst.eecs.bekeley.edu/~cs61c/fa12 1 Paallel Requests Assigned

More information

Review from last lecture

Review from last lecture CSE820 Gaduate Compute Achitectue Week 3 Pefomance + Pipeline Review Based on slides by David Patteson Review fom last lectue Tacking and extapolating technology pat of achitect s esponsibility Expect

More information

Working on the Pipeline

Working on the Pipeline Computer Science 6C Spring 27 Working on the Pipeline Datapath Control Signals Computer Science 6C Spring 27 MemWr: write memory MemtoReg: ALU; Mem RegDst: rt ; rd RegWr: write register 4 PC Ext Imm6 Adder

More information

Computer Architecture. Lecture 6.1: Fundamentals of

Computer Architecture. Lecture 6.1: Fundamentals of CS3350B Computer Architecture Winter 2015 Lecture 6.1: Fundamentals of Instructional Level Parallelism Marc Moreno Maza www.csd.uwo.ca/courses/cs3350b [Adapted from lectures on Computer Organization and

More information

Outline Marquette University

Outline Marquette University COEN-4710 Computer Hardware Lecture 4 Processor Part 2: Pipelining (Ch.4) Cristinel Ababei Department of Electrical and Computer Engineering Credits: Slides adapted primarily from presentations from Mike

More information

MIPS Pipelining. Computer Organization Architectures for Embedded Computing. Wednesday 8 October 14

MIPS Pipelining. Computer Organization Architectures for Embedded Computing. Wednesday 8 October 14 MIPS Pipelining Computer Organization Architectures for Embedded Computing Wednesday 8 October 14 Many slides adapted from: Computer Organization and Design, Patterson & Hennessy 4th Edition, 2011, MK

More information

CPS104 Computer Organization and Programming Lecture 19: Pipelining. Robert Wagner

CPS104 Computer Organization and Programming Lecture 19: Pipelining. Robert Wagner CPS104 Computer Organization and Programming Lecture 19: Pipelining Robert Wagner cps 104 Pipelining..1 RW Fall 2000 Lecture Overview A Pipelined Processor : Introduction to the concept of pipelined processor.

More information

Pipeline: Introduction

Pipeline: Introduction Pipeline: Introduction These slides are derived from: CSCE430/830 Computer Architecture course by Prof. Hong Jiang and Dave Patterson UCB Some figures and tables have been derived from : Computer System

More information

Overview of Control. CS 152 Computer Architecture and Engineering Lecture 11. Multicycle Controller Design

Overview of Control. CS 152 Computer Architecture and Engineering Lecture 11. Multicycle Controller Design S 152 ompute chitectue and Engineeing Lectue 11 Multicycle ontolle Design Oveview of ontol ontol may be designed using one of seveal initial epesentations. The choice of sequence contol, and how logic

More information

3/12/2014. Single Cycle (Review) CSE 2021: Computer Organization. Single Cycle with Jump. Multi-Cycle Implementation. Why Multi-Cycle?

3/12/2014. Single Cycle (Review) CSE 2021: Computer Organization. Single Cycle with Jump. Multi-Cycle Implementation. Why Multi-Cycle? CSE 2021: Computer Organization Single Cycle (Review) Lecture-10b CPU Design : Pipelining-1 Overview, Datapath and control Shakil M. Khan 2 Single Cycle with Jump Multi-Cycle Implementation Instruction:

More information

Pipelining. Maurizio Palesi

Pipelining. Maurizio Palesi * Pipelining * Adapted from David A. Patterson s CS252 lecture slides, http://www.cs.berkeley/~pattrsn/252s98/index.html Copyright 1998 UCB 1 References John L. Hennessy and David A. Patterson, Computer

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #22 CPU Design: Pipelining to Improve Performance II 2007-8-1 Scott Beamer, Instructor CS61C L22 CPU Design : Pipelining to Improve Performance

More information

Lecture 7 Pipelining. Peng Liu.

Lecture 7 Pipelining. Peng Liu. Lecture 7 Pipelining Peng Liu liupeng@zju.edu.cn 1 Review: The Single Cycle Processor 2 Review: Given Datapath,RTL -> Control Instruction Inst Memory Adr Op Fun Rt

More information

Page 1. Pipelining: Its Natural! Chapter 3. Pipelining. Pipelined Laundry Start work ASAP. Sequential Laundry A B C D. 6 PM Midnight

Page 1. Pipelining: Its Natural! Chapter 3. Pipelining. Pipelined Laundry Start work ASAP. Sequential Laundry A B C D. 6 PM Midnight Pipelining: Its Natural! Chapter 3 Pipelining Laundry Example Ann, Brian, Cathy, Dave each have one load of clothes to wash, dry, and fold Washer takes 30 minutes A B C D Dryer takes 40 minutes Folder

More information

Lecture 6: Pipelining

Lecture 6: Pipelining Lecture 6: Pipelining i CSCE 26 Computer Organization Instructor: Saraju P. ohanty, Ph. D. NOTE: The figures, text etc included in slides are borrowed from various books, websites, authors pages, and other

More information

A Novel Parallel Deadlock Detection Algorithm and Architecture

A Novel Parallel Deadlock Detection Algorithm and Architecture A Novel Paallel Deadlock Detection Aloithm and Achitectue Pun H. Shiu 2, Yudon Tan 2, Vincent J. Mooney III {ship, ydtan, mooney}@ece.atech.ed }@ece.atech.edu http://codesin codesin.ece.atech.eduedu,2

More information

Lecture 3. Pipelining. Dr. Soner Onder CS 4431 Michigan Technological University 9/23/2009 1

Lecture 3. Pipelining. Dr. Soner Onder CS 4431 Michigan Technological University 9/23/2009 1 Lecture 3 Pipelining Dr. Soner Onder CS 4431 Michigan Technological University 9/23/2009 1 A "Typical" RISC ISA 32-bit fixed format instruction (3 formats) 32 32-bit GPR (R0 contains zero, DP take pair)

More information

Modern Computer Architecture

Modern Computer Architecture Modern Computer Architecture Lecture2 Pipelining: Basic and Intermediate Concepts Hongbin Sun 国家集成电路人才培养基地 Xi an Jiaotong University Pipelining: Its Natural! Laundry Example Ann, Brian, Cathy, Dave each

More information

Review: Moore s Law. EECS 252 Graduate Computer Architecture Lecture 2. Review: Joy s Law in ManyCore world. Bell s Law new class per decade

Review: Moore s Law. EECS 252 Graduate Computer Architecture Lecture 2. Review: Joy s Law in ManyCore world. Bell s Law new class per decade EECS 252 Gaduate Compute Achitectue Lectue 2 ℵ 0 Review of Instuction Sets, Pipelines, and Caches Januay 26 th, 2009 Review Mooe s Law John Kubiatowicz Electical Engineeing and Compute Sciences Univesity

More information

EE 457 Unit 6a. Basic Pipelining Techniques

EE 457 Unit 6a. Basic Pipelining Techniques EE 47 Unit 6a Basic Pipelining Techniques 2 Pipelining Introduction Consider a drink bottling plant Filling the bottle = 3 sec. Placing the cap = 3 sec. Labeling = 3 sec. Would you want Machine = Does

More information

COMP2611: Computer Organization. The Pipelined Processor

COMP2611: Computer Organization. The Pipelined Processor COMP2611: Computer Organization The 1 2 Background 2 High-Performance Processors 3 Two techniques for designing high-performance processors by exploiting parallelism: Multiprocessing: parallelism among

More information

Any modern computer system will incorporate (at least) two levels of storage:

Any modern computer system will incorporate (at least) two levels of storage: 1 Any moden compute system will incopoate (at least) two levels of stoage: pimay stoage: andom access memoy (RAM) typical capacity 32MB to 1GB cost pe MB $3. typical access time 5ns to 6ns bust tansfe

More information

CS 61C: Great Ideas in Computer Architecture Pipelining and Hazards

CS 61C: Great Ideas in Computer Architecture Pipelining and Hazards CS 61C: Great Ideas in Computer Architecture Pipelining and Hazards Instructors: Vladimir Stojanovic and Nicholas Weaver http://inst.eecs.berkeley.edu/~cs61c/sp16 1 Pipelined Execution Representation Time

More information

A Memory Efficient Array Architecture for Real-Time Motion Estimation

A Memory Efficient Array Architecture for Real-Time Motion Estimation A Memoy Efficient Aay Achitectue fo Real-Time Motion Estimation Vasily G. Moshnyaga and Keikichi Tamau Depatment of Electonics & Communication, Kyoto Univesity Sakyo-ku, Yoshida-Honmachi, Kyoto 66-1, JAPAN

More information

1.3 Multiplexing, Time-Switching, Point-to-Point versus Buses

1.3 Multiplexing, Time-Switching, Point-to-Point versus Buses http://achvlsi.ics.foth.g/~kateveni/534 1.3 Multiplexing, Time-Switching, Point-to-Point vesus Buses n R m Aggegation (multiplexing) Distibution (demultiplexing) Simplest Netwoking, like simplest pogamming:

More information

Pre-requisites. This is a textbook-based course. Chapter 1. Pipelines, Performance, Caches, and Virtual Memory. January 2009 Paul H J Kelly

Pre-requisites. This is a textbook-based course. Chapter 1. Pipelines, Performance, Caches, and Virtual Memory. January 2009 Paul H J Kelly 332 Advanced Compute Achitectue Chapte 1 Intoduction and eview of Pipelines, Pefomance, Caches, and Vitual Januay 2009 Paul H J Kelly These lectue notes ae patly based on the couse text, Hennessy and Patteson

More information

CO Computer Architecture and Programming Languages CAPL. Lecture 18 & 19

CO Computer Architecture and Programming Languages CAPL. Lecture 18 & 19 CO2-3224 Computer Architecture and Programming Languages CAPL Lecture 8 & 9 Dr. Kinga Lipskoch Fall 27 Single Cycle Disadvantages & Advantages Uses the clock cycle inefficiently the clock cycle must be

More information

Chapter 4 The Processor 1. Chapter 4A. The Processor

Chapter 4 The Processor 1. Chapter 4A. The Processor Chapter 4 The Processor 1 Chapter 4A The Processor Chapter 4 The Processor 2 Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware

More information

Mark Redekopp and Gandhi Puvvada, All rights reserved. EE 357 Unit 15. Single-Cycle CPU Datapath and Control

Mark Redekopp and Gandhi Puvvada, All rights reserved. EE 357 Unit 15. Single-Cycle CPU Datapath and Control EE 37 Unit Single-Cycle CPU path and Control CPU Organization Scope We will build a CPU to implement our subset of the MIPS ISA Memory Reference Instructions: Load Word (LW) Store Word (SW) Arithmetic

More information

Multidimensional Testing

Multidimensional Testing Multidimensional Testing QA appoach fo Stoage netwoking Yohay Lasi Visuality Systems 1 Intoduction Who I am Yohay Lasi, QA Manage at Visuality Systems Visuality Systems the leading commecial povide of

More information

Accelerating Storage with RDMA Max Gurtovoy Mellanox Technologies

Accelerating Storage with RDMA Max Gurtovoy Mellanox Technologies Acceleating Stoage with RDMA Max Gutovoy Mellanox Technologies 2018 Stoage Develope Confeence EMEA. Mellanox Technologies. All Rights Reseved. 1 What is RDMA? Remote Diect Memoy Access - povides the ability

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #19 Designing a Single-Cycle CPU 27-7-26 Scott Beamer Instructor AI Focuses on Poker CS61C L19 CPU Design : Designing a Single-Cycle CPU

More information

Pipelining: Overview. CPSC 252 Computer Organization Ellen Walker, Hiram College

Pipelining: Overview. CPSC 252 Computer Organization Ellen Walker, Hiram College Pipelining: Overview CPSC 252 Computer Organization Ellen Walker, Hiram College Pipelining the Wash Divide into 4 steps: Wash, Dry, Fold, Put Away Perform the steps in parallel Wash 1 Wash 2, Dry 1 Wash

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c/su05 CS61C : Machine Structures Lecture #19: Pipelining II 2005-07-21 Andy Carle CS 61C L19 Pipelining II (1) Review: Datapath for MIPS PC instruction memory rd rs rt registers

More information

ANALYTIC PERFORMANCE MODELS FOR SINGLE CLASS AND MULTIPLE CLASS MULTITHREADED SOFTWARE SERVERS

ANALYTIC PERFORMANCE MODELS FOR SINGLE CLASS AND MULTIPLE CLASS MULTITHREADED SOFTWARE SERVERS ANALYTIC PERFORMANCE MODELS FOR SINGLE CLASS AND MULTIPLE CLASS MULTITHREADED SOFTWARE SERVERS Daniel A Menascé Mohamed N Bennani Dept of Compute Science Oacle, Inc Geoge Mason Univesity 1211 SW Fifth

More information

Computer and Information Sciences College / Computer Science Department Enhancing Performance with Pipelining

Computer and Information Sciences College / Computer Science Department Enhancing Performance with Pipelining Computer and Information Sciences College / Computer Science Department Enhancing Performance with Pipelining Single-Cycle Design Problems Assuming fixed-period clock every instruction datapath uses one

More information

Full Datapath. CSCI 402: Computer Architectures. The Processor (2) 3/21/19. Fengguang Song Department of Computer & Information Science IUPUI

Full Datapath. CSCI 402: Computer Architectures. The Processor (2) 3/21/19. Fengguang Song Department of Computer & Information Science IUPUI CSCI 42: Computer Architectures The Processor (2) Fengguang Song Department of Computer & Information Science IUPUI Full Datapath Branch Target Instruction Fetch Immediate 4 Today s Contents We have looked

More information

CS3350B Computer Architecture Quiz 3 March 15, 2018

CS3350B Computer Architecture Quiz 3 March 15, 2018 CS3350B Computer Architecture Quiz 3 March 15, 2018 Student ID number: Student Last Name: Question 1.1 1.2 1.3 2.1 2.2 2.3 Total Marks The quiz consists of two exercises. The expected duration is 30 minutes.

More information

CENG 3420 Computer Organization and Design. Lecture 06: MIPS Processor - I. Bei Yu

CENG 3420 Computer Organization and Design. Lecture 06: MIPS Processor - I. Bei Yu CENG 342 Computer Organization and Design Lecture 6: MIPS Processor - I Bei Yu CEG342 L6. Spring 26 The Processor: Datapath & Control q We're ready to look at an implementation of the MIPS q Simplified

More information

CENG 3420 Lecture 06: Datapath

CENG 3420 Lecture 06: Datapath CENG 342 Lecture 6: Datapath Bei Yu byu@cse.cuhk.edu.hk CENG342 L6. Spring 27 The Processor: Datapath & Control q We're ready to look at an implementation of the MIPS q Simplified to contain only: memory-reference

More information

EITF20: Computer Architecture Part2.2.1: Pipeline-1

EITF20: Computer Architecture Part2.2.1: Pipeline-1 EITF20: Computer Architecture Part2.2.1: Pipeline-1 Liang Liu liang.liu@eit.lth.se 1 Outline Reiteration Pipelining Harzards Structural hazards Data hazards Control hazards Implementation issues Multi-cycle

More information

The Big Picture: Where are We Now? EEM 486: Computer Architecture. Lecture 3. Designing a Single Cycle Datapath

The Big Picture: Where are We Now? EEM 486: Computer Architecture. Lecture 3. Designing a Single Cycle Datapath The Big Picture: Where are We Now? EEM 486: Computer Architecture Lecture 3 The Five Classic Components of a Computer Processor Input Control Memory Designing a Single Cycle path path Output Today s Topic:

More information

EITF20: Computer Architecture Part2.2.1: Pipeline-1

EITF20: Computer Architecture Part2.2.1: Pipeline-1 EITF20: Computer Architecture Part2.2.1: Pipeline-1 Liang Liu liang.liu@eit.lth.se 1 Outline Reiteration Pipelining Harzards Structural hazards Data hazards Control hazards Implementation issues Multi-cycle

More information

ELCT 501: Digital System Design

ELCT 501: Digital System Design ELCT 501: Digital System Lecture 8: Pipelining Dr. Mohamed Abd El Ghany, Pipelining: Its Natural! Laundry Example Ann, brian, cathy, Dave each have one load of clothes to wash, dry, and fold Washer takes

More information

CSE 141 Computer Architecture Spring Lectures 11 Exceptions and Introduction to Pipelining. Announcements

CSE 141 Computer Architecture Spring Lectures 11 Exceptions and Introduction to Pipelining. Announcements CSE 4 Computer Architecture Spring 25 Lectures Exceptions and Introduction to Pipelining May 4, 25 Announcements Reading Assignment Sections 5.6, 5.9 The Processor Datapath and Control Section 6., Enhancing

More information

THE THETA BLOCKCHAIN

THE THETA BLOCKCHAIN THE THETA BLOCKCHAIN Theta is a decentalized video steaming netwok, poweed by a new blockchain and token. By Theta Labs, Inc. Last Updated: Nov 21, 2017 esion 1.0 1 OUTLINE Motivation Reputation Dependent

More information

Lecture 3: The Processor (Chapter 4 of textbook) Chapter 4.1

Lecture 3: The Processor (Chapter 4 of textbook) Chapter 4.1 Lecture 3: The Processor (Chapter 4 of textbook) Chapter 4.1 Introduction Chapter 4.1 Chapter 4.2 Review: MIPS (RISC) Design Principles Simplicity favors regularity fixed size instructions small number

More information

EITF20: Computer Architecture Part2.2.1: Pipeline-1

EITF20: Computer Architecture Part2.2.1: Pipeline-1 EITF20: Computer Architecture Part2.2.1: Pipeline-1 Liang Liu liang.liu@eit.lth.se 1 Outline Reiteration Pipelining Harzards Structural hazards Data hazards Control hazards Implementation issues Multi-cycle

More information

CS 110 Computer Architecture Single-Cycle CPU Datapath & Control

CS 110 Computer Architecture Single-Cycle CPU Datapath & Control CS Computer Architecture Single-Cycle CPU Datapath & Control Instructor: Sören Schwertfeger http://shtech.org/courses/ca/ School of Information Science and Technology SIST ShanghaiTech University Slides

More information

CSCI 402: Computer Architectures. Fengguang Song Department of Computer & Information Science IUPUI. Today s Content

CSCI 402: Computer Architectures. Fengguang Song Department of Computer & Information Science IUPUI. Today s Content 3/6/8 CSCI 42: Computer Architectures The Processor (2) Fengguang Song Department of Computer & Information Science IUPUI Today s Content We have looked at how to design a Data Path. 4.4, 4.5 We will design

More information

ECE260: Fundamentals of Computer Engineering

ECE260: Fundamentals of Computer Engineering Pipelining James Moscola Dept. of Engineering & Computer Science York College of Pennsylvania Based on Computer Organization and Design, 5th Edition by Patterson & Hennessy What is Pipelining? Pipelining

More information

Lecture 9. Pipeline Hazards. Christos Kozyrakis Stanford University

Lecture 9. Pipeline Hazards. Christos Kozyrakis Stanford University Lecture 9 Pipeline Hazards Christos Kozyrakis Stanford University http://eeclass.stanford.edu/ee18b 1 Announcements PA-1 is due today Electronic submission Lab2 is due on Tuesday 2/13 th Quiz1 grades will

More information

Pipeline Processors David Rye :: MTRX3700 Pipelining :: Slide 1 of 15

Pipeline Processors David Rye :: MTRX3700 Pipelining :: Slide 1 of 15 Pipeline Processors Pipelining :: Slide 1 of 15 Pipeline Processors A common feature of modern processors Works like a series production line An operation is divided into k decoupled (independent) elementary

More information

The Processor. Z. Jerry Shi Department of Computer Science and Engineering University of Connecticut. CSE3666: Introduction to Computer Architecture

The Processor. Z. Jerry Shi Department of Computer Science and Engineering University of Connecticut. CSE3666: Introduction to Computer Architecture The Processor Z. Jerry Shi Department of Computer Science and Engineering University of Connecticut CSE3666: Introduction to Computer Architecture Introduction CPU performance factors Instruction count

More information

UC Berkeley CS61C : Machine Structures

UC Berkeley CS61C : Machine Structures inst.eecs.berkeley.edu/~cs6c UC Berkeley CS6C : Machine Structures The Internet is broken?! The Clean Slate team at Stanford wants to revamp the Internet, making it safer (from viruses), more reliable

More information

a Not yet implemented in current version SPARK: Research Kit Pointer Analysis Parameters Soot Pointer analysis. Objectives

a Not yet implemented in current version SPARK: Research Kit Pointer Analysis Parameters Soot Pointer analysis. Objectives SPARK: Soot Reseach Kit Ondřej Lhoták Objectives Spak is a modula toolkit fo flow-insensitive may points-to analyses fo Java, which enables expeimentation with: vaious paametes of pointe analyses which

More information

CPE 335 Computer Organization. Basic MIPS Architecture Part I

CPE 335 Computer Organization. Basic MIPS Architecture Part I CPE 335 Computer Organization Basic MIPS Architecture Part I Dr. Iyad Jafar Adapted from Dr. Gheith Abandah slides http://www.abandah.com/gheith/courses/cpe335_s8/index.html CPE232 Basic MIPS Architecture

More information

ECE331: Hardware Organization and Design

ECE331: Hardware Organization and Design ECE331: Hardware Organization and Design Lecture 35: Final Exam Review Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Material from Earlier in the Semester Throughput and latency

More information

GCC-AVR Inline Assembler Cookbook Version 1.2

GCC-AVR Inline Assembler Cookbook Version 1.2 GCC-AVR Inline Assemble Cookbook Vesion 1.2 About this Document The GNU C compile fo Atmel AVR isk pocessos offes, to embed assembly language code into C pogams. This cool featue may be used fo manually

More information

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted from Hennessy & Patterson / 2003 Elsevier

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted from Hennessy & Patterson / 2003 Elsevier Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted from Hennessy & Patterson / 2003 Elsevier Science 6 PM 7 8 9 10 11 Midnight Time 30 40 20 30 40 20

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 34 Single Cycle CPU Control I 24-4-16 Lecturer PSOE Dan Garcia www.cs.berkeley.edu/~ddgarcia 1.5 Quake?! NBC movie on May 3 rd. Truth stranger

More information

Module 6 STILL IMAGE COMPRESSION STANDARDS

Module 6 STILL IMAGE COMPRESSION STANDARDS Module 6 STILL IMAE COMPRESSION STANDARDS Lesson 17 JPE-2000 Achitectue and Featues Instuctional Objectives At the end of this lesson, the students should be able to: 1. State the shotcomings of JPE standad.

More information

Lecture #17: CPU Design II Control

Lecture #17: CPU Design II Control Lecture #7: CPU Design II Control 25-7-9 Anatomy: 5 components of any Computer Personal Computer Computer Processor Control ( brain ) This week ( ) path ( brawn ) (where programs, data live when running)

More information

All lengths in meters. E = = 7800 kg/m 3

All lengths in meters. E = = 7800 kg/m 3 Poblem desciption In this poblem, we apply the component mode synthesis (CMS) technique to a simple beam model. 2 0.02 0.02 All lengths in metes. E = 2.07 10 11 N/m 2 = 7800 kg/m 3 The beam is a fee-fee

More information

EE 6900: Interconnection Networks for HPC Systems Fall 2016

EE 6900: Interconnection Networks for HPC Systems Fall 2016 EE 6900: Inteconnection Netwoks fo HPC Systems Fall 2016 Avinash Kaanth Kodi School of Electical Engineeing and Compute Science Ohio Univesity Athens, OH 45701 Email: kodi@ohio.edu 1 Acknowledgement: Inteconnection

More information

Overview. Appendix A. Pipelining: Its Natural! Sequential Laundry 6 PM Midnight. Pipelined Laundry: Start work ASAP

Overview. Appendix A. Pipelining: Its Natural! Sequential Laundry 6 PM Midnight. Pipelined Laundry: Start work ASAP Overview Appendix A Pipelining: Basic and Intermediate Concepts Basics of Pipelining Pipeline Hazards Pipeline Implementation Pipelining + Exceptions Pipeline to handle Multicycle Operations 1 2 Unpipelined

More information

Modeling a shared medium access node with QoS distinction

Modeling a shared medium access node with QoS distinction Modeling a shaed medium access node with QoS distinction Matthias Gies, Jonas Geutet Compute Engineeing and Netwoks Laboatoy (TIK) Swiss Fedeal Institute of Technology Züich CH-8092 Züich, Switzeland email:

More information

Chapter 8. Pipelining

Chapter 8. Pipelining Chapter 8. Pipelining Overview Pipelining is widely used in modern processors. Pipelining improves system performance in terms of throughput. Pipelined organization requires sophisticated compilation techniques.

More information

CPE Computer Architecture. Appendix A: Pipelining: Basic and Intermediate Concepts

CPE Computer Architecture. Appendix A: Pipelining: Basic and Intermediate Concepts CPE 110408443 Computer Architecture Appendix A: Pipelining: Basic and Intermediate Concepts Sa ed R. Abed [Computer Engineering Department, Hashemite University] Outline Basic concept of Pipelining The

More information

Processor Design CSCE Instructor: Saraju P. Mohanty, Ph. D. NOTE: The figures, text etc included in slides are borrowed

Processor Design CSCE Instructor: Saraju P. Mohanty, Ph. D. NOTE: The figures, text etc included in slides are borrowed Lecture 3: General Purpose Processor Design CSCE 665 Advanced VLSI Systems Instructor: Saraju P. ohanty, Ph. D. NOTE: The figures, tet etc included in slides are borrowed from various books, websites,

More information

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle

More information

i-pcgrid Workshop 2016 April 1 st 2016 San Francisco, CA

i-pcgrid Workshop 2016 April 1 st 2016 San Francisco, CA i-pcgrid Wokshop 2016 Apil 1 st 2016 San Fancisco, CA Liang Min* Eddy Banks, Bian Kelley, Met Kokali, Yining Qin, Steve Smith, Philip Top, and Caol Woodwad *min2@llnl.gov, 925-422-1187 LDRD 13-ERD-043

More information

EECS Digital Design

EECS Digital Design EECS 150 -- Digital Design Lecture 11-- Processor Pipelining 2010-2-23 John Wawrzynek Today s lecture by John Lazzaro www-inst.eecs.berkeley.edu/~cs150 1 Today: Pipelining How to apply the performance

More information

Basic Instruction Timings. Pipelining 1. How long would it take to execute the following sequence of instructions?

Basic Instruction Timings. Pipelining 1. How long would it take to execute the following sequence of instructions? Basic Instruction Timings Pipelining 1 Making some assumptions regarding the operation times for some of the basic hardware units in our datapath, we have the following timings: Instruction class Instruction

More information

Review. N-bit adder-subtractor done using N 1- bit adders with XOR gates on input. Lecture #19 Designing a Single-Cycle CPU

Review. N-bit adder-subtractor done using N 1- bit adders with XOR gates on input. Lecture #19 Designing a Single-Cycle CPU CS6C L9 CPU Design : Designing a Single-Cycle CPU () insteecsberkeleyedu/~cs6c CS6C : Machine Structures Lecture #9 Designing a Single-Cycle CPU 27-7-26 Scott Beamer Instructor AI Focuses on Poker Review

More information

Module 4c: Pipelining

Module 4c: Pipelining Module 4c: Pipelining R E F E R E N C E S : S T A L L I N G S, C O M P U T E R O R G A N I Z A T I O N A N D A R C H I T E C T U R E M O R R I S M A N O, C O M P U T E R O R G A N I Z A T I O N A N D A

More information