Chapter 39: Concepts of Time-Triggered Communication. Wenbo Qiao

Size: px
Start display at page:

Download "Chapter 39: Concepts of Time-Triggered Communication. Wenbo Qiao"

Transcription

1 Chapter 39: Concepts of Time-Triggered Communication Wenbo Qiao

2 Outline Time and Event Triggered Communication Fundamental Services of a Time-Triggered Communication Protocol Clock Synchronization Periodic Exchange of State Messages Fault Isolation Mechanisms Diagnostic Services Properties of Time-Triggered Communication Systems Composability Independent Fault Containment Regions Strict Control on Node Interactions Replica Determinism Performance Summary

3 Time/Event Triggered Communication Communication Protocols fall into two general categories Event-Triggered Protocols Time-Triggered Protocols Strengths Event-Tri: Exibility and Resource Efficiency Time-Tri: Predictability, composability, error detection, error containment Typical Protocols: TCP/IP, CAN, Ethernet, ARINC629 (Event) TTP/C, FlexyRay (Time)

4 Time/Event Triggered Communication Event-Triggered Architecture Triggered by occurrence of events in the environment Time-Triggered Architecture By progression of global time Time Triggered: preferred for safety critical systems. For example in communication of by-wire cars Fault-tolerance for cases of ultrahigh reliability. (10^-9 failures/h)

5 Time/Event Triggered Communication Redundancy can be added transparently to applications, without the modification of the function and timing of application systems. Error detection and establishing of membership info Time-Triggered Architecture By progression of global time

6 Time/Event Triggered Communication Time triggered system also supports replica determinism, which is essential for establishing fault-tolerance through active redundancy Time-Triggered system support temporal composability via precise specification of the interfaces between subsystems. The communication controller in a time-triggered system decides autonomously when a message is transmitted The communication network interface is a temporal firewall, which isolates the temporal behavior of the host and the rest of the system

7 Outline Time and Event Triggered Communication Fundamental Services of a Time-Triggered Communication Protocol Clock Synchronization Periodic Exchange of State Messages Fault Isolation Mechanisms Diagnostic Services Properties of Time-Triggered Communication Systems Composability Independent Fault Containment Regions Strict Control on Node Interactions Replica Determinism Performance Summary

8 Services #1: Clock Synchronization Clock drifting makes periodic clock re-synchronization necessary. Precision is an important measure for Clock Synchronization Two important parameters: Granularity and horizon Granularity determines the min. interval between two adjacent ticks of the global time Horizon is a fixed point of time in the future at which point certain processes will be evaluated or assumed to end.

9 Service #2: Periodic Exchange of State Messages Messages carrying state information need to be exchanged periodically. Following a TDMA (time division multiple access) scheme Divide channel capacity into a number of slots and assign a unique slot to each node N nodes sending messages exactly once is called a TDMA round Communication system can operate autonomously, so that can be established in isolation

10 Services #3: Fault Isolation Mechanism Error containment mechanisms for timing message failures can be enforced transparently to the application With the knowledge of global transmission scheme, autonomous guardians can block timing message failures. NMR ( N-modular redundancy). N replicas receive the same request and provide the same service. The output of all replicas is provided to a voting mechanism, which selects one of the results, based on majority voting. Replica determinism simplifies the implementation of fault tolerance by active redundancy.

11 Service #4: Diagnostic Services The identification of failed sub-systems Triggers the autonomous recovery of a system in case of transient subsystem failure. Also can support the replacement of defective subsystem if a failure is permanent Membership problem: achieving agreement on the identity of all correctly functioning process of a process group. In a time-trigger system, periodic messages are membership points of the sender. Every receiver knows a priori when a message of a sender is supposed to arrive and interprets the arrival of the message as a life sign.

12 Outline Time and Event Triggered Communication Fundamental Services of a Time-Triggered Communication Protocol Clock Synchronization Periodic Exchange of State Messages Fault Isolation Mechanisms Diagnostic Services Properties of Time-Triggered Communication Systems Composability Independent Fault Containment Regions Strict Control on Node Interactions Replica Determinism Performance Summary

13 Property #1: Composability Composability: an architectural framework that supports the smooth integration and reuse of independently developed components in order to increase the level of abstraction in the design process. An architecture must enable the precise specification of the linking interface of a node in the domain of value and time. The operational specification of the value domain of interacting message is state-of-the-art in embedded system design Composability requires the stability of prior services upon integration.

14 Cont. Property #1: Composability Another necessary condition of composability is the support for noninterfering interactions. If there exist two disjoint subgroups of cooperating nodes that share a commin communication infrastructure, then the communication activities within one subgroup may not interfere with the communication activities with the other subgroup. Composability requires the preservation of the node abstraction in the case of failures. In a composable architecture, the introduced abstraction of a node must remain intact, even if a node becomes faulty.

15 Property #2: Independent Fault Containment Regions (FCR) A FCR is the boundary of the immediate impact if a fault. Message timing failure / message value failure Error detection must be part of FCRs because it avoids error propagation. Common-mode failures are failures of multiple FCRs, which are correlated and occur due to a common cause. Common-mode failures occur when the assumption of the independence of FCRs is compromised.

16 Property #3: Strict Control on Node Interactions A distributed system needs shared networking resources to support the interaction between nodes. To preserve the independence of FCRs, strict control on node interactions and the use of shared resources is required. Temporal partitioning: Media access control is concerned with the assignment of time intervals to each node for the transmission of the node s messages. Spatial partitioning: Spatial partitioning ensures that one node can t alter the code, data, or message of another node.

17 Property #4: Replica Determinism Replica determinism has to be supported by the architecture to ensure that the replicas of an FTU (fault tolerant unit) produce the same outputs in defined time intervals. Computational activities are triggered after the last message of a set of input messages has been received by all replicas of an FTU Each replica wakes up at the same global tick and operates on the same set of input messages, the alignment of communication and computational activities on the sparse global time base ensures temporal predictability and avoids race conditions.

18 Property #5: Performance Important performance attributes in real-time communication networks are the bandwidth, the network delay and the variability of the network delay. Bandwidth measured in bits/second. Determines the types of functions that can be handled and the number of messages and nodes that can be handled by the communication network. Network delay denotes the time difference between the production of a message at a sending node and the reception of the last bit of the message by invoking a send operation at the node's communication controller.

19 Cont. Property #5: Performance In time-triggered system, the send instants of all nodes are periodically recurring instants, which are globally planned in the system and denoted with respect to the global time base. In an event triggered system, the access delay of a message depends on the state on the communication system at the send instant. A bounded network delay with a min variability is important in many embedded applications. In hard real-time systems, missed deadlines represent system failures with the potential of consequences as serious as in the case of providing incorrect results.

20 Cont. Property #5: Performance For cars: steering system outage time must not exceed 50 ms For jets: engines could blow up if inputs are not within 20-50ms Delay jitter is another uncertainty: state estimation method can be used to compensate this issue.

21 Summary Overview Time and Event Triggered Communication Fundamental Services of a Time-Triggered Communication Protocol Clock Synchronization Periodic Exchange of State Messages Fault Isolation Mechanisms Diagnostic Services Properties of Time-Triggered Communication Systems Composability Independent Fault Containment Regions Strict Control on Node Interactions Replica Determinism Performance

22 THANK YOU! QUESTIONS?

An Encapsulated Communication System for Integrated Architectures

An Encapsulated Communication System for Integrated Architectures An Encapsulated Communication System for Integrated Architectures Architectural Support for Temporal Composability Roman Obermaisser Overview Introduction Federated and Integrated Architectures DECOS Architecture

More information

CORBA in the Time-Triggered Architecture

CORBA in the Time-Triggered Architecture 1 CORBA in the Time-Triggered Architecture H. Kopetz TU Wien July 2003 Outline 2 Hard Real-Time Computing Event and State Messages The Time Triggered Architecture The Marriage of CORBA with the TTA Conclusion

More information

Systems. Roland Kammerer. 10. November Institute of Computer Engineering Vienna University of Technology. Communication Protocols for Embedded

Systems. Roland Kammerer. 10. November Institute of Computer Engineering Vienna University of Technology. Communication Protocols for Embedded Communication Roland Institute of Computer Engineering Vienna University of Technology 10. November 2010 Overview 1. Definition of a protocol 2. Protocol properties 3. Basic Principles 4. system communication

More information

Diagnosis in the Time-Triggered Architecture

Diagnosis in the Time-Triggered Architecture TU Wien 1 Diagnosis in the Time-Triggered Architecture H. Kopetz June 2010 Embedded Systems 2 An Embedded System is a Cyber-Physical System (CPS) that consists of two subsystems: A physical subsystem the

More information

Distributed Embedded Systems and realtime networks

Distributed Embedded Systems and realtime networks STREAM01 / Mastère SE Distributed Embedded Systems and realtime networks Embedded network TTP Marie-Agnès Peraldi-Frati AOSTE Project UNSA- CNRS-INRIA January 2008 1 Abstract Requirements for TT Systems

More information

Dependable Computer Systems

Dependable Computer Systems Dependable Computer Systems Part 6b: System Aspects Contents Synchronous vs. Asynchronous Systems Consensus Fault-tolerance by self-stabilization Examples Time-Triggered Ethernet (FT Clock Synchronization)

More information

Real-Time Component Software. slide credits: H. Kopetz, P. Puschner

Real-Time Component Software. slide credits: H. Kopetz, P. Puschner Real-Time Component Software slide credits: H. Kopetz, P. Puschner Overview OS services Task Structure Task Interaction Input/Output Error Detection 2 Operating System and Middleware Application Software

More information

16 Time Triggered Protocol

16 Time Triggered Protocol 16 Time Triggered Protocol [TTtech04] (TTP) 18-549 Distributed Embedded Systems Philip Koopman October 25, 2004 Significant material drawn from: Prof. H. Kopetz [Kopetz] TTP Specification v 1.1 [TTTech]

More information

TU Wien. Shortened by Hermann Härtig The Rationale for Time-Triggered (TT) Ethernet. H Kopetz TU Wien December H. Kopetz 12.

TU Wien. Shortened by Hermann Härtig The Rationale for Time-Triggered (TT) Ethernet. H Kopetz TU Wien December H. Kopetz 12. TU Wien 1 Shortened by Hermann Härtig The Rationale for Time-Triggered (TT) Ethernet H Kopetz TU Wien December 2008 Properties of a Successful Protocol 2 A successful real-time protocol must have the following

More information

Distributed Systems (ICE 601) Fault Tolerance

Distributed Systems (ICE 601) Fault Tolerance Distributed Systems (ICE 601) Fault Tolerance Dongman Lee ICU Introduction Failure Model Fault Tolerance Models state machine primary-backup Class Overview Introduction Dependability availability reliability

More information

DISTRIBUTED REAL-TIME SYSTEMS

DISTRIBUTED REAL-TIME SYSTEMS Distributed Systems Fö 11/12-1 Distributed Systems Fö 11/12-2 DISTRIBUTED REAL-TIME SYSTEMS What is a Real-Time System? 1. What is a Real-Time System? 2. Distributed Real Time Systems 3. Predictability

More information

FlexRay International Workshop. Protocol Overview

FlexRay International Workshop. Protocol Overview FlexRay International Workshop 4 th March 2003 Detroit Protocol Overview Dr. Christopher Temple - Motorola FlexRay principles Provide a communication infrastructure for future generation highspeed control

More information

Developing deterministic networking technology for railway applications using TTEthernet software-based end systems

Developing deterministic networking technology for railway applications using TTEthernet software-based end systems Developing deterministic networking technology for railway applications using TTEthernet software-based end systems Project n 100021 Astrit Ademaj, TTTech Computertechnik AG Outline GENESYS requirements

More information

Time-Triggered Ethernet

Time-Triggered Ethernet Time-Triggered Ethernet Chapters 42 in the Textbook Professor: HONGWEI ZHANG CSC8260 Winter 2016 Presented By: Priyank Baxi (fr0630) fr0630@wayne.edu Outline History Overview TTEthernet Traffic Classes

More information

Mixed-Criticality Systems based on a CAN Router with Support for Fault Isolation and Selective Fault-Tolerance

Mixed-Criticality Systems based on a CAN Router with Support for Fault Isolation and Selective Fault-Tolerance IFAC 2014 Mixed-Criticality Systems based on a Router with Support for Fault Isolation and Selective Fault-Tolerance Roland Kammerer 1, Roman Obermaisser², Mino Sharkhawy 1 1 Vienna University of Technology,

More information

OMG Smart Transducer Specification (I)

OMG Smart Transducer Specification (I) 1 OMG Smart Transducer Specification (I) H. Kopetz TU Wien July 2003 The Time-Triggered Architecture 2 Take Time from the Problem Domain And move it into the Solution Domain Basic Concepts 3 RT System

More information

Amrita Vishwa Vidyapeetham. ES623 Networked Embedded Systems Answer Key

Amrita Vishwa Vidyapeetham. ES623 Networked Embedded Systems Answer Key Time: Two Hours Amrita Vishwa Vidyapeetham M.Tech Second Assessment February 2013 Second Semester Embedded Systems Roll No: ES623 Networked Embedded Systems Answer Key Answer all Questions Maximum: 50

More information

Virtual Networks in an Integrated Time-Triggered Architecture

Virtual Networks in an Integrated Time-Triggered Architecture Virtual Networks in an ntegrated Time-Triggered Architecture R. Obermaisser, P. Peti, H. Kopetz Vienna University of Technology, Austria email: {ro,php,hk}@vmars.tuwien.ac.at Abstract Depending on the

More information

Fault-tolerant techniques

Fault-tolerant techniques What are the effects if the hardware or software is not fault-free in a real-time system? What causes component faults? Specification or design faults: Incomplete or erroneous models Lack of techniques

More information

FAULT TOLERANCE. Fault Tolerant Systems. Faults Faults (cont d)

FAULT TOLERANCE. Fault Tolerant Systems. Faults Faults (cont d) Distributed Systems Fö 9/10-1 Distributed Systems Fö 9/10-2 FAULT TOLERANCE 1. Fault Tolerant Systems 2. Faults and Fault Models. Redundancy 4. Time Redundancy and Backward Recovery. Hardware Redundancy

More information

TU Wien. Fault Isolation and Error Containment in the TT-SoC. H. Kopetz. TU Wien. July 2007

TU Wien. Fault Isolation and Error Containment in the TT-SoC. H. Kopetz. TU Wien. July 2007 TU Wien 1 Fault Isolation and Error Containment in the TT-SoC H. Kopetz TU Wien July 2007 This is joint work with C. El.Salloum, B.Huber and R.Obermaisser Outline 2 Introduction The Concept of a Distributed

More information

ARTIST-Relevant Research from Linköping

ARTIST-Relevant Research from Linköping ARTIST-Relevant Research from Linköping Department of Computer and Information Science (IDA) Linköping University http://www.ida.liu.se/~eslab/ 1 Outline Communication-Intensive Real-Time Systems Timing

More information

A Framework for the Formal Verification of Time-Triggered Systems

A Framework for the Formal Verification of Time-Triggered Systems A Framework for the Formal Verification of Time-Triggered Systems Lee Pike leepike@galois.com Indiana University, Bloomington Department of Computer Science Advisor: Prof. Steven D. Johnson December 12,

More information

Issues in Programming Language Design for Embedded RT Systems

Issues in Programming Language Design for Embedded RT Systems CSE 237B Fall 2009 Issues in Programming Language Design for Embedded RT Systems Reliability and Fault Tolerance Exceptions and Exception Handling Rajesh Gupta University of California, San Diego ES Characteristics

More information

The Time-Triggered Architecture

The Time-Triggered Architecture The Time-Triggered Architecture HERMANN KOPETZ, FELLOW, IEEE AND GÜNTHER BAUER Invited Paper The time-triggered architecture (TTA) provides a computing infrastructure for the design and implementation

More information

The Time-Triggered Ethernet (TTE) Design

The Time-Triggered Ethernet (TTE) Design The Time-Triggered Ethernet (TTE) Design Hermann Kopetz Astrit Ademaj Petr Grillinger Klaus Steinhammer Vienna University of Technology Real-Time Systems Group Treitlstr. 3/182-1, A-1040 Vienna, Austria

More information

Introduction to the Distributed Real-Time System

Introduction to the Distributed Real-Time System Introduction to the Distributed Real-Time System Insup Lee Department of Computer and Information Science School of Engineering and Applied Science University of Pennsylvania www.cis.upenn.edu/~lee/ CIS

More information

CprE 458/558: Real-Time Systems. Lecture 17 Fault-tolerant design techniques

CprE 458/558: Real-Time Systems. Lecture 17 Fault-tolerant design techniques : Real-Time Systems Lecture 17 Fault-tolerant design techniques Fault Tolerant Strategies Fault tolerance in computer system is achieved through redundancy in hardware, software, information, and/or computations.

More information

Communication in Avionics

Communication in Avionics Communication in Avionics 1 Outline Basic Overview Communication architectures Event Triggered Time Triggered Communication architecture examples Case Study: How Data Communication Affects Scheduling 2

More information

Commercial Real-time Operating Systems An Introduction. Swaminathan Sivasubramanian Dependable Computing & Networking Laboratory

Commercial Real-time Operating Systems An Introduction. Swaminathan Sivasubramanian Dependable Computing & Networking Laboratory Commercial Real-time Operating Systems An Introduction Swaminathan Sivasubramanian Dependable Computing & Networking Laboratory swamis@iastate.edu Outline Introduction RTOS Issues and functionalities LynxOS

More information

A Comparison of TTP/C and FlexRay

A Comparison of TTP/C and FlexRay 1 A Comparison of TTP/C and FlexRay Research Report 10/2001 5 10 H. Kopetz hk@vmars.tuwien.ac.at Institut für Technische Informatik Technische Universität Wien, Austria May 9, 2001 15 20 25 30 Abstract:

More information

A Fault Management Protocol for TTP/C

A Fault Management Protocol for TTP/C A Fault Management Protocol for TTP/C Juan R. Pimentel Teodoro Sacristan Kettering University Dept. Ingenieria y Arquitecturas Telematicas 1700 W. Third Ave. Polytechnic University of Madrid Flint, Michigan

More information

System Models. 2.1 Introduction 2.2 Architectural Models 2.3 Fundamental Models. Nicola Dragoni Embedded Systems Engineering DTU Informatics

System Models. 2.1 Introduction 2.2 Architectural Models 2.3 Fundamental Models. Nicola Dragoni Embedded Systems Engineering DTU Informatics System Models Nicola Dragoni Embedded Systems Engineering DTU Informatics 2.1 Introduction 2.2 Architectural Models 2.3 Fundamental Models Architectural vs Fundamental Models Systems that are intended

More information

02 - Distributed Systems

02 - Distributed Systems 02 - Distributed Systems Definition Coulouris 1 (Dis)advantages Coulouris 2 Challenges Saltzer_84.pdf Models Physical Architectural Fundamental 2/58 Definition Distributed Systems Distributed System is

More information

The Timed Asynchronous Distributed System Model By Flaviu Cristian and Christof Fetzer

The Timed Asynchronous Distributed System Model By Flaviu Cristian and Christof Fetzer The Timed Asynchronous Distributed System Model By Flaviu Cristian and Christof Fetzer - proposes a formal definition for the timed asynchronous distributed system model - presents measurements of process

More information

Fault Tolerance. Distributed Software Systems. Definitions

Fault Tolerance. Distributed Software Systems. Definitions Fault Tolerance Distributed Software Systems Definitions Availability: probability the system operates correctly at any given moment Reliability: ability to run correctly for a long interval of time Safety:

More information

Wireless Sensor Networks: Clustering, Routing, Localization, Time Synchronization

Wireless Sensor Networks: Clustering, Routing, Localization, Time Synchronization Wireless Sensor Networks: Clustering, Routing, Localization, Time Synchronization Maurizio Bocca, M.Sc. Control Engineering Research Group Automation and Systems Technology Department maurizio.bocca@tkk.fi

More information

Module 8 - Fault Tolerance

Module 8 - Fault Tolerance Module 8 - Fault Tolerance Dependability Reliability A measure of success with which a system conforms to some authoritative specification of its behavior. Probability that the system has not experienced

More information

System Models for Distributed Systems

System Models for Distributed Systems System Models for Distributed Systems INF5040/9040 Autumn 2015 Lecturer: Amir Taherkordi (ifi/uio) August 31, 2015 Outline 1. Introduction 2. Physical Models 4. Fundamental Models 2 INF5040 1 System Models

More information

A CAN-Based Architecture for Highly Reliable Communication Systems

A CAN-Based Architecture for Highly Reliable Communication Systems A CAN-Based Architecture for Highly Reliable Communication Systems H. Hilmer Prof. Dr.-Ing. H.-D. Kochs Gerhard-Mercator-Universität Duisburg, Germany E. Dittmar ABB Network Control and Protection, Ladenburg,

More information

Announcements. me your survey: See the Announcements page. Today. Reading. Take a break around 10:15am. Ack: Some figures are from Coulouris

Announcements.  me your survey: See the Announcements page. Today. Reading. Take a break around 10:15am. Ack: Some figures are from Coulouris Announcements Email me your survey: See the Announcements page Today Conceptual overview of distributed systems System models Reading Today: Chapter 2 of Coulouris Next topic: client-side processing (HTML,

More information

Chapter 2 System Models

Chapter 2 System Models CSF661 Distributed Systems 分散式系統 Chapter 2 System Models 吳俊興國立高雄大學資訊工程學系 Chapter 2 System Models 2.1 Introduction 2.2 Physical models 2.3 Architectural models 2.4 Fundamental models 2.5 Summary 2 A physical

More information

CS 455/555 Intro to Networks and Communications. Link Layer

CS 455/555 Intro to Networks and Communications. Link Layer CS 455/555 Intro to Networks and Communications Link Layer Dr. Michele Weigle Department of Computer Science Old Dominion University mweigle@cs.odu.edu http://www.cs.odu.edu/~mweigle/cs455-s13 1 Link Layer

More information

Field buses (part 2): time triggered protocols

Field buses (part 2): time triggered protocols Field buses (part 2): time triggered protocols Nico Fritz Universität des Saarlandes Embedded Systems 2002/2003 (c) Daniel Kästner. 1 CAN and LIN LIN CAN Type Arbitration Transfer rate Serial communication

More information

Outline. Introduction to Networked Embedded Systems - Embedded systems Networked embedded systems Embedded Internet - Network properties

Outline. Introduction to Networked Embedded Systems - Embedded systems Networked embedded systems Embedded Internet - Network properties Outline Introduction to Networked Embedded Systems - Embedded systems Networked embedded systems Embedded Internet - Network properties Layered Network Architectures - OSI framework descriptions of layers

More information

02 - Distributed Systems

02 - Distributed Systems 02 - Distributed Systems Definition Coulouris 1 (Dis)advantages Coulouris 2 Challenges Saltzer_84.pdf Models Physical Architectural Fundamental 2/60 Definition Distributed Systems Distributed System is

More information

Atacama: An Open Experimental Platform for Mixed-Criticality Networking on Top of Ethernet

Atacama: An Open Experimental Platform for Mixed-Criticality Networking on Top of Ethernet Atacama: An Open Experimental Platform for Mixed-Criticality Networking on Top of Ethernet Gonzalo Carvajal 1,2 and Sebastian Fischmeister 1 1 University of Waterloo, ON, Canada 2 Universidad de Concepcion,

More information

1-1. Switching Networks (Fall 2010) EE 586 Communication and. November 8, Lecture 30

1-1. Switching Networks (Fall 2010) EE 586 Communication and. November 8, Lecture 30 EE 586 Communication and Switching Networks (Fall 2010) Lecture 30 November 8, 2010 1-1 Announcements Quiz on Wednesday Next Monday hands-on training on Contiki OS Bring your laptop 4-2 Multiple Access

More information

Real-Time Entities and Images

Real-Time Entities and Images Real-Time Entities and Images Insup Lee Department of Computer and Information Science School of Engineering and Applied Science University of Pennsylvania www.cis.upenn.edu/~lee/ CIS 541, Spring 2010

More information

Time Sensitive Networks - Update from the IIC Testbed for Flexible Manufacturing. Paul Didier, Cisco Rick Blair, Schneider Electric.

Time Sensitive Networks - Update from the IIC Testbed for Flexible Manufacturing. Paul Didier, Cisco Rick Blair, Schneider Electric. Time Sensitive Networks - Update from the IIC Testbed for Flexible Manufacturing Paul Didier, Cisco Rick Blair, Schneider Electric October 10, 2018 Abstract The IIC s TSN for Flexible Manufacturing testbed

More information

Module 8 Fault Tolerance CS655! 8-1!

Module 8 Fault Tolerance CS655! 8-1! Module 8 Fault Tolerance CS655! 8-1! Module 8 - Fault Tolerance CS655! 8-2! Dependability Reliability! A measure of success with which a system conforms to some authoritative specification of its behavior.!

More information

Chapter 8 Fault Tolerance

Chapter 8 Fault Tolerance DISTRIBUTED SYSTEMS Principles and Paradigms Second Edition ANDREW S. TANENBAUM MAARTEN VAN STEEN Chapter 8 Fault Tolerance 1 Fault Tolerance Basic Concepts Being fault tolerant is strongly related to

More information

The Link Layer and LANs. Chapter 6: Link layer and LANs

The Link Layer and LANs. Chapter 6: Link layer and LANs The Link Layer and LANs EECS3214 2018-03-14 4-1 Chapter 6: Link layer and LANs our goals: understand principles behind link layer services: error detection, correction sharing a broadcast channel: multiple

More information

Fault Tolerance Part I. CS403/534 Distributed Systems Erkay Savas Sabanci University

Fault Tolerance Part I. CS403/534 Distributed Systems Erkay Savas Sabanci University Fault Tolerance Part I CS403/534 Distributed Systems Erkay Savas Sabanci University 1 Overview Basic concepts Process resilience Reliable client-server communication Reliable group communication Distributed

More information

An Introduction to TTEthernet

An Introduction to TTEthernet An Introduction to thernet TU Vienna, Apr/26, 2013 Guest Lecture in Deterministic Networking (DetNet) Wilfried Steiner, Corporate Scientist wilfried.steiner@tttech.com Copyright TTTech Computertechnik

More information

Failure Models. Fault Tolerance. Failure Masking by Redundancy. Agreement in Faulty Systems

Failure Models. Fault Tolerance. Failure Masking by Redundancy. Agreement in Faulty Systems Fault Tolerance Fault cause of an error that might lead to failure; could be transient, intermittent, or permanent Fault tolerance a system can provide its services even in the presence of faults Requirements

More information

Introduction to Software Fault Tolerance Techniques and Implementation. Presented By : Hoda Banki

Introduction to Software Fault Tolerance Techniques and Implementation. Presented By : Hoda Banki Introduction to Software Fault Tolerance Techniques and Implementation Presented By : Hoda Banki 1 Contents : Introduction Types of faults Dependability concept classification Error recovery Types of redundancy

More information

A Time-Triggered Ethernet (TTE) Switch

A Time-Triggered Ethernet (TTE) Switch A Time-Triggered Ethernet () Switch Klaus Steinhammer Petr Grillinger Astrit Ademaj Hermann Kopetz Vienna University of Technology Real-Time Systems Group Treitlstr. 3/182-1, A-1040 Vienna, Austria E-mail:{klaus,grilling,ademaj,hk}@vmars.tuwien.ac.at

More information

Middleware and Distributed Systems. System Models. Dr. Martin v. Löwis

Middleware and Distributed Systems. System Models. Dr. Martin v. Löwis Middleware and Distributed Systems System Models Dr. Martin v. Löwis System Models (Coulouris et al.) Architectural models of distributed systems placement of parts and relationships between them e.g.

More information

Lecture 2. Basics of networking in automotive systems: Network. topologies, communication principles and standardised protocols

Lecture 2. Basics of networking in automotive systems: Network. topologies, communication principles and standardised protocols Lecture 2. Basics of networking in automotive systems: Network topologies, communication principles and standardised protocols Objectives Introduce basic concepts used in building networks for automotive

More information

Chapter 5: Distributed Systems: Fault Tolerance. Fall 2013 Jussi Kangasharju

Chapter 5: Distributed Systems: Fault Tolerance. Fall 2013 Jussi Kangasharju Chapter 5: Distributed Systems: Fault Tolerance Fall 2013 Jussi Kangasharju Chapter Outline n Fault tolerance n Process resilience n Reliable group communication n Distributed commit n Recovery 2 Basic

More information

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 16

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 16 CMPE 150/L : Introduction to Computer Networks Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 16 1 Final project demo Please do the demo next week to the TAs. So basically you may need

More information

Aerospace Software Engineering

Aerospace Software Engineering 16.35 Aerospace Software Engineering Reliability, Availability, and Maintainability Software Fault Tolerance Prof. Kristina Lundqvist Dept. of Aero/Astro, MIT Definitions Software reliability The probability

More information

A Multi-Modal Composability Framework for Cyber-Physical Systems

A Multi-Modal Composability Framework for Cyber-Physical Systems S5 Symposium June 12, 2012 A Multi-Modal Composability Framework for Cyber-Physical Systems Linh Thi Xuan Phan Insup Lee PRECISE Center University of Pennsylvania Avionics, Automotive Medical Devices Cyber-physical

More information

Reminder: Datalink Functions Computer Networking. Datalink Architectures

Reminder: Datalink Functions Computer Networking. Datalink Architectures Reminder: Datalink Functions 15-441 15 441 15-641 Computer Networking Lecture 5 Media Access Control Peter Steenkiste Fall 2015 www.cs.cmu.edu/~prs/15-441-f15 Framing: encapsulating a network layer datagram

More information

System Models 2. Lecture - System Models 2 1. Areas for Discussion. Introduction. Introduction. System Models. The Modelling Process - General

System Models 2. Lecture - System Models 2 1. Areas for Discussion. Introduction. Introduction. System Models. The Modelling Process - General Areas for Discussion System Models 2 Joseph Spring School of Computer Science MCOM0083 - Distributed Systems and Security Lecture - System Models 2 1 Architectural Models Software Layers System Architecture

More information

A Data-Centric Approach for Modular Assurance Abstract. Keywords: 1 Introduction

A Data-Centric Approach for Modular Assurance Abstract. Keywords: 1 Introduction A Data-Centric Approach for Modular Assurance Gabriela F. Ciocarlie, Heidi Schubert and Rose Wahlin Real-Time Innovations, Inc. {gabriela, heidi, rose}@rti.com Abstract. A mixed-criticality system is one

More information

A Byzantine Fault-Tolerant Key-Value Store for Safety-Critical Distributed Real-Time Systems

A Byzantine Fault-Tolerant Key-Value Store for Safety-Critical Distributed Real-Time Systems Work in progress A Byzantine Fault-Tolerant Key-Value Store for Safety-Critical Distributed Real-Time Systems December 5, 2017 CERTS 2017 Malte Appel, Arpan Gujarati and Björn B. Brandenburg Distributed

More information

Chapter 5: Link layer

Chapter 5: Link layer Chapter 5: Link layer our goals: v understand principles behind link layer services: error detection, correction sharing a broadcast channel: multiple access link layer addressing local area networks:

More information

Introduction to Real-Time Communications. Real-Time and Embedded Systems (M) Lecture 15

Introduction to Real-Time Communications. Real-Time and Embedded Systems (M) Lecture 15 Introduction to Real-Time Communications Real-Time and Embedded Systems (M) Lecture 15 Lecture Outline Modelling real-time communications Traffic and network models Properties of networks Throughput, delay

More information

Dep. Systems Requirements

Dep. Systems Requirements Dependable Systems Dep. Systems Requirements Availability the system is ready to be used immediately. A(t) = probability system is available for use at time t MTTF/(MTTF+MTTR) If MTTR can be kept small

More information

Informal Quiz #01: SOLUTIONS

Informal Quiz #01: SOLUTIONS ECSE-6600: Internet Protocols Informal Quiz #01: SOLUTIONS : GOOGLE: Shiv RPI shivkuma@ecse.rpi.edu 1 Review of Networking Concepts (I): Informal Quiz SOLUTIONS For each T/F question: Replace the appropriate

More information

Reducing SpaceWire Time-code Jitter

Reducing SpaceWire Time-code Jitter Reducing SpaceWire Time-code Jitter Barry M Cook 4Links Limited The Mansion, Bletchley Park, Milton Keynes, MK3 6ZP, UK Email: barry@4links.co.uk INTRODUCTION Standards ISO/IEC 14575[1] and IEEE 1355[2]

More information

Links Reading: Chapter 2. Goals of Todayʼs Lecture. Message, Segment, Packet, and Frame

Links Reading: Chapter 2. Goals of Todayʼs Lecture. Message, Segment, Packet, and Frame Links Reading: Chapter 2 CS 375: Computer Networks Thomas Bressoud 1 Goals of Todayʼs Lecture Link-layer services Encoding, framing, and error detection Error correction and flow control Sharing a shared

More information

Parallel and Distributed Systems. Programming Models. Why Parallel or Distributed Computing? What is a parallel computer?

Parallel and Distributed Systems. Programming Models. Why Parallel or Distributed Computing? What is a parallel computer? Parallel and Distributed Systems Instructor: Sandhya Dwarkadas Department of Computer Science University of Rochester What is a parallel computer? A collection of processing elements that communicate and

More information

DISTRIBUTED SYSTEMS Principles and Paradigms Second Edition ANDREW S. TANENBAUM MAARTEN VAN STEEN. Chapter 1. Introduction

DISTRIBUTED SYSTEMS Principles and Paradigms Second Edition ANDREW S. TANENBAUM MAARTEN VAN STEEN. Chapter 1. Introduction DISTRIBUTED SYSTEMS Principles and Paradigms Second Edition ANDREW S. TANENBAUM MAARTEN VAN STEEN Chapter 1 Introduction Modified by: Dr. Ramzi Saifan Definition of a Distributed System (1) A distributed

More information

MODELS OF DISTRIBUTED SYSTEMS

MODELS OF DISTRIBUTED SYSTEMS Distributed Systems Fö 2/3-1 Distributed Systems Fö 2/3-2 MODELS OF DISTRIBUTED SYSTEMS Basic Elements 1. Architectural Models 2. Interaction Models Resources in a distributed system are shared between

More information

Exercise Sensor Networks - (till June 20, 2005)

Exercise Sensor Networks - (till June 20, 2005) - (till June 20, 2005) Exercise 8.1: Signal propagation delay A church bell is rang by a digitally triggered mechanics. How long does the sound travel to a sensor node in a distance of 2km if sound travels

More information

An Orthogonal and Fault-Tolerant Subsystem for High-Precision Clock Synchronization in CAN Networks *

An Orthogonal and Fault-Tolerant Subsystem for High-Precision Clock Synchronization in CAN Networks * An Orthogonal and Fault-Tolerant Subsystem for High-Precision Clock Synchronization in Networks * GUILLERMO RODRÍGUEZ-NAVAS and JULIÁN PROENZA Departament de Matemàtiques i Informàtica Universitat de les

More information

Distributed Systems. 05. Clock Synchronization. Paul Krzyzanowski. Rutgers University. Fall 2017

Distributed Systems. 05. Clock Synchronization. Paul Krzyzanowski. Rutgers University. Fall 2017 Distributed Systems 05. Clock Synchronization Paul Krzyzanowski Rutgers University Fall 2017 2014-2017 Paul Krzyzanowski 1 Synchronization Synchronization covers interactions among distributed processes

More information

DTU IMM. MSc Thesis. Analysis and Optimization of TTEthernet-based Safety Critical Embedded Systems. Radoslav Hristov Todorov s080990

DTU IMM. MSc Thesis. Analysis and Optimization of TTEthernet-based Safety Critical Embedded Systems. Radoslav Hristov Todorov s080990 DTU IMM MSc Thesis Analysis and Optimization of TTEthernet-based Safety Critical Embedded Systems Radoslav Hristov Todorov s080990 16-08-2010 Acknowledgements The work for this master thesis project continued

More information

Applying CORBA to embedded time-triggered real-time systems. S. Aslam-Mir (Sam) Principal CORBA Architect Vertel USA

Applying CORBA to embedded time-triggered real-time systems. S. Aslam-Mir (Sam) Principal CORBA Architect Vertel USA Applying CORBA to embedded time-triggered real-time systems S. Aslam-Mir (Sam) Principal CORBA Architect Vertel USA sam@vertel.com Synopsis! Motivation Time Triggered vs Event Triggered! Real-time CORBA

More information

The House Intelligent Switch Control Network based On CAN bus

The House Intelligent Switch Control Network based On CAN bus The House Intelligent Switch Control Network based On CAN bus A.S.Jagadish Department Electronics and Telecommunication Engineering, Bharath University Abstract The Embedded Technology is now in its prime

More information

ECE 4450:427/527 - Computer Networks Spring 2017

ECE 4450:427/527 - Computer Networks Spring 2017 ECE 4450:427/527 - Computer Networks Spring 2017 Dr. Nghi Tran Department of Electrical & Computer Engineering Lecture 5.4: Multiple Access Protocols Dr. Nghi Tran (ECE-University of Akron) ECE 4450:427/527

More information

CprE Fault Tolerance. Dr. Yong Guan. Department of Electrical and Computer Engineering & Information Assurance Center Iowa State University

CprE Fault Tolerance. Dr. Yong Guan. Department of Electrical and Computer Engineering & Information Assurance Center Iowa State University Fault Tolerance Dr. Yong Guan Department of Electrical and Computer Engineering & Information Assurance Center Iowa State University Outline for Today s Talk Basic Concepts Process Resilience Reliable

More information

SAFETY-CRITICAL applications have to function correctly

SAFETY-CRITICAL applications have to function correctly IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 3, MARCH 2009 389 Design Optimization of Time- and Cost-Constrained Fault-Tolerant Embedded Systems With Checkpointing and

More information

Distributed IMA with TTEthernet

Distributed IMA with TTEthernet Distributed IMA with thernet ARINC 653 Integration of thernet Georg Gaderer, Product Manager Georg.Gaderer@tttech.com October 30, 2012 Copyright TTTech Computertechnik AG. All rights reserved. Introduction

More information

Optical Burst Switching (OBS): The Dawn of A New Era in Optical Networking

Optical Burst Switching (OBS): The Dawn of A New Era in Optical Networking Optical Burst Switching (OBS): The Dawn of A New Era in Optical Networking Presented by Yang Chen (LANDER) Yang Chen (Lander) 1 Outline Historical Review Burst reservation Burst assembly OBS node Towards

More information

Redundancy in fault tolerant computing. D. P. Siewiorek R.S. Swarz, Reliable Computer Systems, Prentice Hall, 1992

Redundancy in fault tolerant computing. D. P. Siewiorek R.S. Swarz, Reliable Computer Systems, Prentice Hall, 1992 Redundancy in fault tolerant computing D. P. Siewiorek R.S. Swarz, Reliable Computer Systems, Prentice Hall, 1992 1 Redundancy Fault tolerance computing is based on redundancy HARDWARE REDUNDANCY Physical

More information

TU Wien. Excerpt by Hermann Härtig The Rationale for Time-Triggered (TT) Ethernet. H Kopetz TU Wien December H. Kopetz 12.

TU Wien. Excerpt by Hermann Härtig The Rationale for Time-Triggered (TT) Ethernet. H Kopetz TU Wien December H. Kopetz 12. TU Wien 1 Excerpt by Hermann Härtig The Rationale for Time-Triggered (TT) Ethernet H Kopetz TU Wien December 2008 Time 2 Whenever we use the term time we mean physical time as defined by the international

More information

Real-Time System Modeling. slide credits: H. Kopetz, P. Puschner

Real-Time System Modeling. slide credits: H. Kopetz, P. Puschner Real-Time System Modeling slide credits: H. Kopetz, P. Puschner Overview Model Construction Real-time clusters & components Interfaces Real-time interfaces and observations Real-time images and temporal

More information

Data Link Layer: Overview, operations

Data Link Layer: Overview, operations Data Link Layer: Overview, operations Chapter 3 1 Outlines 1. Data Link Layer Functions. Data Link Services 3. Framing 4. Error Detection/Correction. Flow Control 6. Medium Access 1 1. Data Link Layer

More information

Distributed Systems. 09. State Machine Replication & Virtual Synchrony. Paul Krzyzanowski. Rutgers University. Fall Paul Krzyzanowski

Distributed Systems. 09. State Machine Replication & Virtual Synchrony. Paul Krzyzanowski. Rutgers University. Fall Paul Krzyzanowski Distributed Systems 09. State Machine Replication & Virtual Synchrony Paul Krzyzanowski Rutgers University Fall 2016 1 State machine replication 2 State machine replication We want high scalability and

More information

Fault Tolerance. Distributed Systems. September 2002

Fault Tolerance. Distributed Systems. September 2002 Fault Tolerance Distributed Systems September 2002 Basics A component provides services to clients. To provide services, the component may require the services from other components a component may depend

More information

MODELS OF DISTRIBUTED SYSTEMS

MODELS OF DISTRIBUTED SYSTEMS Distributed Systems Fö 2/3-1 Distributed Systems Fö 2/3-2 MODELS OF DISTRIBUTED SYSTEMS Basic Elements 1. Architectural Models 2. Interaction Models Resources in a distributed system are shared between

More information

Syllabus Instructors:

Syllabus Instructors: Introduction to Real-Time Systems Embedded Real-Time Software Lecture 1 Syllabus Instructors: Dongsoo S. Kim Office : Room 83345 (031-299-4642) E-mail : dskim@iupui.edu Office Hours: by appointment 2 Syllabus

More information

Data Communication. Chapter # 1: Introduction. By: William Stalling

Data Communication. Chapter # 1: Introduction. By: William Stalling Data Communication Chapter # 1: By: Introduction William Stalling Data Communication The exchange of data between two devices via some form of transmission medium such as cable wire. For data communications

More information

Resilience Design Patterns: A Structured Approach to Resilience at Extreme Scale

Resilience Design Patterns: A Structured Approach to Resilience at Extreme Scale Resilience Design Patterns: A Structured Approach to Resilience at Extreme Scale Saurabh Hukerikar Christian Engelmann Computer Science Research Group Computer Science & Mathematics Division Oak Ridge

More information

Links. CS125 - mylinks 1 1/22/14

Links. CS125 - mylinks 1 1/22/14 Links 1 Goals of Today s Lecture Link-layer services Encoding, framing, and error detection Error correction and flow control Sharing a shared media Channel partitioning Taking turns Random access Shared

More information

System models for distributed systems

System models for distributed systems System models for distributed systems INF5040/9040 autumn 2010 lecturer: Frank Eliassen INF5040 H2010, Frank Eliassen 1 System models Purpose illustrate/describe common properties and design choices for

More information