EECS 122, Lecture 7. Kevin Fall Jean Walrand

Size: px
Start display at page:

Download "EECS 122, Lecture 7. Kevin Fall Jean Walrand"

Transcription

1 EECS 122, Lecture 7 Kevin Fall kfall@cs.berkeley.edu Jean Walrand wlr@eecs.berkeley.edu

2 : Outline Typical Setup Names Physical Layer Frame Fast Ethernet; Gigabit Ethernet 10Base5 Efficiency of CSMA/CD Perspective EECS Fall & Walrand 198

3 Typical Setup EECS Fall & Walrand 199

4 Names Names of form [rate][modulation][media or distance] Examples: n 10Base2 (10Mb/s, baseband, small coax, 200m) n 10Base5 (10Mb/s, baseband, coax, 500m) n n n 10Base-T (10Mb/s, baseband, twisted pair) 100Base-TX (100Mb/s, baseband, 2 pair) 100Base-FX (100Mb/s, baseband, fiber) EECS Fall & Walrand 200

5 Physical Layer EECS Fall & Walrand 201

6 Physical Layer EECS Fall & Walrand 202

7 Physical Layer Hub: Single Collision Domain MAC Protocol: Wait until silent (carrier sense) Transmit CSMA/CD If collision, wait random time & repeat EECS Fall & Walrand 203

8 Physical Layer Switch: No Collisions Multiple transmissions are possible Switch stores packets that wait for same output EECS Fall & Walrand 204

9 Frame 7 byte preamble: alternating 1/0 combination producing 10Mhz square wave [@ 10Mbps] for 5.6 µsec; used for receiver synchronization 1 byte SFD (start of frame delimiter) EECS Fall & Walrand 205

10 Frame Length/Type field: Type (Ethernet) indicates type of data contained in payload issue: what is the length? Length field (802.3) type info follows frame header So, is it the type or length? Ethernet : types have values above 2048 (RFC894 for IP) 802.3: length (RFC1042 for IP) If length, next headers are LLC & SNAP (for IP) LLC (3 bytes): DSAP, SSAP, CTL SNAP (5 bytes): org code, type (above) EECS Fall & Walrand 206

11 IEEE 802.3u 100 Mb/s Fast Ethernet (1995) adds: n 10x speed increase (100m max cable length retains min 64 byte frames) n replace Manchester with 4B/5B (from FDDI) n full-duplex operation using switches n speed & duplex auto-negotiation EECS Fall & Walrand 207

12 IEEE 802.3{z,ab} 1000 Mb/s Gigabit Ethernet (1998,9) adds: n 100x speed increase n carrier extension (invisible padding...) n packet bursting EECS Fall & Walrand 208

13 10base5 - Definition Will discuss classical Ethernet primarily Single segments up to 500m; with up to 4 repeaters gives 2500m max length Baseband signals broadcast, Manchester encoding, 32-bit CRC for error detection Max 100 stations/segment, 1024 stations/ethernet EECS Fall & Walrand 209

14 10base5 Collision Detection CD circuit operates by looking for voltage exceeding a transmitted voltage Want to ensure that a station does not complete transmission prior to 1st bit arriving at farthest-away station Time to CD can thus take up to 2x{max prop. delay} A B time EECS Fall & Walrand 210 CD

15 10base5 minimum frame size Speed of light is about 4µs/km in copper So, max Ethernet signal prop time is about 10 µsec, or 20µsec RTT With repeaters, etc requires 51usec, corresponding to 512 bit-times Thus, minimum frame size is 512 bits (64 bytes); also called slot time EECS Fall & Walrand 211

16 10base5 max. frame size 1500 byte limitation on maximum frame transmission size Later we will call this the MTU limits maximum buffers at receiver allows for other stations to send n also requires 96 bit Inter-Packet-Gap (IPG) EECS Fall & Walrand 212

17 10base5 - Transmitter When ready & line idle, await IPG (96 bit times) and send while listening (CD) If CD true, send max 48-bit jamming sequence and do exponential backoff Jamming sequence used to inform all stations that a collision has occurred EECS Fall & Walrand 213

18 10base5 Exponential Backoff For retransmission N (1<=N<=10) n choose k at random on U(0..2^N-1) n wait k * (51.2µsec) to retransmit n send on idle; repeat on another collision n for (11<=N<=15), use U( ) n if N = 16, drop frame Longer wait implies lower priority (strategy is not fair ) EECS Fall & Walrand 214

19 10base5 Capture Effect Given two stations A & B, unfair strategy can cause A to continue to win Assume A & B always ready to send: n if busy, both wait, send and collide n suppose A wins, B backs off n next time, B s chances of winning are halved EECS Fall & Walrand 215

20 Efficiency of CSMA/CD Typical Sequence of Events: Average = 5T T = max.prop.time between 2 nodes Average = L/R seconds L = average packet length Wait Random Successful Transmission Time Collision L/R Efficiency = = 1/(1 + 5a) Start L/R + 5T Transmitting a = T/(L/R) = RT/L EECS Fall & Walrand 216

21 Efficiency of CSMA/CD a impacts what happens during simultaneous transmission: n a small early collision detection Efficient a = RT/L eff = 1/(1 + 5a) n a large late detection Inefficient Example 1: 10Mbps, 1000m => T = (1km)(4µs/km) = 4µs; RT = 400 bits L = 4000 bits, say 5a = 2000/4000 = 0.5 => efficiency = 66% Example 2: 1Gbps, 200m => T = (0.2km)((4µs/km) = 0.8µs; RT = 800 bits L = 4000 bits; 5a = 4000/4000 = 1 => efficiency = 50% EECS Fall & Walrand 217

22 Efficiency of CSMA/CD - Analysis Model: Slot = 2T N stations compete by transmitting with probability p, independently If success => transmit L bits If failure (idle or collision), try next slot P(success) = P(exactly 1 out of N transmits) = Np(1 p) N-1 Indeed: N possibilities of station that transmits P(one given station transmits, others do not) = p(1 p) N-1 EECS Fall & Walrand 218

23 Efficiency of CSMA/CD - Analysis Average = A Slot = 2T success P(success) = Np(1 p) N-1 Assume backoff algorithm results in best p = 1/N => P(success) 1/e = 0.36 Average time until success: A = 0.36x x(2T + A) => A = 1.28T/0.36 = 3.5T In practice, backoff not quite optimal => 5T EECS Fall & Walrand 219

24 Addressing 48 bit Ethernet/MAC/Hardware Addresses Prefix assigned per-vendor by IEEE Unique per-adapter, burned in ID PROM Multicast & Broadcast (all 1 s) addresses Many adapters support promiscuous mode EECS Fall & Walrand 220

25 Addressing: Multicast Each vendor assignment supports 2^24 individual and group (multicast) addresses Each adapter supports multiple group subscriptions n usually implemented as hash table n thus, software may have to filter at higher layer EECS Fall & Walrand 221

26 Perspective Ethernet is wildly successful, partly due to low cost (compare with FDDI or Token Ring--- see text book) Some issues: n nondeterministic service n no priorities n min frame size may be large EECS Fall & Walrand 222

Ethernet. Typical Setup. Names. Operations. Operations Switch: No Collisions EECS 122. Hub: Single Collision Domain

Ethernet. Typical Setup. Names. Operations. Operations Switch: No Collisions EECS 122. Hub: Single Collision Domain Overview Physical Layer MAC Bridged VLAN Link Aggregation XON/XOFF 802.11 Summary Overview Typical Setup Names Operations Perspective TOC TOC Overview Typical Setup Names Structure [rate][modulation][media

More information

Contents. Telecom Systems Chae Y. Lee. Typical Setup Physical Layer Names 10Base5 CSMA/CD Frame Fast Ethernet; Gigabit Ethernet Perspective

Contents. Telecom Systems Chae Y. Lee. Typical Setup Physical Layer Names 10Base5 CSMA/CD Frame Fast Ethernet; Gigabit Ethernet Perspective Ethernet Contents Typical Setup Physical Layer Names 10Base5 CSMA/CD Frame Fast Ethernet; Gigabit Ethernet Perspective 2 Ethernet - Typical Setup 3 Ethernet Physical Layer UTP Unshielded twisted pair Up

More information

Lectures Ethernet

Lectures Ethernet Lectures 22-23 Ethernet EECS 122 University of California Berkeley Overview Robert Metcalfe at Xerox in Palo Alto developed the original Ethernet in 1973. Digital Equipment Corporation, Intel, and Xerox

More information

Part3. Local Area Networks (LAN)

Part3. Local Area Networks (LAN) Part3 Local Area Networks (LAN) LAN Characteristics Small geographical area Relatively high data rate Single management Topologies Bus, star, ring Specifications at physical and data link layer mostly

More information

Data Link Layer, Part 3 Medium Access Control. Preface

Data Link Layer, Part 3 Medium Access Control. Preface Data Link Layer, Part 3 Medium Access Control These slides are created by Dr. Yih Huang of George Mason University. Students registered in Dr. Huang's courses at GMU can make a single machine-readable

More information

CSE 461: Multiple Access Networks. This Lecture

CSE 461: Multiple Access Networks. This Lecture CSE 461: Multiple Access Networks This Lecture Key Focus: How do multiple parties share a wire? This is the Medium Access Control (MAC) portion of the Link Layer Randomized access protocols: 1. Aloha 2.

More information

Data Link Layer, Part 5. Medium Access Control

Data Link Layer, Part 5. Medium Access Control CS 455 Medium Access Control, Page 1 Data Link Layer, Part 5 Medium Access Control These slides are created by Dr. Yih Huang of George Mason University. Students registered in Dr. Huang s courses at GMU

More information

LAN PROTOCOLS. Beulah A AP/CSE

LAN PROTOCOLS. Beulah A AP/CSE LAN PROTOCOLS Beulah A AP/CSE IEEE STANDARDS In 1985, the Computer Society of the IEEE started a project, called Project 802, to set standards to enable intercommunication among equipment from a variety

More information

Lecture 4b. Local Area Networks and Bridges

Lecture 4b. Local Area Networks and Bridges Lecture 4b Local Area Networks and Bridges Ethernet Invented by Boggs and Metcalf in the 1970 s at Xerox Local area networks were needed to connect computers, share files, etc. Thick or Thin Ethernet Cable

More information

Introductory to Computer Networks Local Area Networks. Lecture 16 Fall Isfahan University of technology Dr.

Introductory to Computer Networks Local Area Networks. Lecture 16 Fall Isfahan University of technology Dr. Introductory to Computer Networks Local Area Networks Lecture 16 Fall 2010 Isfahan University of technology Dr. Faramarz Hendessi What is a LAN? Local area means: Private ownership freedom from regulatory

More information

IEEE 802 LANs SECTION C

IEEE 802 LANs SECTION C IEEE 802 LANs SECTION C Outline of the Lecture Basic characteristics of LAN Topology Transmission Media MAC IEEE 802 LANs 802.3 - CSMA/CD based (Ethernet) 802.4 Token bus-based 802.5 Token ring-based Comparison

More information

Lecture 9: Bridging. CSE 123: Computer Networks Alex C. Snoeren

Lecture 9: Bridging. CSE 123: Computer Networks Alex C. Snoeren Lecture 9: Bridging CSE 123: Computer Networks Alex C. Snoeren Lecture 9 Overview Finishing up media access Ethernet Contention-free methods (rings) Moving beyond one wire Link technologies have limits

More information

Computer Networks Medium Access Control. Mostafa Salehi Fall 2008

Computer Networks Medium Access Control. Mostafa Salehi Fall 2008 Computer Networks Medium Access Control Mostafa Salehi Fall 2008 2008 1 Outline Issues ALOHA Network Ethernet Token Ring Wireless 2 Main Issues Local Area Network (LAN) : Three or more machines are physically

More information

Introduction to Computer Networks. IEEE Ethernet

Introduction to Computer Networks. IEEE Ethernet Introduction to Computer Networks IEEE 802.3 Ethernet All rights reserved. No part of this publication and file may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,

More information

Reliable Transmission

Reliable Transmission Reliable Transmission How to fix corrupted frames. Error correcting codes too expensive Should discard frames (retransmission) Recover from Corrupt s should be done in the Link Level Data Link Networks

More information

Link Layer and Ethernet

Link Layer and Ethernet Link Layer and Ethernet 14-740: Fundamentals of Computer Networks Bill Nace Material from Computer Networking: A Top Down Approach, 6 th edition. J.F. Kurose and K.W. Ross traceroute Data Link Layer Multiple

More information

Networking Technologies and Applications

Networking Technologies and Applications Networking Technologies and Applications Rolland Vida BME TMIT September 23, 2016 Aloha Advantages: Different size packets No need for synchronization Simple operation If low upstream traffic, the solution

More information

High Level View. EE 122: Ethernet and Random Access protocols. Medium Access Protocols

High Level View. EE 122: Ethernet and Random Access protocols. Medium Access Protocols High Level View EE 122: Ethernet and 802.11 Ion Stoica September 18, 2002 Goal: share a communication medium among multiple hosts connected to it Problem: arbitrate between connected hosts Solution goals:

More information

ELEC / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition

ELEC / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition ELEC / COMP 177 Fall 2011 Some slides from Kurose and Ross, Computer Networking, 5 th Edition Project #2 Due Thursday, Nov 10 th By midnight Homework #5 Due Thursday, Nov 17 th Later this semester: Homework

More information

! High Data Rates (0.1 to 1000 Mbps)! Short Distances (0.1 to 25 km) ! Low Error Rate (10 to 10 ) Local Area Networks

! High Data Rates (0.1 to 1000 Mbps)! Short Distances (0.1 to 25 km) ! Low Error Rate (10 to 10 ) Local Area Networks Local Area Networks A Local Area Netw ork is a communications netw ork that provides interconnection of a variety of data communicating devices w ithin a small area. Typical Characteristics! High Data

More information

ECE 4450:427/527 - Computer Networks Spring 2017

ECE 4450:427/527 - Computer Networks Spring 2017 ECE 4450:427/527 - Computer Networks Spring 2017 Dr. Nghi Tran Department of Electrical & Computer Engineering Lecture 5.5: Ethernet Dr. Nghi Tran (ECE-University of Akron) ECE 4450:427/527 Computer Networks

More information

Ethernet. Agenda. Introduction CSMA/CD Elements and Basic Media-Types Repeater, Link Segments Framing. L21 - Ethernet

Ethernet. Agenda. Introduction CSMA/CD Elements and Basic Media-Types Repeater, Link Segments Framing. L21 - Ethernet Ethernet CSMA/CD, Framing, SNAP, Repeater, Hub, 10Mbit/s Technology Agenda Introduction CSMA/CD Elements and Basic Media-Types Repeater, Link Segments Framing Ethernet, v4.7 2 Page 21-1 Origin of IEEE

More information

Origin of IEEE (Ethernet) Ethernet. Agenda. Basic Idea of Ethernet Bus System

Origin of IEEE (Ethernet) Ethernet. Agenda. Basic Idea of Ethernet Bus System Origin of IEEE 802.3 (Ethernet) Ethernet CSMA/CD, Framing, SNAP, Repeater, Hub, 10Mbit/s Technology bus topology based on coax-cables passive, uninterrupted coupling shared media like the Ether of air

More information

Shared Access Networks. Media Access Protocols. Ethernet (802.3) Ethernet cont...

Shared Access Networks. Media Access Protocols. Ethernet (802.3) Ethernet cont... Media Access Protocols Kameswari Chebrolu Dept. of Electrical Engineering, IIT Kanpur Shared Access Networks More than two nodes are attached to the same physical medium Normally span a small geographical

More information

Ethernet Standard. Campus Network Design. Ethernet address. OSI Model. Thana Hongsuwan

Ethernet Standard. Campus Network Design. Ethernet address. OSI Model. Thana Hongsuwan Campus etwork Design Thana Hongsuwan Ethernet Standard 2003, Cisco Systems, Inc. All rights reserved. 1-1 2003, Cisco Systems, Inc. All rights reserved. BCMS v2.0 1-2 OSI Model Ethernet address Six bytes

More information

Local Area Networks. Aloha Slotted Aloha CSMA (non-persistent, 1-persistent, p-persistent) CSMA/CD Ethernet Token Ring

Local Area Networks. Aloha Slotted Aloha CSMA (non-persistent, 1-persistent, p-persistent) CSMA/CD Ethernet Token Ring Local Area Networks Aloha Slotted Aloha CSMA (non-persistent, 1-persistent, p-persistent) CSMA/CD Ethernet Token Ring Networks: Local Area Networks 1 Network Layer Network Layer LLC 802.2 Logical Link

More information

EE 122: Ethernet and

EE 122: Ethernet and EE 122: Ethernet and 802.11 Ion Stoica September 18, 2002 (* this talk is based in part on the on-line slides of J. Kurose & K. Rose) High Level View Goal: share a communication medium among multiple hosts

More information

Computer and Network Security

Computer and Network Security CIS 551 / TCOM 401 Computer and Network Security Spring 2009 Lecture 6 Announcements First project: Due: 6 Feb. 2009 at 11:59 p.m. http://www.cis.upenn.edu/~cis551/project1.html Plan for Today: Networks:

More information

LAN Protocols. Required reading: Forouzan 13.1 to 13.5 Garcia 6.7, 6.8. CSE 3213, Fall 2015 Instructor: N. Vlajic

LAN Protocols. Required reading: Forouzan 13.1 to 13.5 Garcia 6.7, 6.8. CSE 3213, Fall 2015 Instructor: N. Vlajic 1 LAN Protocols Required reading: Forouzan 13.1 to 13.5 Garcia 6.7, 6.8 CSE 3213, Fall 2015 Instructor: N. Vlajic What is LAN? 2 Local Area Network (LAN) properties private ownership freedom to choose/change/upgrade

More information

Link Layer and Ethernet

Link Layer and Ethernet Link Layer and Ethernet 14-740: Fundamentals of Computer Networks Bill Nace Material from Computer Networking: A Top Down Approach, 6 th edition. J.F. Kurose and K.W. Ross traceroute Data Link Layer Multiple

More information

Lecture 9 The Data Link Layer part II. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Lecture 9 The Data Link Layer part II. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Lecture 9 The Data Link Layer part II Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Physical Addresses Physical (or LAN or MAC) address: 48 bit string Hexadecimal representation

More information

CS 716: Introduction to communication networks. - 9 th class; 19 th Aug Instructor: Sridhar Iyer IIT Bombay

CS 716: Introduction to communication networks. - 9 th class; 19 th Aug Instructor: Sridhar Iyer IIT Bombay CS 716: Introduction to communication networks - 9 th class; 19 th Aug 2011 Instructor: Sridhar Iyer IIT Bombay Contention-based MAC: ALOHA Users transmit whenever they have data to send Collisions occur,

More information

Lecture 5 The Data Link Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Lecture 5 The Data Link Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Lecture 5 The Data Link Layer Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Link Layer: setting the context two physically connected devices: host-router, router-router, host-host,

More information

CSE 461: Multiple Access. Homework: Chapter 2, problems 1, 8, 12, 18, 23, 24, 35, 43, 46, and 58

CSE 461: Multiple Access. Homework: Chapter 2, problems 1, 8, 12, 18, 23, 24, 35, 43, 46, and 58 CSE 461: Multiple Access Homework: Chapter 2, problems 1, 8, 12, 18, 23, 24, 35, 43, 46, and 58 Next Topic Key Focus: How do multiple parties share a wire? This is the Medium Access Control (MAC) portion

More information

Objectives. Hexadecimal Numbering and Addressing. Ethernet / IEEE LAN Technology. Ethernet

Objectives. Hexadecimal Numbering and Addressing. Ethernet / IEEE LAN Technology. Ethernet 2007 Cisco Systems, Inc. All rights reserved. Cisco Public Objectives Ethernet Network Fundamentals Chapter 9 ITE PC v4.0 Chapter 1 1 Introduce Hexadecimal number system Describe the features of various

More information

Direct Link Communication II: Wired Media. Multi-Access Communication

Direct Link Communication II: Wired Media. Multi-Access Communication Direct Link Communication II: Wired Media Multi-Access Communication Two classes: contention-based e.g., CSMA/CD, CSMA/CA used in Ethernet, WLAN contention-free e.g., TDM, FDM, TDMA, CDMA, token ring used

More information

CIS 551 / TCOM 401 Computer and Network Security. Spring 2007 Lecture 7

CIS 551 / TCOM 401 Computer and Network Security. Spring 2007 Lecture 7 CIS 551 / TCOM 401 Computer and Network Security Spring 2007 Lecture 7 Announcements Reminder: Project 1 is due on Thursday. 2/1/07 CIS/TCOM 551 2 Network Architecture General blueprints that guide the

More information

Lecture 6 The Data Link Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Lecture 6 The Data Link Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Lecture 6 The Data Link Layer Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Link Layer: setting the context two physically connected devices: host-router, router-router, host-host,

More information

Multiple Access Channels

Multiple Access Channels Multiple Access Channels Some Queuing Theory MAC: Aloha, ethernet Exponential backoff & friends LANs: Local Area Networks Goal: extend benefits of simple connection as far as possible Means: Share medium

More information

Data and Computer Communications

Data and Computer Communications Data and Computer Communications Chapter 16 High Speed LANs Eighth Edition by William Stallings Why High Speed LANs? speed and power of PCs has risen graphics-intensive applications and GUIs see LANs as

More information

Media Access Control (MAC) Sub-layer and Ethernet

Media Access Control (MAC) Sub-layer and Ethernet Media Access Control (MAC) Sub-layer and Ethernet Dr. Sanjay P. Ahuja, Ph.D. Fidelity National Financial Distinguished Professor of CIS School of Computing, UNF MAC Sub-layer The MAC sub-layer is a sub-layer

More information

The Link Layer and LANs

The Link Layer and LANs The Link Layer and LANs Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@wustl.edu Audio/Video recordings of this lecture are available on-line at: http://www.cse.wustl.edu/~jain/cse473-09/

More information

Reminder: Datalink Functions Computer Networking. Datalink Architectures

Reminder: Datalink Functions Computer Networking. Datalink Architectures Reminder: Datalink Functions 15-441 15 441 15-641 Computer Networking Lecture 5 Media Access Control Peter Steenkiste Fall 2015 www.cs.cmu.edu/~prs/15-441-f15 Framing: encapsulating a network layer datagram

More information

IEEE , Token Rings. 10/11/06 CS/ECE UIUC, Fall

IEEE , Token Rings. 10/11/06 CS/ECE UIUC, Fall IEEE 802.11, Token Rings 10/11/06 CS/ECE 438 - UIUC, Fall 2006 1 Medium Access Control Wireless channel is a shared medium Need access control mechanism to avoid interference Why not CSMA/CD? 10/11/06

More information

Other Protocols. Arash Habibi Lashkari

Other Protocols. Arash Habibi Lashkari LAN Technology Other Protocols Arash Habibi Lashkari PHD of Computer Science - Information Security July 2010 Other Protocols Outlines: FDDI: Fiber Distributed Data Interface Token Ring: IEEE 802.5 LAN

More information

The Link Layer II: Ethernet

The Link Layer II: Ethernet Monday Recap The Link Layer II: Ethernet q Link layer services q Principles for multiple access protocols q Categories of multiple access protocols CSC 249 March 24, 2017 1 2 Recap: Random Access Protocols

More information

The random access methods we study in this chapter have evolved from a very interesting protocol known as ALOHA, which used a very simple procedure

The random access methods we study in this chapter have evolved from a very interesting protocol known as ALOHA, which used a very simple procedure Multiple Accesses When nodes or stations are connected and use a common link, called a multipoint or broadcast link, we need a multiple-access protocol to coordinate access to the link. The problem of

More information

Ethernet. Introduction. CSE 3213 Fall 2011

Ethernet. Introduction. CSE 3213 Fall 2011 Ethernet CSE 3213 Fall 2011 19 October 2011 1 Introduction Rapid changes in technology designs Broader use of LANs New schemes for high-speed LANs High-speed LAN technologies: Fast and gigabit Ethernet

More information

The Medium Access Sublayer

The Medium Access Sublayer The Medium Access Sublayer shivkuma@ecse.rpi.edu http://www.ecse.rpi.edu/homepages/shivkuma 1-1 Based in part upon the slides of Prof. Raj Jain (OSU), K. Vastola (RPI) Overview Multiple Access: Aloha,

More information

Jaringan Komputer. Broadcast Network. Outline. MAC (Medium Access Control) Channel Allocation Problem. Dynamic Channel Allocation

Jaringan Komputer. Broadcast Network. Outline. MAC (Medium Access Control) Channel Allocation Problem. Dynamic Channel Allocation Broadcast Network Jaringan Komputer Medium Access Control Sublayer 2 network categories: point-to-point connections broadcast channels Key issue in broadcast network: how to determine who gets to use the

More information

Contention Protocols and Networks

Contention Protocols and Networks 4/13/2005 314 Lecture Contention Protocols and Networks 1 Contention Protocols and Networks Contention Protocols CSMA/CD Network Topologies Ethernet 4/13/2005 314 Lecture Contention Protocols and Networks

More information

Medium Access Control. IEEE , Token Rings. CSMA/CD in WLANs? Ethernet MAC Algorithm. MACA Solution for Hidden Terminal Problem

Medium Access Control. IEEE , Token Rings. CSMA/CD in WLANs? Ethernet MAC Algorithm. MACA Solution for Hidden Terminal Problem Medium Access Control IEEE 802.11, Token Rings Wireless channel is a shared medium Need access control mechanism to avoid interference Why not CSMA/CD? 9/15/06 CS/ECE 438 - UIUC, Fall 2006 1 9/15/06 CS/ECE

More information

Data Link Protocols. TCP/IP Suite and OSI Reference Model

Data Link Protocols. TCP/IP Suite and OSI Reference Model Data Link Protocols Relates to Lab. This module covers data link layer issues, such as local area networks (LANs) and point-to-point links, Ethernet, and the Point-to-Point Protocol (PPP). 1 TCP/IP Suite

More information

Ethernet Basics. based on Chapter 4 of CompTIA Network+ Exam Guide, 4 th ed., Mike Meyers

Ethernet Basics. based on Chapter 4 of CompTIA Network+ Exam Guide, 4 th ed., Mike Meyers Ethernet Basics based on Chapter 4 of CompTIA Network+ Exam Guide, 4 th ed., Mike Meyers Ethernet Basics History Ethernet Frames CSMA/CD Obsolete versions 10Mbps versions Segments Spanning Tree Protocol

More information

CS 640 Lecture 4: 09/11/2014

CS 640 Lecture 4: 09/11/2014 CS 640 Lecture 4: 09/11/2014 A) Bandwidth-delay product B) Link layer intro C) Encoding, Framing, Error Detection D) Multiple access Ethernet A. Bandwidth-delay product This in the above example is C *

More information

Direct Link Networks (II)

Direct Link Networks (II) Direct Link Networks (II) Computer Networking Lecture 03 HKU SPACE Community College January 30, 2012 HKU SPACE CC CN Lecture 03 1/25 Outline Reliable Link Service Stop-and-Wait Sliding Window Media Access

More information

IEEE standards for local area networks

IEEE standards for local area networks IEEE standards for local area networks Telecommunication Networks Group firstname.lastname@polito.it http://www.telematica.polito.it/ COMPUTER NETWORKS Standard for LANs 1 Copyright Quest opera è protetta

More information

Direct Link Communication II: Wired Media. Multi-Access Communication

Direct Link Communication II: Wired Media. Multi-Access Communication Direct Link Communication II: Wired Media Multi-Access Communication Two classes: contention-based e.g., CSMA/CD, CSMA/CA used in Ethernet, WLAN contention-free e.g., TDM, FDM, TDMA, CDMA, token ring one

More information

Multiple Access Protocols

Multiple Access Protocols Multiple Access Protocols Computer Networks Lecture 2 http://goo.gl/pze5o8 Multiple Access to a Shared Channel The medium (or its sub-channel) may be shared by multiple stations (dynamic allocation) just

More information

Goals. Fundamentals of Network Media. More topics. Topics. Multiple access communication. Multiple access solutions

Goals. Fundamentals of Network Media. More topics. Topics. Multiple access communication. Multiple access solutions Fundamentals of Network Media Local Area Networks Ursula Holmström Goals Learn the basic concepts related to LAN technologies, for example use of shared media medium access control topologies Know the

More information

Unit II. Part A (2 Marks)

Unit II. Part A (2 Marks) Unit II Part A (2 Marks) 1. Differentiate fast Ethernet and Gigabit Ethernet. Fast Ethernet increased speed from 10 to 100 megabits per second (Mbit/s). Gigabit Ethernet was the next iteration, increasing

More information

Local Area Networks. Ethernet LAN

Local Area Networks. Ethernet LAN Local Area Networks Ethernet 802.3 LAN -7-1 Local Area Networks (Lokale Netze) Wide Area Network LAN -7-2 Local Area Networks What is a LAN? Multiple systems attached to an often shared medium high total

More information

Lecture 05 Chapter 16 High Speed LANs

Lecture 05 Chapter 16 High Speed LANs NET 456 High Speed Networks Lecture 05 Chapter 16 High Speed LANs Dr. Anis Koubaa Reformatted slides from textbook Data and Computer Communications, Ninth Edition by William Stallings, 1 (c) Pearson Education

More information

Computer Networking Lecture 5 Data link Layer Access Control. Based on slides by Peter Steenkiste Copyright, Carnegie Mellon

Computer Networking Lecture 5 Data link Layer Access Control. Based on slides by Peter Steenkiste Copyright, Carnegie Mellon 15-441 Computer Networking Lecture 5 Data link Layer Access Control Based on slides by Peter Steenkiste Copyright, Carnegie Mellon 2007-12 1 Datalink Functions Framing: encapsulating a network layer datagram

More information

Ethernet. Networks: Ethernet 1

Ethernet. Networks: Ethernet 1 Ethernet Networks: Ethernet 1 Ethernet [DEC, Intel, Xerox] 1-persistent, CSMA-CD with Binary Exponential Backoff Manchester encoding Networks: Ethernet 2 Ethernet [operational in 1974] Initially 3 Mbps

More information

Getting Connected (Chapter 2 Part 4) Networking CS 3470, Section 1 Sarah Diesburg

Getting Connected (Chapter 2 Part 4) Networking CS 3470, Section 1 Sarah Diesburg Getting Connected (Chapter 2 Part 4) Networking CS 3470, Section 1 Sarah Diesburg Five Problems Encoding/decoding Framing Error Detection Error Correction Media Access Five Problems Encoding/decoding Framing

More information

CSCI-1680 Link Layer Wrap-Up Rodrigo Fonseca

CSCI-1680 Link Layer Wrap-Up Rodrigo Fonseca CSCI-1680 Link Layer Wrap-Up Rodrigo Fonseca Based partly on lecture notes by David Mazières, Phil Levis, John Jannotti Administrivia Homework I out later today, due next Thursday Today: Link Layer (cont.)

More information

High Speed LANs. Range of technologies. Fast and Gigabit Ethernet Fibre Channel High Speed Wireless LANs. CS420/520 Axel Krings Page 2

High Speed LANs. Range of technologies. Fast and Gigabit Ethernet Fibre Channel High Speed Wireless LANs. CS420/520 Axel Krings Page 2 High Speed LANs CS420/520 Axel Krings Page 1 High Speed LANs Range of technologies Fast and Gigabit Ethernet Fibre Channel High Speed Wireless LANs CS420/520 Axel Krings Page 2 1 Why High Speed LANs? Office

More information

Summary of MAC protocols

Summary of MAC protocols Summary of MAC protocols What do you do with a shared media? Channel Partitioning, by time, frequency or code Time Division, Code Division, Frequency Division Random partitioning (dynamic) ALOHA, S-ALOHA,

More information

Chapter 3: Industrial Ethernet

Chapter 3: Industrial Ethernet 3.1 Introduction Previous versions of this handbook have dealt extensively with Ethernet so it is not our intention to revisit all the basics. However, because Smart Grid protocols are increasingly reliant

More information

Outline: Connecting Many Computers

Outline: Connecting Many Computers Outline: Connecting Many Computers Last lecture: sending data between two computers This lecture: link-level network protocols (from last lecture) sending data among many computers 1 Review: A simple point-to-point

More information

Introduction Computer Networks. Applications Requiring High Speed LANs. Why High Speed LANs? IEEE802.3 Medium Access Control

Introduction Computer Networks. Applications Requiring High Speed LANs. Why High Speed LANs? IEEE802.3 Medium Access Control 168 430 Computer Networks Chapter 16 High Speed LANs Introduction Range of technologies Fast and Gigabit Ethernet Fibre Channel High Speed Wireless LANs Why High Speed LANs? Office LANs used to provide

More information

The Link Layer and LANs. Chapter 6: Link layer and LANs

The Link Layer and LANs. Chapter 6: Link layer and LANs The Link Layer and LANs EECS3214 2018-03-14 4-1 Chapter 6: Link layer and LANs our goals: understand principles behind link layer services: error detection, correction sharing a broadcast channel: multiple

More information

Random Access. 1. Aloha. 2. Slotted Aloha 3. CSMA 4. CSMA/CD

Random Access. 1. Aloha. 2. Slotted Aloha 3. CSMA 4. CSMA/CD Random Access 1. Aloha 2. Slotted Aloha 3. CSMA 4. CSMA/CD Background Communication medium B No Collision collision A C Modern Local Area Networks (LANs) operate as follows Users are connected to communication

More information

Lecture 6. Reminder: Homework 2, Programming Project 2 due on Thursday. Questions? Tuesday, September 13 CS 475 Networks - Lecture 6 1

Lecture 6. Reminder: Homework 2, Programming Project 2 due on Thursday. Questions? Tuesday, September 13 CS 475 Networks - Lecture 6 1 Lecture 6 Reminder: Homework 2, Programming Project 2 due on Thursday. Questions? Tuesday, September 13 CS 475 Networks - Lecture 6 1 Outline Chapter 2 - Getting Connected 2.1 Perspectives on Connecting

More information

Housekeeping. Fall /5 CptS/EE 555 1

Housekeeping. Fall /5 CptS/EE 555 1 Housekeeping Lab access HW turn-in Jin? Class preparation for next time: look at the section on CRCs 2.4.3. Be prepared to explain how/why the shift register implements the CRC Skip Token Rings section

More information

CSCI-1680 Link Layer Wrap-Up Rodrigo Fonseca

CSCI-1680 Link Layer Wrap-Up Rodrigo Fonseca CSCI-1680 Link Layer Wrap-Up Rodrigo Fonseca Based partly on lecture notes by David Mazières, Phil Levis, John Janno< Administrivia Homework I out later today, due next Thursday, Sep 25th Today: Link Layer

More information

Introduction to Ethernet. Guy Hutchison 8/30/2006

Introduction to Ethernet. Guy Hutchison 8/30/2006 Introduction to Ethernet Guy Hutchison 8/30/2006 What is Ethernet? Local area transport protocol Layer 2 of the OSI stack Zero/minimal configuration Low-cost, high performance Best-effort delivery Original

More information

CSE 461 Multiple Access. David Wetherall

CSE 461 Multiple Access. David Wetherall CSE 461 Multiple Access David Wetherall djw@cs.washington.edu How to share a link Multiplexing = networking term for sharing a resource among multiple users (e.g., link, protocol instance) Topics: Multiplexing

More information

Protocols for Multiaccess Networks

Protocols for Multiaccess Networks Protocols for Multiaccess Networks Hosts broadcast packets When a collision occurs, all transmitted packets are lost Lost packets have to be retransmitted => Need Multiaccess Protocol Model - Slotted Aloha

More information

Redes de Computadores. Medium Access Control

Redes de Computadores. Medium Access Control Redes de Computadores Medium Access Control Manuel P. Ricardo Faculdade de Engenharia da Universidade do Porto 1 » How to control the access of computers to a communication medium?» What is the ideal Medium

More information

CSCI-1680 Link Layer Wrap-Up Rodrigo Fonseca

CSCI-1680 Link Layer Wrap-Up Rodrigo Fonseca CSCI-1680 Link Layer Wrap-Up Rodrigo Fonseca Based partly on lecture notes by David Mazières, Phil Levis, John Janno< Administrivia Homework I out later today, due next ursday, Sep 27th Today: Link Layer

More information

Lecture 6 Datalink Framing, Switching. From Signals to Packets

Lecture 6 Datalink Framing, Switching. From Signals to Packets Lecture 6 Datalink Framing, Switching David Andersen Department of Computer Science Carnegie Mellon University 15-441 Networking, Spring 2005 http://www.cs.cmu.edu/~srini/15-441/s05/ 1 From Signals to

More information

Data always flows in one direction around ring Like Ethernet, all nodes see all frames, and protocol is necessary to decide when to send

Data always flows in one direction around ring Like Ethernet, all nodes see all frames, and protocol is necessary to decide when to send Token Ring Developed by IBM, adopted by IEEE as 802.5 standard Token rings latter extended to FDDI (Fiber Distributed Data Interface) and 802.17 (Resilient Packet Ring) standards Nodes connected in a ring

More information

CS 455/555 Intro to Networks and Communications. Link Layer Addressing, Ethernet, and a Day in the Life of a Web Request

CS 455/555 Intro to Networks and Communications. Link Layer Addressing, Ethernet, and a Day in the Life of a Web Request CS 455/555 Intro to Networks and Communications Link Layer Addressing, ernet, and a Day in the Life of a Web Request Dr. Michele Weigle Department of Computer Science Old Dominion University mweigle@cs.odu.edu

More information

1/29/2008. From Signals to Packets. Lecture 6 Datalink Framing, Switching. Datalink Functions. Datalink Lectures. Character and Bit Stuffing.

1/29/2008. From Signals to Packets. Lecture 6 Datalink Framing, Switching. Datalink Functions. Datalink Lectures. Character and Bit Stuffing. /9/008 From Signals to Packets Lecture Datalink Framing, Switching Peter Steenkiste Departments of Computer Science and Electrical and Computer Engineering Carnegie Mellon University Analog Signal Digital

More information

The MAC Layer. Contents. Textbook. Jean Yves Le Boudec Fall 2012

The MAC Layer. Contents. Textbook. Jean Yves Le Boudec Fall 2012 The MAC Layer Jean Yves Le Boudec Fall 2012 1 Contents 1. MAC as Shared Medium : The Ethernet Myth and the WiFi Reality 2. MAC as interconnection at small scale : Why Ethernet became a point to point technology

More information

CSE/EE 461 Section 2

CSE/EE 461 Section 2 CSE/EE 461 Section 2 Latency in a store-and-forward network 4ms, 10MB/s B How long does it take to send a 2kB packet from to B? 2ms, 10MB/s C 2ms, 10MB/s B What if it has to pass through a node C? Plan

More information

ECE 333: Introduction to Communication Networks Fall Lecture 19: Medium Access Control VII

ECE 333: Introduction to Communication Networks Fall Lecture 19: Medium Access Control VII ECE : Introduction to Communication Networks Fall 2002 Lecture 9: Medium Access Control VII More on token ring networks LAN bridges and switches. More on token rings In the last lecture we began discussing

More information

CS 43: Computer Networks Switches and LANs. Kevin Webb Swarthmore College December 5, 2017

CS 43: Computer Networks Switches and LANs. Kevin Webb Swarthmore College December 5, 2017 CS 43: Computer Networks Switches and LANs Kevin Webb Swarthmore College December 5, 2017 Ethernet Metcalfe s Ethernet sketch Dominant wired LAN technology: cheap $20 for NIC first widely used LAN technology

More information

Medium Access Control Sublayer

Medium Access Control Sublayer Wireless (WLAN) Medium Access Control Sublayer Mahalingam Mississippi State University, MS October 20, 2014 Outline Medium Access Protocols Wireless (WLAN) 1 Medium Access Protocols ALOHA Slotted ALOHA

More information

Medium Access Control. CSCI370 Lecture 5 Michael Hutt New York Institute of Technology

Medium Access Control. CSCI370 Lecture 5 Michael Hutt New York Institute of Technology Medium Access Control CSCI370 Lecture 5 Michael Hutt New York Institute of Technology The Data Link Layer Logical Link Control (LLC) IEEE 802.2 Standard RFC 1042 Provides three service options Unreliable

More information

CSCI-1680 Link Layer Wrap-Up Rodrigo Fonseca

CSCI-1680 Link Layer Wrap-Up Rodrigo Fonseca CSCI-1680 Link Layer Wrap-Up Rodrigo Fonseca Based partly on lecture notes by David Mazières, Phil Levis, John Jannotti Today: Link Layer (cont.) Framing Reliability Error correction Sliding window Medium

More information

Interface The exit interface a packet will take when destined for a specific network.

Interface The exit interface a packet will take when destined for a specific network. The Network Layer The Network layer (also called layer 3) manages device addressing, tracks the location of devices on the network, and determines the best way to move data, which means that the Network

More information

Chapter 9 Ethernet Part 1

Chapter 9 Ethernet Part 1 Chapter 9 Ethernet Part 1 Introduction to Ethernet Ethernet Local Area Networks (LANs) LAN (Local Area Network) - A computer network connected through a wired or wireless medium by networking devices (s,

More information

LAN. CS 4/55231 Internet Engineering. Kent State University Dept. of Computer Science

LAN. CS 4/55231 Internet Engineering. Kent State University Dept. of Computer Science 1 CS 4/55231 Internet Engineering Kent State University Dept. of Computer Science LECT-4A4 LAN 1 2 LAN Topologies-1 In the last class we saw how two computers can connect to each other. In this class we

More information

Chapter 4: The Medium Access Layer

Chapter 4: The Medium Access Layer Chapter 4: The Medium Access Layer Computer Networks Maccabe Computer Science Department The University of New Mexico September 2002 Medium Access Layer Point-to-point versus broadcast networks Broadcast

More information

CARRIER SENSE MULTIPLE ACCESS (CSMA):

CARRIER SENSE MULTIPLE ACCESS (CSMA): Lecture Handout Computer Networks Lecture No. 8 CARRIER SENSE MULTIPLE ACCESS (CSMA): There is no central control management when computers transmit on Ethernet. For this purpose the Ethernet employs CSMA

More information

CS 123: Lecture 12, LANs, and Ethernet. George Varghese. October 24, 2006

CS 123: Lecture 12, LANs, and Ethernet. George Varghese. October 24, 2006 CS 123: Lecture 12, LANs, and Ethernet George Varghese October 24, 2006 Selective Reject Modulus failure Example w = 2, Max = 3 0 0 1 3 0 A(1) A(2) 1 0 retransmit A(1) A(2) buffer Case 1 Case 2 reject

More information

Ethernet. Lecture 6. Outline. Ethernet - Physical Properties. Ethernet - Physical Properties. Ethernet

Ethernet. Lecture 6. Outline. Ethernet - Physical Properties. Ethernet - Physical Properties. Ethernet Lecture 6 Ethernet Reminder: Homework 2, Programming Project 2 due on 9/20/12. Thick-net Thin-net Twisted Pair Thursday, September 13 CS 475 Networks - Lecture 6 1 Thursday, September 13 CS 475 Networks

More information