Nash Equilibrium Load Balancing

Size: px
Start display at page:

Download "Nash Equilibrium Load Balancing"

Transcription

1 Nash Equilibrium Load Balancing Computer Science Department Collaborators: A. Kothari, C. Toth, Y. Zhou

2 Load Balancing A set of m servers or machines. A set of n clients or jobs. Each job can be run only on a subset of servers. Load balancing problem: find an optimal assignment of jobs to servers. Some objective functions: maximum load on a server L 2 -norm: sum of the load squares Long history in multi-processor scheduling, storage allocation, circuit routing etc.

3 Selfish Clients What if clients/jobs are selfish, strategic players? Humans strategize in choosing queues at grocery store checkout, airport, banks etc. Internet: TCP game and selfish routing. Rationality-based computing [Nisan, Papadimitriou] Our motivation comes from Peer to Peer (P2P) networks. Multiple sites to download music, video, source code etc. Each client concerned only about his/her latency. A non-cooperative game: a client s latency depends on other clients choices.

4 P2P Networks Decentralized, distributed data-sharing networks. Napster, Gnutella, Freenet, CAN, Chord, Pastry, Tapestry, Morpheus, KaZaa, Farsite, Jxta, OceanStore... P Q R Internet Cloud U "A Beautiful Mind" No central authority: all nodes autonomous and same functionality (democracy of peers). Resource sharing by direct exchange between peers.

5 P2P is Popular Big part of Internet traffic now P2P: KaZaa, Gnutella etc. As distributed systems, P2P paradigm has many pluses: No expensive centralized hardware or administration Self-organizing, incremental scaling Redundancy, fault tolerance, robustness Resource sharing: distributed.net, OceanStore, Farsite, DMBS, archives. It works. But how about performance? How much worse off are we without coordination? What is the price of anarchy?

6 Balancing Selfish Clients Each client has choice of many servers to download from, and is free to choose. Client are rational, strategic players, who want to minimize their own latency. A client s latency depends on the server load. No coordinating scheduler to enforce an assignment: anarchic load balancing. A non-cooperative game among clients strategies are server choices, payoff is latency. Nash assignment: no client motivated to switch unilaterally. Worst-case cost ratio between Nash and optimal assignments; competitive analysis.

7 The Model A bipartite graph between n clients and m servers. A matching assigns each client to an adjacent server. v 1 v 2 v 3 v 1 v 2 v 3 v 1 v 2 v 3 u1 u 2 u 3 u 1 u 2 u 3 An assignment u 1 u 2 u 3 A Nash assignment A server s load l grows linearly with the number of clients assigned to it. A client s latency λ equals its server s load. cost(m) = n i=1 λ(u i).

8 Server Models 1. Integral Assignment Each client matched to at most 1 server. Server j has speed v j. If server j has deg(j) clients, then its load is l j = deg(j). Each client of server j experiences latency l j /v j. 2. Fractional Assignment A client can split its job among multiple servers: x ij. Server j s load is l j = i x ij. Server j completes all its assigned jobs at time l j. Client i s latency is λ i = max j {l j x ij > 0}. Fractional model similar to one used by KaZaa. 3. L p norm latency functions.

9 Client Latency vs. Server Load Lemma: Sum of client latencies equals sum of squares of server loads: n m l 2 j λ i =. v j i=1 j=1 In the integral model, server j services l j clients, each of whom suffers latency l j /v j. Similarly, summation over job fractions in the fractional model.

10 L 2 -norm Load Balancing Traditionally, load balancing has concentrated on optimizing server load. The greedy job assignment has competitive ratio (1 + 2) for L 2 -norm load balancing. Awerbuch et al. (FOCS 95). But greedy assignment is not at Nash equilibrium. Equilibrium helps! Nash assignment has much better competitive ratio.

11 Summary of Results 1. Integral server model (identical or different speeds): cost(nash) 5 2 cost(opt). For identical servers, cost(nash) cost(opt) + 2n. Lower bound: The competitive ratio is Fractional server model: Nash = Optimal. 3. Individual Payoffs: In the integral server model, a client s latency under Nash can be Θ(log n/ log log n) times its latency in the optimal. 4. Structural Theorem for Optimal Assignment.

12 Optimal vs. Nash With identical server speeds, optimal always Nash, but not vice versa. v 1 v 2 v 3 v 1 v 2 v 3 v 1 v 2 v 3 u1 u 2 u 3 u 1 u 2 u 3 u 1 u 2 u 3 Optimal: cost = 3 Nash: cost = 5 Proof: Suppose a client can switch from server i to j. cost(m ) cost(m opt ) = ( (d j + 1) 2 + (d i 1) 2) (d 2 i + d2 j ) = 2(d j d i + 1) < 0.

13 Optimal vs. Nash But with different server speeds, optimal is not always Nash. 1 1/4 1 1/4 1 1/4 u1 u 2 u 3 u1 u 2 u 3 u 1 u 2 u 3 Optimal: cost = 8 Nash: cost = 9 cost(opt) = ; cost(nash) =

14 Lower Bound on Worst-case Nash A tree structure: each node has a client-server pair. Edges between neighboring levels only. In optimal, each client assigned to its server in the pair, for a total cost of n. In Nash, each client matched to a server at higher level. The total cost becomes 2n 1. server client Optimal Cost = 11 Worst Case Nash Cost = 21 ( )

15 The Upper Bound Proof sketch for identical servers, integral server model. n jobs, and m servers. Let S i (resp. T i ) be the set of jobs assigned to server i in the optimal (resp. Nash). Then, v 1 v 2 v 3 v 1 v 2 v 3 v 1 v 2 v 3 u1 u 2 u 3 u 1 u 2 u 3 u 1 u 2 u 3 S 3 = {u 3 }; T 3 = {u 2, u 3 }. Optimal: cost = 3 Nash: cost = 5

16 Upper Bound cost(nash) = m i=1 T i 2 ; cost(opt) = m i=1 S i 2. Claim: S i T j > 0, for i j, implies that T j T i + 1. The job in the common intersection can be assigned to both servers i and j. If T j > T i + 1, then this job could improve its latency by switching to i. v i v j T i T j u

17 Upper Bound cost(nash) = = = = m m m T j 2 = T j S i T j j=1 m i=1 m i=1 j=1 i=1 m S i T j T j j=1 m ( T i + 1) S i T j j=1 m ( T i + 1) i=1 m S i T j j=1 m S i T i + i=1 i=1 m S i

18 Upper Bound m i=1 T i 2 m i=1 S i T i + m i=1 S i. But m i=1 S i = m i=1 T i = n. Using Cauchy s inequality, xy 1 2 (x2 + y 2 ), we get m T j 2 j=1 m S j 2 + 2n j=1 Thus, cost(nash) cost(opt) + 2n. Ratio bound: cost(nash) 5 2 cost(opt). Holds even with varying server speeds.

19 Fractional Server Model A client can split its job among multiple servers. x ij is fraction of client i s job assigned to j. Server j s load is l j = i x ij. Server j completes all its assigned jobs at time l j. Client i s latency is λ i = max j {l j x ij > 0}. Fact: If x ij > 0, then l j = λ i. Theorem: A fractional Nash assignment is optimal.

20 Individual Client Latency A lower bound construction. server client Optimal Worst Case Nash root deg = 1 root degree = 3 Theorem: In the worst-case, for any server v, ( ) d nash (v) log n = Θ d opt (v) log log n

21 Uniqueness of Optimal Matching Optimal matching is not unique. v 1 v 2 v 1 v 2 v1 v 2 u1 u 2 u 3 u 1 u 2 u3 u 1 u 2 u 3 Two different optimal matchings To which optimal shall we compare a Nash matching? Theorem: Over all optimal matchings, a server s degree varies by at most 1.

22 nash vs. greedy Nash assignment always greedy, but not vice versa. v 1 v 2 v 3 v 1 v 2 v 3 u1 u 2 u 3 u 1 u 2 u 3 A greedy assignment For every Nash, there is an ordering of clients, for which the greedy assignment is same as the Nash. Figure shows a greedy matching, which is not Nash.

23 Sequencing Clients Clients Servers A Nash Matching Only the servers degree sequence matters. Sequence the clients row by row. If Nash deg of client is d, then it has no edge to a server of deg < d 1.

24 Closing Remarks Computing Nash assignments. Online model.

25 State of the Art in P2P Load Balancing Napster, Gnutella etc. leave it to users. KaZaa splits each request across multiple hosts. CUP, Controlled Update Propagation, (Stanford) randomizes across servers depending on their load or speed. Adaptive Peer Selection (UMass) scheme suggests trying a few servers, then using learning theory to choose. Problem very much a game theoretic problem, but has not been studied with that perspective.

Nash equilibria in Voronoi Games on Graphs

Nash equilibria in Voronoi Games on Graphs Nash equilibria in Voronoi Games on Graphs Christoph Dürr, Nguyễn Kim Thắng (Ecole Polytechnique) ESA, Eilat October 07 Plan Motivation : Study the interaction between selfish agents on Internet k players,

More information

Algorithmic Game Theory and Applications. Lecture 16: Selfish Network Routing, Congestion Games, and the Price of Anarchy

Algorithmic Game Theory and Applications. Lecture 16: Selfish Network Routing, Congestion Games, and the Price of Anarchy Algorithmic Game Theory and Applications Lecture 16: Selfish Network Routing, Congestion Games, and the Price of Anarchy Kousha Etessami warning, again 1 In the few remaining lectures, we will briefly

More information

Algorithmic Game Theory and Applications. Lecture 16: Selfish Network Routing, Congestion Games, and the Price of Anarchy.

Algorithmic Game Theory and Applications. Lecture 16: Selfish Network Routing, Congestion Games, and the Price of Anarchy. Algorithmic Game Theory and Applications Lecture 16: Selfish Network Routing, Congestion Games, and the Price of Anarchy Kousha Etessami games and the internet Basic idea: The internet is a huge experiment

More information

How Bad is Selfish Routing?

How Bad is Selfish Routing? How Bad is Selfish Routing? Tim Roughgarden and Éva Tardos Presented by Brighten Godfrey 1 Game Theory Two or more players For each player, a set of strategies For each combination of played strategies,

More information

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Algorithms and Game Theory Date: 12/3/15

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Algorithms and Game Theory Date: 12/3/15 600.363 Introduction to Algorithms / 600.463 Algorithms I Lecturer: Michael Dinitz Topic: Algorithms and Game Theory Date: 12/3/15 25.1 Introduction Today we re going to spend some time discussing game

More information

Dynamics, Non-Cooperation, and Other Algorithmic Challenges in Peer-to-Peer Computing

Dynamics, Non-Cooperation, and Other Algorithmic Challenges in Peer-to-Peer Computing Dynamics, Non-Cooperation, and Other Algorithmic Challenges in Peer-to-Peer Computing Stefan Schmid Distributed Computing Group Oberseminar TU München, Germany December 2007 Networks Neuron Networks DISTRIBUTED

More information

Peer-to-peer computing research a fad?

Peer-to-peer computing research a fad? Peer-to-peer computing research a fad? Frans Kaashoek kaashoek@lcs.mit.edu NSF Project IRIS http://www.project-iris.net Berkeley, ICSI, MIT, NYU, Rice What is a P2P system? Node Node Node Internet Node

More information

Network games. Brighten Godfrey CS 538 September slides by Brighten Godfrey unless otherwise noted

Network games. Brighten Godfrey CS 538 September slides by Brighten Godfrey unless otherwise noted Network games Brighten Godfrey CS 538 September 27 2011 slides 2010-2011 by Brighten Godfrey unless otherwise noted Demo Game theory basics Games & networks: a natural fit Game theory Studies strategic

More information

Convergence Issues in Competitive Games

Convergence Issues in Competitive Games Convergence Issues in Competitive Games Vahab S Mirrokni 1, Adrian Vetta 2 and A Sidoropoulous 3 1 Computer Science and Artificial Intelligence Laboratory (CSAIL), MIT mail: mirrokni@theorylcsmitedu 2

More information

Games in Networks: the price of anarchy, stability and learning. Éva Tardos Cornell University

Games in Networks: the price of anarchy, stability and learning. Éva Tardos Cornell University Games in Networks: the price of anarchy, stability and learning Éva Tardos Cornell University Why care about Games? Users with a multitude of diverse economic interests sharing a Network (Internet) browsers

More information

Distributed Knowledge Organization and Peer-to-Peer Networks

Distributed Knowledge Organization and Peer-to-Peer Networks Knowledge Organization and Peer-to-Peer Networks Klaus Wehrle Group Chair of Computer Science IV RWTH Aachen University http://ds.cs.rwth-aachen.de 1 Organization of Information Essential challenge in?

More information

Slides for Chapter 10: Peer-to-Peer Systems

Slides for Chapter 10: Peer-to-Peer Systems Slides for Chapter 10: Peer-to-Peer Systems From Coulouris, Dollimore, Kindberg and Blair Distributed Systems: Concepts and Design Edition 5, Addison-Wesley 2012 Overview of Chapter Introduction Napster

More information

On the Computational Complexity of Nash Equilibria for (0, 1) Bimatrix Games

On the Computational Complexity of Nash Equilibria for (0, 1) Bimatrix Games On the Computational Complexity of Nash Equilibria for (0, 1) Bimatrix Games Bruno Codenotti Daniel Štefankovič Abstract The computational complexity of finding a Nash equilibrium in a nonzero sum bimatrix

More information

Distributed Information Processing

Distributed Information Processing Distributed Information Processing 14 th Lecture Eom, Hyeonsang ( 엄현상 ) Department of Computer Science & Engineering Seoul National University Copyrights 2016 Eom, Hyeonsang All Rights Reserved Outline

More information

Chapter 6 PEER-TO-PEER COMPUTING

Chapter 6 PEER-TO-PEER COMPUTING Chapter 6 PEER-TO-PEER COMPUTING Distributed Computing Group Computer Networks Winter 23 / 24 Overview What is Peer-to-Peer? Dictionary Distributed Hashing Search Join & Leave Other systems Case study:

More information

CS 640 Introduction to Computer Networks. Today s lecture. What is P2P? Lecture30. Peer to peer applications

CS 640 Introduction to Computer Networks. Today s lecture. What is P2P? Lecture30. Peer to peer applications Introduction to Computer Networks Lecture30 Today s lecture Peer to peer applications Napster Gnutella KaZaA Chord What is P2P? Significant autonomy from central servers Exploits resources at the edges

More information

The hierarchical model for load balancing on two machines

The hierarchical model for load balancing on two machines The hierarchical model for load balancing on two machines Orion Chassid Leah Epstein Abstract Following previous work, we consider the hierarchical load balancing model on two machines of possibly different

More information

Peer-to-Peer Internet Applications: A Review

Peer-to-Peer Internet Applications: A Review Peer-to-Peer Internet Applications: A Review Davide Quaglia 01/14/10 Introduction Key points Lookup task Outline Centralized (Napster) Query flooding (Gnutella) Distributed Hash Table (Chord) Simulation

More information

Bargaining and Coalition Formation

Bargaining and Coalition Formation 1 These slides are based largely on Chapter 18, Appendix A of Microeconomic Theory by Mas-Colell, Whinston, and Green. Bargaining and Coalition Formation Dr James Tremewan (james.tremewan@univie.ac.at)

More information

Network Topology and Equilibrium Existence in Weighted Network Congestion Games

Network Topology and Equilibrium Existence in Weighted Network Congestion Games Network Topology and Equilibrium Existence in Weighted Network Congestion Games Igal Milchtaich, Bar-Ilan University August 2010 Abstract. Every finite noncooperative game can be presented as a weighted

More information

Topics in Artificial Intelligence: Multiagent Systems Selfish Routing in Computer Networks

Topics in Artificial Intelligence: Multiagent Systems Selfish Routing in Computer Networks Topics in Artificial Intelligence: Multiagent Systems Selfish Routing in Computer Networks Sebastian Streg December 10, 2005 1 Introduction Efficiency in networks with lots of traffic is a serious problem

More information

Introduction to Distributed Systems

Introduction to Distributed Systems Introduction to Distributed Systems Minsoo Ryu Department of Computer Science and Engineering 2 Definition A distributed system is a collection of independent computers that appears to its users as a single

More information

Making Gnutella-like P2P Systems Scalable

Making Gnutella-like P2P Systems Scalable Making Gnutella-like P2P Systems Scalable Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, S. Shenker Presented by: Herman Li Mar 2, 2005 Outline What are peer-to-peer (P2P) systems? Early P2P systems

More information

From the Editors: Peer-to-Peer Community: Looking beyond the Legacy of Napster and Gnutella

From the Editors: Peer-to-Peer Community: Looking beyond the Legacy of Napster and Gnutella IEEE DISTRIBUTED SYSTEMS ONLINE 1541-4922 2006 Published by the IEEE Computer Society Vol. 7, No. 3; March 2006 From the Editors: Peer-to-Peer Community: Looking beyond the Legacy of Napster and Gnutella

More information

Module 7. Independent sets, coverings. and matchings. Contents

Module 7. Independent sets, coverings. and matchings. Contents Module 7 Independent sets, coverings Contents and matchings 7.1 Introduction.......................... 152 7.2 Independent sets and coverings: basic equations..... 152 7.3 Matchings in bipartite graphs................

More information

Stratos Idreos. A thesis submitted in fulfillment of the requirements for the degree of. Electronic and Computer Engineering

Stratos Idreos. A thesis submitted in fulfillment of the requirements for the degree of. Electronic and Computer Engineering P2P-DIET: A QUERY AND NOTIFICATION SERVICE BASED ON MOBILE AGENTS FOR RAPID IMPLEMENTATION OF P2P APPLICATIONS by Stratos Idreos A thesis submitted in fulfillment of the requirements for the degree of

More information

Bipartite Perfect Matching in O(n log n) Randomized Time. Nikhil Bhargava and Elliot Marx

Bipartite Perfect Matching in O(n log n) Randomized Time. Nikhil Bhargava and Elliot Marx Bipartite Perfect Matching in O(n log n) Randomized Time Nikhil Bhargava and Elliot Marx Background Matching in bipartite graphs is a problem that has many distinct applications. Many problems can be reduced

More information

A Game-Theoretic Framework for Congestion Control in General Topology Networks

A Game-Theoretic Framework for Congestion Control in General Topology Networks A Game-Theoretic Framework for Congestion Control in General Topology SYS793 Presentation! By:! Computer Science Department! University of Virginia 1 Outline 2 1 Problem and Motivation! Congestion Control

More information

Flooded Queries (Gnutella) Centralized Lookup (Napster) Routed Queries (Freenet, Chord, etc.) Overview N 2 N 1 N 3 N 4 N 8 N 9 N N 7 N 6 N 9

Flooded Queries (Gnutella) Centralized Lookup (Napster) Routed Queries (Freenet, Chord, etc.) Overview N 2 N 1 N 3 N 4 N 8 N 9 N N 7 N 6 N 9 Peer-to-Peer Networks -: Computer Networking L-: PP Typically each member stores/provides access to content Has quickly grown in popularity Bulk of traffic from/to CMU is Kazaa! Basically a replication

More information

Selfish Caching in Distributed Systems: A Game-Theoretic Analysis

Selfish Caching in Distributed Systems: A Game-Theoretic Analysis Selfish Caching in Distributed Systems: A Game-Theoretic Analysis Symposium on Principles of Distributed Computing July 5, 4 Byung-Gon Chun, Kamalika Chaudhuri, Hoeteck Wee, Marco Barreno, Christos Papadimitriou,

More information

Understanding the Internet Graph. Christos H. Papadimitriou

Understanding the Internet Graph. Christos H. Papadimitriou Understanding the Internet Graph Christos H. Papadimitriou www.cs.berkeley.edu/~christos Goals To understand the Internet topology using tools from graph and game theory To contribute to the rigorous foundations

More information

Chapter 5 Graph Algorithms Algorithm Theory WS 2012/13 Fabian Kuhn

Chapter 5 Graph Algorithms Algorithm Theory WS 2012/13 Fabian Kuhn Chapter 5 Graph Algorithms Algorithm Theory WS 2012/13 Fabian Kuhn Graphs Extremely important concept in computer science Graph, : node (or vertex) set : edge set Simple graph: no self loops, no multiple

More information

A List Heuristic for Vertex Cover

A List Heuristic for Vertex Cover A List Heuristic for Vertex Cover Happy Birthday Vasek! David Avis McGill University Tomokazu Imamura Kyoto University Operations Research Letters (to appear) Online: http://cgm.cs.mcgill.ca/ avis revised:

More information

Architectures for Distributed Systems

Architectures for Distributed Systems Distributed Systems and Middleware 2013 2: Architectures Architectures for Distributed Systems Components A distributed system consists of components Each component has well-defined interface, can be replaced

More information

Strategic Network Formation

Strategic Network Formation Strategic Network Formation Zhongjing Yu, Big Data Research Center, UESTC Email:junmshao@uestc.edu.cn http://staff.uestc.edu.cn/shaojunming What s meaning of Strategic Network Formation? Node : a individual.

More information

Introduction to Peer-to-Peer Systems

Introduction to Peer-to-Peer Systems Introduction Introduction to Peer-to-Peer Systems Peer-to-peer (PP) systems have become extremely popular and contribute to vast amounts of Internet traffic PP basic definition: A PP system is a distributed

More information

Chapter 10: Peer-to-Peer Systems

Chapter 10: Peer-to-Peer Systems Chapter 10: Peer-to-Peer Systems From Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edition 4, Addison-Wesley 2005 Introduction To enable the sharing of data and resources

More information

A Survey of Peer-to-Peer Content Distribution Technologies

A Survey of Peer-to-Peer Content Distribution Technologies A Survey of Peer-to-Peer Content Distribution Technologies Stephanos Androutsellis-Theotokis and Diomidis Spinellis ACM Computing Surveys, December 2004 Presenter: Seung-hwan Baek Ja-eun Choi Outline Overview

More information

Cooperation in Multi-Organization Scheduling

Cooperation in Multi-Organization Scheduling Cooperation in Multi-Organization Scheduling Fanny Pascual ½, Krzysztof Rzadca, Denis Trystram ½ INRIA Rhône-Alpes, France LIG Grenoble University, France Polish-Japanese Institute of Information Technology,

More information

A Graph-Theoretic Network Security Game

A Graph-Theoretic Network Security Game A Graph-Theoretic Network Security Game Marios Mavronicolas Vicky Papadopoulou Anna Philippou Paul Spirakis May 16, 2008 A preliminary version of this work appeared in the Proceedings of the 1st International

More information

CPSC 426/526. P2P Lookup Service. Ennan Zhai. Computer Science Department Yale University

CPSC 426/526. P2P Lookup Service. Ennan Zhai. Computer Science Department Yale University CPSC / PP Lookup Service Ennan Zhai Computer Science Department Yale University Recall: Lec- Network basics: - OSI model and how Internet works - Socket APIs red PP network (Gnutella, KaZaA, etc.) UseNet

More information

Telecommunication Services Engineering Lab. Roch H. Glitho

Telecommunication Services Engineering Lab. Roch H. Glitho 1 Support Infrastructure Support infrastructure for application layer Why? Re-usability across application layer protocols Modularity (i.e. separation between application layer protocol specification /

More information

IOS: A Middleware for Decentralized Distributed Computing

IOS: A Middleware for Decentralized Distributed Computing IOS: A Middleware for Decentralized Distributed Computing Boleslaw Szymanski Kaoutar El Maghraoui, Carlos Varela Department of Computer Science Rensselaer Polytechnic Institute http://www.cs.rpi.edu/wwc

More information

CSE 124 Finding objects in distributed systems: Distributed hash tables and consistent hashing. March 8, 2016 Prof. George Porter

CSE 124 Finding objects in distributed systems: Distributed hash tables and consistent hashing. March 8, 2016 Prof. George Porter CSE 124 Finding objects in distributed systems: Distributed hash tables and consistent hashing March 8, 2016 rof. George orter Outline Today: eer-to-peer networking Distributed hash tables Consistent hashing

More information

EE 122: Peer-to-Peer (P2P) Networks. Ion Stoica November 27, 2002

EE 122: Peer-to-Peer (P2P) Networks. Ion Stoica November 27, 2002 EE 122: Peer-to-Peer (P2P) Networks Ion Stoica November 27, 22 How Did it Start? A killer application: Naptser - Free music over the Internet Key idea: share the storage and bandwidth of individual (home)

More information

THE PRICE OF STABILITY FOR NETWORK DESIGN WITH FAIR COST ALLOCATION

THE PRICE OF STABILITY FOR NETWORK DESIGN WITH FAIR COST ALLOCATION THE PRICE OF STABILITY FOR NETWORK DESIGN WITH FAIR COST ALLOCATION ELLIOT ANSHELEVICH, ANIRBAN DASGUPTA, JON KLEINBERG, ÉVA TARDOS, TOM WEXLER, AND TIM ROUGHGARDEN Abstract. Network design is a fundamental

More information

Adaptive Routing of QoS-Constrained Media Streams over Scalable Overlay Topologies

Adaptive Routing of QoS-Constrained Media Streams over Scalable Overlay Topologies Adaptive Routing of QoS-Constrained Media Streams over Scalable Overlay Topologies Gerald Fry and Richard West Boston University Boston, MA 02215 {gfry,richwest}@cs.bu.edu Introduction Internet growth

More information

Stochastic Models of Pull-Based Data Replication in P2P Systems

Stochastic Models of Pull-Based Data Replication in P2P Systems Stochastic Models of Pull-Based Data Replication in P2P Systems Xiaoyong Li and Dmitri Loguinov Presented by Zhongmei Yao Internet Research Lab Department of Computer Science and Engineering Texas A&M

More information

Distributed Systems. 17. Distributed Lookup. Paul Krzyzanowski. Rutgers University. Fall 2016

Distributed Systems. 17. Distributed Lookup. Paul Krzyzanowski. Rutgers University. Fall 2016 Distributed Systems 17. Distributed Lookup Paul Krzyzanowski Rutgers University Fall 2016 1 Distributed Lookup Look up (key, value) Cooperating set of nodes Ideally: No central coordinator Some nodes can

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Given an NP-hard problem, what should be done? Theory says you're unlikely to find a poly-time algorithm. Must sacrifice one of three desired features. Solve problem to optimality.

More information

Introduction to Game Theory

Introduction to Game Theory Lecture Introduction to Game Theory March 30, 005 Lecturer: Anna R. Karlin Notes: Atri Rudra In this course we will look at problems and issues which fall in the intersection of Computer Science and Economics.

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Subhash Suri June 5, 2018 1 Figure of Merit: Performance Ratio Suppose we are working on an optimization problem in which each potential solution has a positive cost, and we want

More information

Improved Equilibria via Public Service Advertising

Improved Equilibria via Public Service Advertising Improved Equilibria via Public Service Advertising Maria-Florina Balcan Avrim Blum Yishay Mansour August 12, 2008 Abstract Many natural games have both high and low cost Nash equilibria: their Price of

More information

Telematics Chapter 9: Peer-to-Peer Networks

Telematics Chapter 9: Peer-to-Peer Networks Telematics Chapter 9: Peer-to-Peer Networks Beispielbild User watching video clip Server with video clips Application Layer Presentation Layer Application Layer Presentation Layer Session Layer Session

More information

Peer-to-Peer Systems. Chapter General Characteristics

Peer-to-Peer Systems. Chapter General Characteristics Chapter 2 Peer-to-Peer Systems Abstract In this chapter, a basic overview is given of P2P systems, architectures, and search strategies in P2P systems. More specific concepts that are outlined include

More information

Online Stochastic Matching CMSC 858F: Algorithmic Game Theory Fall 2010

Online Stochastic Matching CMSC 858F: Algorithmic Game Theory Fall 2010 Online Stochastic Matching CMSC 858F: Algorithmic Game Theory Fall 2010 Barna Saha, Vahid Liaghat Abstract This summary is mostly based on the work of Saberi et al. [1] on online stochastic matching problem

More information

Peer-to-Peer Systems. Network Science: Introduction. P2P History: P2P History: 1999 today

Peer-to-Peer Systems. Network Science: Introduction. P2P History: P2P History: 1999 today Network Science: Peer-to-Peer Systems Ozalp Babaoglu Dipartimento di Informatica Scienza e Ingegneria Università di Bologna www.cs.unibo.it/babaoglu/ Introduction Peer-to-peer (PP) systems have become

More information

Algorithm and Complexity of Disjointed Connected Dominating Set Problem on Trees

Algorithm and Complexity of Disjointed Connected Dominating Set Problem on Trees Algorithm and Complexity of Disjointed Connected Dominating Set Problem on Trees Wei Wang joint with Zishen Yang, Xianliang Liu School of Mathematics and Statistics, Xi an Jiaotong University Dec 20, 2016

More information

Algorithmic Problems Related to Internet Graphs

Algorithmic Problems Related to Internet Graphs Algorithmic Problems Related to Internet Graphs Thomas Erlebach Based on joint work with: Zuzana Beerliova, Pino Di Battista, Felix Eberhard, Alexander Hall, Michael Hoffmann, Matúš Mihal ák, Alessandro

More information

Vertical Handover Decision Strategies A double-sided auction approach

Vertical Handover Decision Strategies A double-sided auction approach Vertical Handover Decision Strategies A double-sided auction approach Working paper Hoang-Hai TRAN Ph.d student DIONYSOS Team INRIA Rennes - Bretagne Atlantique 1 Content Introduction Handover in heterogeneous

More information

Simple Channel-Change Games for Spectrum- Agile Wireless Networks

Simple Channel-Change Games for Spectrum- Agile Wireless Networks 1 Proceedings of Student/Faculty Research Day, CSIS, Pace University, May 5 th, 26 Simple Channel-Change Games for Spectrum- Agile Wireless Networks Roli G. Wendorf and Howard Blum Abstract The proliferation

More information

REGULAR GRAPHS OF GIVEN GIRTH. Contents

REGULAR GRAPHS OF GIVEN GIRTH. Contents REGULAR GRAPHS OF GIVEN GIRTH BROOKE ULLERY Contents 1. Introduction This paper gives an introduction to the area of graph theory dealing with properties of regular graphs of given girth. A large portion

More information

Dual-fitting analysis of Greedy for Set Cover

Dual-fitting analysis of Greedy for Set Cover Dual-fitting analysis of Greedy for Set Cover We showed earlier that the greedy algorithm for set cover gives a H n approximation We will show that greedy produces a solution of cost at most H n OPT LP

More information

Anarchy is free in network creation

Anarchy is free in network creation Anarchy is free in network creation Ronald Graham Linus Hamilton Ariel Levavi Po-Shen Loh Abstract The Internet has emerged as perhaps the most important network in modern computing, but rather miraculously,

More information

CS555: Distributed Systems [Fall 2017] Dept. Of Computer Science, Colorado State University

CS555: Distributed Systems [Fall 2017] Dept. Of Computer Science, Colorado State University CS 555: DISTRIBUTED SYSTEMS [P2P SYSTEMS] Shrideep Pallickara Computer Science Colorado State University Frequently asked questions from the previous class survey Byzantine failures vs malicious nodes

More information

Approximation Algorithms

Approximation Algorithms Chapter 8 Approximation Algorithms Algorithm Theory WS 2016/17 Fabian Kuhn Approximation Algorithms Optimization appears everywhere in computer science We have seen many examples, e.g.: scheduling jobs

More information

Content Overlays. Nick Feamster CS 7260 March 12, 2007

Content Overlays. Nick Feamster CS 7260 March 12, 2007 Content Overlays Nick Feamster CS 7260 March 12, 2007 Content Overlays Distributed content storage and retrieval Two primary approaches: Structured overlay Unstructured overlay Today s paper: Chord Not

More information

How Harmful The Paradox Can Be In The Cohen-Kelly Computer Network Model Using A Non-Cooperative Dynamic Load Balancing Policy

How Harmful The Paradox Can Be In The Cohen-Kelly Computer Network Model Using A Non-Cooperative Dynamic Load Balancing Policy How Harmful The Paradox Can Be In The Cohen-Kelly Computer Network Model Using A Non-Cooperative Dynamic Load Balancing Policy SAID FATHY EL-ZOGHDY 1 Menoufia University Faculty of Science Department of

More information

Copyright 2000, Kevin Wayne 1

Copyright 2000, Kevin Wayne 1 Guessing Game: NP-Complete? 1. LONGEST-PATH: Given a graph G = (V, E), does there exists a simple path of length at least k edges? YES. SHORTEST-PATH: Given a graph G = (V, E), does there exists a simple

More information

Symphony. Symphony. Acknowledgement. DHTs: : The Big Picture. Spectrum of DHT Protocols. Distributed Hashing in a Small World

Symphony. Symphony. Acknowledgement. DHTs: : The Big Picture. Spectrum of DHT Protocols. Distributed Hashing in a Small World Distributed Hashing in a Small World Gurmeet Singh Manku Stanford University with Mayank Bawa and Prabhakar Raghavan Acknowledgement The following slides are borrowed from the author s talk at USITS 2003.

More information

Anarchy is Free in Network Creation

Anarchy is Free in Network Creation Anarchy is Free in Network Creation Ronald Graham 1, Linus Hamilton 2, Ariel Levavi 1, and Po-Shen Loh 2 1 Department of Computer Science and Engineering, University of California, San Diego, La Jolla,

More information

Cross-Monotonic Multicast

Cross-Monotonic Multicast Cross-Monotonic Multicast Zongpeng Li Department of Computer Science University of Calgary April 17, 2008 1 Multicast Multicast models one-to-many data dissemination in a computer network Example: live

More information

15-451/651: Design & Analysis of Algorithms October 11, 2018 Lecture #13: Linear Programming I last changed: October 9, 2018

15-451/651: Design & Analysis of Algorithms October 11, 2018 Lecture #13: Linear Programming I last changed: October 9, 2018 15-451/651: Design & Analysis of Algorithms October 11, 2018 Lecture #13: Linear Programming I last changed: October 9, 2018 In this lecture, we describe a very general problem called linear programming

More information

How Bad is Selfish Traffic Routing

How Bad is Selfish Traffic Routing How Bad is Selfish Traffic Routing Malik Magdon-Ismail magdon@cs.rpi.edu (Joint Work with Costas Busch) July 6, 2006. Disclaimer: Theoretical talk; no theorems proved. Huge Numbers Many people believe,

More information

11. APPROXIMATION ALGORITHMS

11. APPROXIMATION ALGORITHMS 11. APPROXIMATION ALGORITHMS load balancing center selection pricing method: vertex cover LP rounding: vertex cover generalized load balancing knapsack problem Lecture slides by Kevin Wayne Copyright 2005

More information

11.4 Bipartite Multigraphs

11.4 Bipartite Multigraphs 11.4 Bipartite Multigraphs Introduction Definition A graph G is bipartite if we can partition the vertices into two disjoint subsets U and V such that every edge of G has one incident vertex in U and the

More information

Distriubted Hash Tables and Scalable Content Adressable Network (CAN)

Distriubted Hash Tables and Scalable Content Adressable Network (CAN) Distriubted Hash Tables and Scalable Content Adressable Network (CAN) Ines Abdelghani 22.09.2008 Contents 1 Introduction 2 2 Distributed Hash Tables: DHT 2 2.1 Generalities about DHTs............................

More information

GIAN Course on Distributed Network Algorithms. Network Topologies and Local Routing

GIAN Course on Distributed Network Algorithms. Network Topologies and Local Routing GIAN Course on Distributed Network Algorithms Network Topologies and Local Routing Stefan Schmid @ T-Labs, 2011 GIAN Course on Distributed Network Algorithms Network Topologies and Local Routing If you

More information

Reputation Management in P2P Systems

Reputation Management in P2P Systems Reputation Management in P2P Systems Pradipta Mitra Nov 18, 2003 1 We will look at... Overview of P2P Systems Problems in P2P Systems Reputation Management Limited Reputation Sharing Simulation Results

More information

Bottleneck Routing Games on Grids. Costas Busch Rajgopal Kannan Alfred Samman Department of Computer Science Louisiana State University

Bottleneck Routing Games on Grids. Costas Busch Rajgopal Kannan Alfred Samman Department of Computer Science Louisiana State University Bottleneck Routing Games on Grids ostas Busch Rajgopal Kannan Alfred Samman Department of omputer Science Louisiana State University 1 Talk Outline Introduction Basic Game hannel Game xtensions 2 2-d Grid:

More information

Agent and Object Technology Lab Dipartimento di Ingegneria dell Informazione Università degli Studi di Parma. Distributed and Agent Systems

Agent and Object Technology Lab Dipartimento di Ingegneria dell Informazione Università degli Studi di Parma. Distributed and Agent Systems Agent and Object Technology Lab Dipartimento di Ingegneria dell Informazione Università degli Studi di Parma Distributed and Agent Systems Peer-to-Peer Systems & JXTA Prof. Agostino Poggi What is Peer-to-Peer

More information

Graph Theory Day Four

Graph Theory Day Four Graph Theory Day Four February 8, 018 1 Connected Recall from last class, we discussed methods for proving a graph was connected. Our two methods were 1) Based on the definition, given any u, v V(G), there

More information

Centralized versus distributed schedulers for multiple bag-of-task applications

Centralized versus distributed schedulers for multiple bag-of-task applications Centralized versus distributed schedulers for multiple bag-of-task applications O. Beaumont, L. Carter, J. Ferrante, A. Legrand, L. Marchal and Y. Robert Laboratoire LaBRI, CNRS Bordeaux, France Dept.

More information

EE 122: Peer-to-Peer Networks

EE 122: Peer-to-Peer Networks EE 122: Peer-to-Peer Networks Ion Stoica (and Brighten Godfrey) TAs: Lucian Popa, David Zats and Ganesh Ananthanarayanan http://inst.eecs.berkeley.edu/~ee122/ (Materials with thanks to Vern Paxson, Jennifer

More information

Graph Algorithms Matching

Graph Algorithms Matching Chapter 5 Graph Algorithms Matching Algorithm Theory WS 2012/13 Fabian Kuhn Circulation: Demands and Lower Bounds Given: Directed network, with Edge capacities 0and lower bounds l for Node demands for

More information

NSFA: Nested Scale-Free Architecture for Scalable Publish/Subscribe over P2P Networks

NSFA: Nested Scale-Free Architecture for Scalable Publish/Subscribe over P2P Networks NSFA: Nested Scale-Free Architecture for Scalable Publish/Subscribe over P2P Networks Huanyang Zheng and Jie Wu Dept. of Computer and Info. Sciences Temple University Road Map Introduction Nested Scale-Free

More information

6. Lecture notes on matroid intersection

6. Lecture notes on matroid intersection Massachusetts Institute of Technology 18.453: Combinatorial Optimization Michel X. Goemans May 2, 2017 6. Lecture notes on matroid intersection One nice feature about matroids is that a simple greedy algorithm

More information

EECS 122: Introduction to Computer Networks Overlay Networks and P2P Networks. Overlay Networks: Motivations

EECS 122: Introduction to Computer Networks Overlay Networks and P2P Networks. Overlay Networks: Motivations EECS 122: Introduction to Computer Networks Overlay Networks and P2P Networks Ion Stoica Computer Science Division Department of Electrical Engineering and Computer Sciences University of California, Berkeley

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 29 Approximation Algorithms Load Balancing Weighted Vertex Cover Reminder: Fill out SRTEs online Don t forget to click submit Sofya Raskhodnikova 12/7/2016 Approximation

More information

Introduction to P2P Computing

Introduction to P2P Computing Introduction to P2P Computing Nicola Dragoni Embedded Systems Engineering DTU Compute 1. Introduction A. Peer-to-Peer vs. Client/Server B. Overlay Networks 2. Common Topologies 3. Data Location 4. Gnutella

More information

The Price of Selfishness in Network Coding Jason R. Marden, Member, IEEE, and Michelle Effros, Fellow, IEEE

The Price of Selfishness in Network Coding Jason R. Marden, Member, IEEE, and Michelle Effros, Fellow, IEEE IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 4, APRIL 2012 2349 The Price of Selfishness in Network Coding Jason R. Marden, Member, IEEE, and Michelle Effros, Fellow, IEEE Abstract A game-theoretic

More information

Incentive for P2P Fair Resource Sharing

Incentive for P2P Fair Resource Sharing Incentive for P2P Fair Resource Sharing Emmanuelle Anceaume CNRS IRISA, France Joint work with Maria Gradinariu (IRISA), Aina Ravoaja (IRISA) Facing Rationality Classical distributed systems P2P Either

More information

Page 1. How Did it Start?" Model" Main Challenge" CS162 Operating Systems and Systems Programming Lecture 24. Peer-to-Peer Networks"

Page 1. How Did it Start? Model Main Challenge CS162 Operating Systems and Systems Programming Lecture 24. Peer-to-Peer Networks How Did it Start?" CS162 Operating Systems and Systems Programming Lecture 24 Peer-to-Peer Networks" A killer application: Napster (1999) Free music over the Internet Key idea: share the storage and bandwidth

More information

Network-on-chip (NOC) Topologies

Network-on-chip (NOC) Topologies Network-on-chip (NOC) Topologies 1 Network Topology Static arrangement of channels and nodes in an interconnection network The roads over which packets travel Topology chosen based on cost and performance

More information

Improved Equilibria via Public Service Advertising

Improved Equilibria via Public Service Advertising Carnegie Mellon University Research Showcase @ CMU Computer Science Department School of Computer Science 1-2009 Improved Equilibria via Public Service Advertising Maria-Florina Balcan Carnegie Mellon

More information

The final exam is closed-book; you should have no materials present other than the exam and a pen or pencil.

The final exam is closed-book; you should have no materials present other than the exam and a pen or pencil. Networked Life CSE 112 Prof. Michael Kearns Final Examination May 6, 2005 The final exam is closed-book; you should have no materials present other than the exam and a pen or pencil. NAME: PENN ID: Exam

More information

Approximation slides 1. An optimal polynomial algorithm for the Vertex Cover and matching in Bipartite graphs

Approximation slides 1. An optimal polynomial algorithm for the Vertex Cover and matching in Bipartite graphs Approximation slides 1 An optimal polynomial algorithm for the Vertex Cover and matching in Bipartite graphs Approximation slides 2 Linear independence A collection of row vectors {v T i } are independent

More information

Georges Da Costa Introduction on Peer to Peer systems

Georges Da Costa Introduction on Peer to Peer systems Introduction on Peer to Peer systems Georges Da Costa dacosta@irit.fr Goal of this Lecture What can P2P do, not only as a buzzword What it can t do Shows some examples & algorithms A Survey and Comparison

More information

Hyper-Invertible Matrices and Applications

Hyper-Invertible Matrices and Applications Hyper-Invertible Matrices and Applications Martin Hirt ETH Zurich Theory and Practice of MPC, Aarhus, June 2012 Outline Hyper-Invertible Matrices Motivation Definition & Properties Construction Applications

More information

A Game-Theoretic Approach for Minimizing Delays in Autonomous Intersections

A Game-Theoretic Approach for Minimizing Delays in Autonomous Intersections A Game-Theoretic Approach for Minimizing Delays in Autonomous Intersections Robert P. Adkins, David M. Mount, and Alice A. Zhang Abstract Traffic management systems of the near future will be able to exploit

More information