Uniprocessor Computer Architecture Example: Cray T3E

Size: px
Start display at page:

Download "Uniprocessor Computer Architecture Example: Cray T3E"

Transcription

1 Chapter 2: Computer-System Structures MP Example: Intel Pentium Pro Quad Lab 1 is available online Last lecture: why study operating systems? Purpose of this lecture: general knowledge of the structure of a computer system and understanding technology trends Key issues in a computer system General System Architecture (CPU, $s, MM, disk, bus, IO devices and controllers), Uni vs. Multi Processors I/O Structure (IO interrupts, IO methods, HW support, e.g., DMA) Storage Structure (CPU regs, $, MM, disk) Storage Hierarchy (why? expensivecheap; smalllarge) Hardware Protection (user/system, IO protection, Mem protection) Interrupt controller CPU Bus interface 256-KB L 2 $ P-Pro module P-Pro bus (64-bit data, 36-bit addr ess, 66 MHz) PCI I/O cards PCI bridge PCI bus PCI bridge Multiprocessor P-Pro module P-Pro module Memory controller MIU 1-, 2-, or 4-way interleaved DRAM All coherence and multiprocessing glue in processor module PCI bus Highly integrated, targeted at high volume Hmm this looks like a Computer System? Example: SUN Enterprise Algorithms The System Programming Languages P $ P $ CPU/mem cards $ 2 $ 2 Mem ctrl Bus interface/switch Gigaplane bus (256 data, 41 addr ess, 83 MHz) Compiler Hardware Technology, Architecture Runtime, Operating System bt, SCSI Bus interface SBUS SBUS SBUS 2 FiberChannel I/O cards Figure by courtesy of Anant Agarwal, MIT 16 cards of either type: processors + memory, or I/O All memory accessed over bus, so symmetric multiproc. (SMP) Higher bandwidth, higher latency bus Uniprocessor Computer Architecture Example: Cray T3E External I/O P $ Mem Mem ctrl and NI XY Switch Z Multiprocessor system Scale up to 1024 processors, 480MB/s links 1

2 Let s look at trends, 1 st Technology Trends Transistor Count Growth Rate,000,000 Performance Supercomputers 10 Mainframes Microprocessors Minicomputers The natural building block for multiprocessors is now also about the fastest! Transistors 10,000,000,000,000 R00 Pentium i80386 i80286 R2000 R3000 i ,000 i8080 i8008 i million transistors on chip by early 2000 s A.D. Transistor count grows much faster than clock rate - 40% per year, order of magnitude more contribution in 2 decades General Technology Trends Microprocessor performance increases 50% - % per year Transistor count doubles every 3 years DRAM size quadruples every 3 years Huge investment per generation is carried by huge commodity market Sun MIPS M/120 MIPS M2000 IBM RS HP Integer Not that single-processor performance is plateauing, but that parallelism is a natural way to improve it. 750 DEC alpha FP Architectural Trends: Bus-based MPs Micro on a chip makes it natural to connect many to shared memory dominates server and enterprise market, moving down to desktop Faster processors began to saturate bus, then bus technology advanced today, range of sizes for bus-based systems, desktop to large servers Number of processors Sequent B2 Sequent B8000 Symmetry81 Symmetry21 Power Sun SC2000 SGI Challenge SE60 SE10 SS0 CRAY CS6400 SE70 SC2000E SGI PowerChallenge/XL AS8400 SE30 SS0E Sun E00 Sun E6000 SS690MP 140 AS2 HP K400 P-Pro SGI PowerSeries SS690MP 120 SS10 SS Clock Frequency Growth Rate Clock rate (MHz) 30% per year R00 Pentium 10 i8086 i80286 i80386 i i8008 i Shared bus bandwidth (MB/s),000 10,000 Bus Bandwidth SS690MP 120 SS690MP 140 Symmetry81/21 SGI PowerSeries SGI Challenge Power SGI PowerCh XL SC2000 SS0 SS10/ SE10/ SE60 Sun E00 Sun E6000 AS8400 CS6400 HPK400 SC2000E AS2 P-Pro SS0E SS20 SE70/SE30 Sequent B2 Sequent B

3 Phases in VLSI Generation Common Functions of Interrupts,000,000 Bit-level parallelism Instruction-level Thread-level (?) Transistors 10,000,000 R00,000 Pentium i80386 i80286,000 R3000 R2000 i ,000 i8080 i8008 i Interrupt transfers control to the interrupt service routine generally, through the interrupt vector, which contains the addresses of all the service routines. Interrupt architecture must save the address of the interrupted instruction. Incoming interrupts are disabled while another interrupt is being processed to prevent a lost interrupt. A trap is a software-generated interrupt caused either by an error or a user request. An operating system is interrupt driven. How good is instruction-level parallelism? Thread-level needed in microprocessors? Economics Interrupt Handling Commodity microprocessors not only fast but CHEAP Development cost is tens of millions of dollars (5- typical) BUT, many more are sold compared to supercomputers Crucial to take advantage of the investment, and use the commodity building block Exotic parallel architectures no more than special-purpose Multiprocessors being pushed by software vendors (e.g. database) as well as hardware vendors Standardization by Intel makes small, bus-based SMPs commodity The operating system preserves the state of the CPU by storing registers and the program counter. Determines which type of interrupt has occurred: polling vectored interrupt system Separate segments of code determine what action should be taken for each type of interrupt Desktop: few smaller processors versus one larger one? Multiprocessor on a chip is here. Computer-System Operation Interrupt Time Line For a Single Process Doing Output I/O devices and the CPU can execute concurrently. Each device controller is in charge of a particular device type. Each device controller has a local buffer. CPU moves data from/to main memory to/from local buffers I/O is from the device to local buffer of controller. Device controller informs CPU that it has finished its operation by causing an interrupt. 3

4 I/O Structure Direct Memory Access Structure After I/O starts, control returns to user program only upon I/O completion. Wait instruction idles the CPU until the next interrupt Wait loop (contention for memory access). At most one I/O request is outstanding at a time, no simultaneous I/O processing. After I/O starts, control returns to user program without waiting for I/O completion. System call request to the operating system to allow user to wait for I/O completion. Device-status table contains entry for each I/O device indicating its type, address, and state. Operating system indexes into I/O device table to determine device status and to modify table entry to include interrupt. Used for high-speed I/O devices able to transmit information at close to memory speeds. Device controller transfers blocks of data from buffer storage directly to main memory without CPU intervention. Only one interrupt is generated per block, rather than the one interrupt per byte. Two I/O Methods Storage Structure Synchronous Asynchronous Main memory only large storage media that the CPU can access directly. Secondary storage extension of main memory that provides large nonvolatile storage capacity. Magnetic disks rigid metal or glass platters covered with magnetic recording material Disk surface is logically divided into tracks, which are subdivided into sectors. The disk controller determines the logical interaction between the device and the computer. Device-Status Table Moving-Head Disk Mechanism 4

5 Storage Hierarchy Migration of A From Disk to Register Storage systems organized in hierarchy. Speed Cost Volatility Caching copying information into faster storage system; main memory can be viewed as a last cache for secondary storage. Storage-Device Hierarchy Hardware Protection Dual-Mode Operation I/O Protection Memory Protection CPU Protection Caching Dual-Mode Operation Use of high-speed memory to hold recently-accessed data. Requires a cache management policy. Caching introduces another level in storage hierarchy. This requires data that is simultaneously stored in more than one level to be consistent. Caching is typically transparent to the OS Sharing system resources requires operating system to ensure that an incorrect program cannot cause other programs to execute incorrectly. Provide hardware support to differentiate between at least two modes of operations. 1. User mode execution done on behalf of a user. 2. Monitor mode (also kernel mode or system mode) execution done on behalf of operating system. 5

6 Dual-Mode Operation (Cont.) Memory Protection Mode bit added to computer hardware to indicate the current mode: monitor (0) or user (1). When an interrupt or fault occurs hardware switches to monitor mode. Interrupt/fault monitor set user mode user Must provide memory protection at least for the interrupt vector and the interrupt service routines. In order to have memory protection, add two registers that determine the range of legal addresses a program may access: Base register holds the smallest legal physical memory address. Limit register contains the size of the range Memory outside the defined range is protected. Privileged instructions can be issued only in monitor mode. I/O Protection Use of A Base and Limit Register All I/O instructions are privileged instructions. Must ensure that a user program could never gain control of the computer in monitor mode (I.e., a user program that, as part of its execution, stores a new address in the interrupt vector). Use of A System Call to Perform I/O Hardware Address Protection 6

7 Hardware Protection Local Area Network Structure When executing in monitor mode, the operating system has unrestricted access to both monitor and user s memory. The load instructions for the base and limit registers are privileged instructions. CPU Protection Wide Area Network Structure Timer interrupts computer after specified period to ensure operating system maintains control. Timer is decremented every clock tick. When timer reaches the value 0, an interrupt occurs. Timer commonly used to implement time sharing. Time also used to compute the current time. Load-timer is a privileged instruction. Network Structure Local Area Networks (LAN) Wide Area Networks (WAN) 7

Chapter 2: Computer-System Structures. Hmm this looks like a Computer System?

Chapter 2: Computer-System Structures. Hmm this looks like a Computer System? Chapter 2: Computer-System Structures Lab 1 is available online Last lecture: why study operating systems? Purpose of this lecture: general knowledge of the structure of a computer system and understanding

More information

Computer-System Architecture

Computer-System Architecture Chapter 2: Computer-System Structures Computer System Operation I/O Structure Storage Structure Storage Hierarchy Hardware Protection General System Architecture 2.1 Computer-System Architecture 2.2 1

More information

Computer-System Architecture. Common Functions of Interrupts. Computer-System Operation. Interrupt Handling. Chapter 2: Computer-System Structures

Computer-System Architecture. Common Functions of Interrupts. Computer-System Operation. Interrupt Handling. Chapter 2: Computer-System Structures Chapter 2: Computer-System Structures Computer-System Architecture Computer System Operation I/O Structure Storage Structure Storage Hierarchy Hardware Protection General System Architecture 2.1 2.2 Computer-System

More information

Instruction Cycle. Computer-System Architecture. Computer-System Operation. Common Functions of Interrupts. Chapter 2: Computer-System Structures

Instruction Cycle. Computer-System Architecture. Computer-System Operation. Common Functions of Interrupts. Chapter 2: Computer-System Structures Summary Operating Systems evolved through stages Resident monitors Multiprogrammed batch systems Time-shared multiuser systems Desktop systems Specialized operating systems (real-time, handheld, parallel

More information

Computer-System Structures

Computer-System Structures Computer-System Structures Computer System Operation I/O Structure Storage Structure Storage Hierarchy Hardware Protection Network Structure 2.1 Sana a University, Dr aimen A Modern Computer System 2.2

More information

Module 2: Computer-System Structures. Computer-System Architecture

Module 2: Computer-System Structures. Computer-System Architecture Module 2: Computer-System Structures Computer-System Operation I/O Structure Storage Structure Storage Hierarchy Hardware Protection General System Architecture Operating System Concepts 2.1 Silberschatz

More information

Common Computer-System and OS Structures

Common Computer-System and OS Structures Common Computer-System and OS Structures Computer System Operation I/O Structure Storage Structure Storage Hierarchy Hardware Protection General System Architecture Oct-03 1 Computer-System Architecture

More information

Operating System Review

Operating System Review COP 4225 Advanced Unix Programming Operating System Review Chi Zhang czhang@cs.fiu.edu 1 About the Course Prerequisite: COP 4610 Concepts and Principles Programming System Calls Advanced Topics Internals,

More information

Chapter 1: Introduction. Operating System Concepts 8th Edition,

Chapter 1: Introduction. Operating System Concepts 8th Edition, Chapter 1: Introduction, Administrivia Reading: Chapter 1. Next time: Continued Grand Tour. 1.2 Outline Common computer system devices. Parallelism within an operating system. Interrupts. Storage operation,

More information

NOW Handout Page 1 NO! Today s Goal: CS 258 Parallel Computer Architecture. What will you get out of CS258? Will it be worthwhile?

NOW Handout Page 1 NO! Today s Goal: CS 258 Parallel Computer Architecture. What will you get out of CS258? Will it be worthwhile? Today s Goal: CS 258 Parallel Computer Architecture Introduce you to Parallel Computer Architecture Answer your questions about CS 258 Provide you a sense of the trends that shape the field CS 258, Spring

More information

Number of processing elements (PEs). Computing power of each element. Amount of physical memory used. Data access, Communication and Synchronization

Number of processing elements (PEs). Computing power of each element. Amount of physical memory used. Data access, Communication and Synchronization Parallel Computer Architecture A parallel computer is a collection of processing elements that cooperate to solve large problems fast Broad issues involved: Resource Allocation: Number of processing elements

More information

ECE 669 Parallel Computer Architecture

ECE 669 Parallel Computer Architecture ECE 669 arallel Computer Architecture Lecture 2 Architectural erspective Overview Increasingly attractive Economics, technology, architecture, application demand Increasingly central and mainstream arallelism

More information

CS3600 SYSTEMS AND NETWORKS

CS3600 SYSTEMS AND NETWORKS CS3600 SYSTEMS AND NETWORKS NORTHEASTERN UNIVERSITY Lecture 1: Overview and Introduction Prof. Alan Mislove (amislove@ccs.neu.edu) What is an Operating System? 2 What is an Operating System? A program

More information

To provide a grand tour of the major operating systems components To provide coverage of basic computer system organization

To provide a grand tour of the major operating systems components To provide coverage of basic computer system organization Introduction What Operating Systems Do Computer-System Organization Computer-System Architecture Operating-System Structure Operating-System Operations Process Management Memory Management Storage Management

More information

Chapter 1: Introduction

Chapter 1: Introduction Chapter 1: Introduction Chapter 1: Introduction What Operating Systems Do Computer-System Organization Computer-System Architecture Operating-System Structure Operating-System Operations Process Management

More information

Chapter 1: Introduction

Chapter 1: Introduction Chapter 1: Introduction Silberschatz, Galvin and Gagne 2009 Chapter 1: Introduction What Operating Systems Do Computer-System Organization Computer-System Architecture Operating-System Structure Operating-System

More information

Convergence of Parallel Architecture

Convergence of Parallel Architecture Parallel Computing Convergence of Parallel Architecture Hwansoo Han History Parallel architectures tied closely to programming models Divergent architectures, with no predictable pattern of growth Uncertainty

More information

Chapter 1: Introduction. Chapter 1: Introduction

Chapter 1: Introduction. Chapter 1: Introduction Chapter 1: Introduction Chapter 1: Introduction What Operating Systems Do Computer-System Organization Computer-System Architecture Operating-System Structure Operating-System Operations Process Management

More information

7/20/2008. What Operating Systems Do Computer-System Organization

7/20/2008. What Operating Systems Do Computer-System Organization Introduction to Operating Systems Introduction What Operating Systems Do Computer-System Organization Computer-System Architecture Operating-System Structure Operating-System Operations Process Management

More information

Lecture 1 Introduction (Chapter 1 of Textbook)

Lecture 1 Introduction (Chapter 1 of Textbook) Bilkent University Department of Computer Engineering CS342 Operating Systems Lecture 1 Introduction (Chapter 1 of Textbook) Dr. İbrahim Körpeoğlu http://www.cs.bilkent.edu.tr/~korpe 1 References The slides

More information

Chapter 1: Introduction Dr. Ali Fanian. Operating System Concepts 9 th Edit9on

Chapter 1: Introduction Dr. Ali Fanian. Operating System Concepts 9 th Edit9on Chapter 1: Introduction Dr. Ali Fanian Operating System Concepts 9 th Edit9on Silberschatz, Galvin and Gagne 2013 1.2 Silberschatz, Galvin and Gagne 2013 Organization Lectures Homework Quiz Several homeworks

More information

CPSC 341 OS & Networks. Introduction. Dr. Yingwu Zhu

CPSC 341 OS & Networks. Introduction. Dr. Yingwu Zhu CPSC 341 OS & Networks Introduction Dr. Yingwu Zhu What to learn? Concepts Processes, threads, multi-processing, multithreading, synchronization, deadlocks, CPU scheduling, networks, security Practice:

More information

European University of Lefke. Instructor: Dr. Arif SARI

European University of Lefke. Instructor: Dr. Arif SARI European University of Lefke CIS 105 Operating Systems Instructor: Dr. Arif SARI Email: asari@eul.edu.tr Introduction 1.1 Silberschatz, Galvin and Gagne 2009 Chapter 1: Introduction, Silberschatz, Galvin

More information

Chapter 1: Introduction

Chapter 1: Introduction Chapter 1: Introduction Chapter 1: Introduction What Operating Systems Do Computer-System Organization Computer-System Architecture Operating-System Structure Operating-System Operations Process Management

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Spring 2018 Lecture 2 Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 2 What is an Operating System? What is

More information

Parallel Computing Platforms. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

Parallel Computing Platforms. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University Parallel Computing Platforms Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Elements of a Parallel Computer Hardware Multiple processors Multiple

More information

Three basic multiprocessing issues

Three basic multiprocessing issues Three basic multiprocessing issues 1. artitioning. The sequential program must be partitioned into subprogram units or tasks. This is done either by the programmer or by the compiler. 2. Scheduling. Associated

More information

Chapter 1: Introduction. Operating System Concepts 9 th Edit9on

Chapter 1: Introduction. Operating System Concepts 9 th Edit9on Chapter 1: Introduction Operating System Concepts 9 th Edit9on Silberschatz, Galvin and Gagne 2013 Objectives To describe the basic organization of computer systems To provide a grand tour of the major

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Fall 2016 Lecture 2 Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 2 System I/O System I/O (Chap 13) Central

More information

Lecture1: Introduction. Administrative info

Lecture1: Introduction. Administrative info Lecture1: Introduction 1 Administrative info Welcome to ECE669! Welcome off-campus students! Csaba Andras Moritz, Associate Professor @ ECE/UMASS Questions/discussions/email questions are welcome! My Focus:

More information

Learning Curve for Parallel Applications. 500 Fastest Computers

Learning Curve for Parallel Applications. 500 Fastest Computers Learning Curve for arallel Applications ABER molecular dynamics simulation program Starting point was vector code for Cray-1 145 FLO on Cray90, 406 for final version on 128-processor aragon, 891 on 128-processor

More information

Parallel Computing Platforms

Parallel Computing Platforms Parallel Computing Platforms Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu SSE3054: Multicore Systems, Spring 2017, Jinkyu Jeong (jinkyu@skku.edu)

More information

Architectural Support for Operating Systems

Architectural Support for Operating Systems Architectural Support for Operating Systems Today Computer system overview Next time OS components & structure Computer architecture and OS OS is intimately tied to the hardware it runs on The OS design

More information

Parallel Programming Models and Architecture

Parallel Programming Models and Architecture Parallel Programming Models and Architecture CS 740 September 18, 2013 Seth Goldstein Carnegie Mellon University History Historically, parallel architectures tied to programming models Divergent architectures,

More information

OPERATING SYSTEMS UNIT - 1

OPERATING SYSTEMS UNIT - 1 OPERATING SYSTEMS UNIT - 1 Syllabus UNIT I FUNDAMENTALS Introduction: Mainframe systems Desktop Systems Multiprocessor Systems Distributed Systems Clustered Systems Real Time Systems Handheld Systems -

More information

DM510 Operating Systems. Jacob Aae Mikkelsen

DM510 Operating Systems. Jacob Aae Mikkelsen DM510 Operating Systems Jacob Aae Mikkelsen DM510 2014 DM510 Course Introduction Teacher: Jacob Aae Mikkelsen ( jamik@imada.sdu.dk ) Teaching Assistant: Daniel Fentz Johansen ( dfjohansen@gmail.com ) Course

More information

Four Components of a Computer System

Four Components of a Computer System Four Components of a Computer System Operating System Concepts Essentials 2nd Edition 1.1 Silberschatz, Galvin and Gagne 2013 Operating System Definition OS is a resource allocator Manages all resources

More information

Operating Systems. Introduction & Overview. Outline for today s lecture. Administrivia. ITS 225: Operating Systems. Lecture 1

Operating Systems. Introduction & Overview. Outline for today s lecture. Administrivia. ITS 225: Operating Systems. Lecture 1 ITS 225: Operating Systems Operating Systems Lecture 1 Introduction & Overview Jan 15, 2004 Dr. Matthew Dailey Information Technology Program Sirindhorn International Institute of Technology Thammasat

More information

Course Details. Operating Systems with C/C++ Course Details. What is an Operating System?

Course Details. Operating Systems with C/C++ Course Details. What is an Operating System? Lecture Course in Autumn Term 2013 University of Birmingham Lecture notes and resources: http://www.cs.bham.ac.uk/ exr/teaching/lectures/opsys/13_14 closed facebook group: UoBOperatingSystems anyone registered

More information

OS And Hardware. Computer Hardware Review PROCESSORS. CPU Registers. CPU Registers 02/04/2013

OS And Hardware. Computer Hardware Review PROCESSORS. CPU Registers. CPU Registers 02/04/2013 OS And Hardware Computer Hardware Review An operating system is intimately tied to the hardware of the computer it runs on. It extends the computer s instruction set and manages its resources. To work

More information

Introduction. TDDI04, K. Arvidsson, IDA, Linköpings universitet Contents. What is an Operating System (OS)?

Introduction. TDDI04, K. Arvidsson, IDA, Linköpings universitet Contents. What is an Operating System (OS)? TDDI04 Concurrent Programming, Operating Systems, and Real-time Operating Systems Introduction Copyright Notice: The lecture notes are mainly based on Silberschatz s, Galvin s and Gagne s book ( Operating

More information

OPERATING SYSTEMS: Lesson 1: Introduction to Operating Systems

OPERATING SYSTEMS: Lesson 1: Introduction to Operating Systems OPERATING SYSTEMS: Lesson 1: Introduction to Jesús Carretero Pérez David Expósito Singh José Daniel García Sánchez Francisco Javier García Blas Florin Isaila 1 Why study? a) OS, and its internals, largely

More information

Operating Systems. Lecture Course in Autumn Term 2015 University of Birmingham. Eike Ritter. September 22, 2015

Operating Systems. Lecture Course in Autumn Term 2015 University of Birmingham. Eike Ritter. September 22, 2015 Lecture Course in Autumn Term 2015 University of Birmingham September 22, 2015 Course Details Overview Course Details What is an Operating System? OS Definition and Structure Lecture notes and resources:

More information

Architecture and OS. To do. q Architecture impact on OS q OS impact on architecture q Next time: OS components and structure

Architecture and OS. To do. q Architecture impact on OS q OS impact on architecture q Next time: OS components and structure Architecture and OS To do q Architecture impact on OS q OS impact on architecture q Next time: OS components and structure Computer architecture and OS OS is intimately tied to the hardware it runs on

More information

Multiprocessing and Scalability. A.R. Hurson Computer Science and Engineering The Pennsylvania State University

Multiprocessing and Scalability. A.R. Hurson Computer Science and Engineering The Pennsylvania State University A.R. Hurson Computer Science and Engineering The Pennsylvania State University 1 Large-scale multiprocessor systems have long held the promise of substantially higher performance than traditional uniprocessor

More information

CSE Opera+ng System Principles

CSE Opera+ng System Principles CSE 30341 Opera+ng System Principles Lecture 2 Introduc5on Con5nued Recap Last Lecture What is an opera+ng system & kernel? What is an interrupt? CSE 30341 Opera+ng System Principles 2 1 OS - Kernel CSE

More information

Chapter Seven Morgan Kaufmann Publishers

Chapter Seven Morgan Kaufmann Publishers Chapter Seven Memories: Review SRAM: value is stored on a pair of inverting gates very fast but takes up more space than DRAM (4 to 6 transistors) DRAM: value is stored as a charge on capacitor (must be

More information

CPE/EE 421 Microcomputers

CPE/EE 421 Microcomputers CPE/EE 421 Microcomputers Instructor: Dr Aleksandar Milenkovic Lecture Notes S01 *Material used is in part developed by Dr. D. Raskovic and Dr. E. Jovanov CPE/EE 421/521 Microcomputers 1 CPE/EE 421 Microcomputers

More information

Lecture 9: MIMD Architectures

Lecture 9: MIMD Architectures Lecture 9: MIMD Architectures Introduction and classification Symmetric multiprocessors NUMA architecture Clusters Zebo Peng, IDA, LiTH 1 Introduction A set of general purpose processors is connected together.

More information

Computer-System Organization (cont.)

Computer-System Organization (cont.) Computer-System Organization (cont.) Interrupt time line for a single process doing output. Interrupts are an important part of a computer architecture. Each computer design has its own interrupt mechanism,

More information

Last class: Today: Course administration OS definition, some history. Background on Computer Architecture

Last class: Today: Course administration OS definition, some history. Background on Computer Architecture 1 Last class: Course administration OS definition, some history Today: Background on Computer Architecture 2 Canonical System Hardware CPU: Processor to perform computations Memory: Programs and data I/O

More information

Introduction. What is Parallel Architecture? Why Parallel Architecture? Evolution and Convergence of Parallel Architectures. Fundamental Design Issues

Introduction. What is Parallel Architecture? Why Parallel Architecture? Evolution and Convergence of Parallel Architectures. Fundamental Design Issues What is Parallel Architecture? Why Parallel Architecture? Evolution and Convergence of Parallel Architectures Fundamental Design Issues 2 What is Parallel Architecture? A parallel computer is a collection

More information

Alternate definition: Instruction Set Architecture (ISA) What is Computer Architecture? Computer Organization. Computer structure: Von Neumann model

Alternate definition: Instruction Set Architecture (ISA) What is Computer Architecture? Computer Organization. Computer structure: Von Neumann model What is Computer Architecture? Structure: static arrangement of the parts Organization: dynamic interaction of the parts and their control Implementation: design of specific building blocks Performance:

More information

Evolution and Convergence of Parallel Architectures

Evolution and Convergence of Parallel Architectures History Evolution and Convergence of arallel Architectures Historically, parallel architectures tied to programming models Divergent architectures, with no predictable pattern of growth. Todd C. owry CS

More information

Alex Milenkovich 1. CPE/EE 421 Microcomputers. CPE/EE 421 Microcomputers U A H U A H U A H. Instructor: Dr Aleksandar Milenkovic Lecture Notes S01

Alex Milenkovich 1. CPE/EE 421 Microcomputers. CPE/EE 421 Microcomputers U A H U A H U A H. Instructor: Dr Aleksandar Milenkovic Lecture Notes S01 CPE/EE 42 Microcomputers Instructor: Dr Aleksandar Milenkovic Lecture Notes S0 *Material used is in part developed by Dr. D. Raskovic and Dr. E. Jovanov CPE/EE 42/52 Microcomputers CPE/EE 42 Microcomputers

More information

What Operating Systems Do An operating system is a program hardware that manages the computer provides a basis for application programs acts as an int

What Operating Systems Do An operating system is a program hardware that manages the computer provides a basis for application programs acts as an int Operating Systems Lecture 1 Introduction Agenda: What Operating Systems Do Computer System Components How to view the Operating System Computer-System Operation Interrupt Operation I/O Structure DMA Structure

More information

Lecture 2 - Fundamental Concepts

Lecture 2 - Fundamental Concepts Lecture 2 - Fundamental Concepts Instructor : Bibhas Ghoshal (bibhas.ghoshal@iiita.ac.in) Autumn Semester, 2015 Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 1 / 43 Lecture Outline Operating

More information

Computer System Architecture. CMPT 300 Operating Systems I. Summer Segment 3: Computer System Architecture. Melissa O Neill

Computer System Architecture. CMPT 300 Operating Systems I. Summer Segment 3: Computer System Architecture. Melissa O Neill CMPT 300 Operating Systems I Computer System Architecture Summer 1999 disk disk printer tape drives on-line Segment 3: Computer System Architecture CPU disk controller printer controller tape-drive controller

More information

SMP and ccnuma Multiprocessor Systems. Sharing of Resources in Parallel and Distributed Computing Systems

SMP and ccnuma Multiprocessor Systems. Sharing of Resources in Parallel and Distributed Computing Systems Reference Papers on SMP/NUMA Systems: EE 657, Lecture 5 September 14, 2007 SMP and ccnuma Multiprocessor Systems Professor Kai Hwang USC Internet and Grid Computing Laboratory Email: kaihwang@usc.edu [1]

More information

Lecture 9: MIMD Architectures

Lecture 9: MIMD Architectures Lecture 9: MIMD Architectures Introduction and classification Symmetric multiprocessors NUMA architecture Clusters Zebo Peng, IDA, LiTH 1 Introduction MIMD: a set of general purpose processors is connected

More information

Ms. Minerva A. Lagarde

Ms. Minerva A. Lagarde Ms. Minerva A. Lagarde Introduction Objectives At the end of this module, you should be able to: 1. explain how a computer works; 2. state the functions of each basic hardware component of a computer system;

More information

Chapter 1 Computer System Overview

Chapter 1 Computer System Overview Operating Systems: Internals and Design Principles Chapter 1 Computer System Overview Ninth Edition By William Stallings Operating System Exploits the hardware resources of one or more processors Provides

More information

ECE5610/CSC6220 Introduction to Parallel and Distribution Computing

ECE5610/CSC6220 Introduction to Parallel and Distribution Computing ECE5610/CSC6220 Introduction to Parallel and Distribution Computing Instructor: Dr. Song Jiang The ECE Department sjiang@eng.wayne.edu http://www.ece.eng.wayne.edu/~sjiang/ece5610-fall-14/ece5610.htm Lecture:

More information

Chapter 2 Computer-System Structure

Chapter 2 Computer-System Structure Contents 1. Introduction 2. Computer-System Structures 3. Operating-System Structures 4. Processes 5. Threads 6. CPU Scheduling 7. Process Synchronization 8. Deadlocks 9. Memory Management 10. Virtual

More information

Computer and Information Sciences College / Computer Science Department CS 207 D. Computer Architecture. Lecture 9: Multiprocessors

Computer and Information Sciences College / Computer Science Department CS 207 D. Computer Architecture. Lecture 9: Multiprocessors Computer and Information Sciences College / Computer Science Department CS 207 D Computer Architecture Lecture 9: Multiprocessors Challenges of Parallel Processing First challenge is % of program inherently

More information

Lecture 9: MIMD Architecture

Lecture 9: MIMD Architecture Lecture 9: MIMD Architecture Introduction and classification Symmetric multiprocessors NUMA architecture Cluster machines Zebo Peng, IDA, LiTH 1 Introduction MIMD: a set of general purpose processors is

More information

MIMD Overview. Intel Paragon XP/S Overview. XP/S Usage. XP/S Nodes and Interconnection. ! Distributed-memory MIMD multicomputer

MIMD Overview. Intel Paragon XP/S Overview. XP/S Usage. XP/S Nodes and Interconnection. ! Distributed-memory MIMD multicomputer MIMD Overview Intel Paragon XP/S Overview! MIMDs in the 1980s and 1990s! Distributed-memory multicomputers! Intel Paragon XP/S! Thinking Machines CM-5! IBM SP2! Distributed-memory multicomputers with hardware

More information

Snoop-Based Multiprocessor Design III: Case Studies

Snoop-Based Multiprocessor Design III: Case Studies Snoop-Based Multiprocessor Design III: Case Studies Todd C. Mowry CS 41 March, Case Studies of Bus-based Machines SGI Challenge, with Powerpath SUN Enterprise, with Gigaplane Take very different positions

More information

CENG3420 Lecture 08: Memory Organization

CENG3420 Lecture 08: Memory Organization CENG3420 Lecture 08: Memory Organization Bei Yu byu@cse.cuhk.edu.hk (Latest update: February 22, 2018) Spring 2018 1 / 48 Overview Introduction Random Access Memory (RAM) Interleaving Secondary Memory

More information

Even coarse architectural trends impact tremendously the design of systems

Even coarse architectural trends impact tremendously the design of systems CSE 451: Operating Systems Winter 2015 Module 2 Architectural Support for Operating Systems Mark Zbikowski mzbik@cs.washington.edu 476 Allen Center 2013 Gribble, Lazowska, Levy, Zahorjan 1 Even coarse

More information

ECE 468 Computer Architecture and Organization Lecture 1

ECE 468 Computer Architecture and Organization Lecture 1 ECE 468 Computer Architecture and Organization Lecture 1 September 7, 1999 ece 468 Intro.1 What is "Computer Architecture" Co-ordination of levels of abstraction Application Compiler Instr. Set Proc. Operating

More information

Even coarse architectural trends impact tremendously the design of systems. Even coarse architectural trends impact tremendously the design of systems

Even coarse architectural trends impact tremendously the design of systems. Even coarse architectural trends impact tremendously the design of systems CSE 451: Operating Systems Spring 2013 Module 2 Architectural Support for Operating Systems Ed Lazowska lazowska@cs.washington.edu 570 Allen Center Even coarse architectural trends impact tremendously

More information

CSC 2405: Computer Systems II

CSC 2405: Computer Systems II CSC 2405: Computer Systems II Dr. Mirela Damian http://www.csc.villanova.edu/~mdamian/csc2405/ Spring 2016 Course Goals: Look under the hood Help you learn what happens under the hood of computer systems

More information

Parallel Computer Architecture Spring Shared Memory Multiprocessors Memory Coherence

Parallel Computer Architecture Spring Shared Memory Multiprocessors Memory Coherence Parallel Computer Architecture Spring 2018 Shared Memory Multiprocessors Memory Coherence Nikos Bellas Computer and Communications Engineering Department University of Thessaly Parallel Computer Architecture

More information

Virtual Memory. Reading. Sections 5.4, 5.5, 5.6, 5.8, 5.10 (2) Lecture notes from MKP and S. Yalamanchili

Virtual Memory. Reading. Sections 5.4, 5.5, 5.6, 5.8, 5.10 (2) Lecture notes from MKP and S. Yalamanchili Virtual Memory Lecture notes from MKP and S. Yalamanchili Sections 5.4, 5.5, 5.6, 5.8, 5.10 Reading (2) 1 The Memory Hierarchy ALU registers Cache Memory Memory Memory Managed by the compiler Memory Managed

More information

IT 252 Computer Organization and Architecture. Introduction. Chia-Chi Teng

IT 252 Computer Organization and Architecture. Introduction. Chia-Chi Teng IT 252 Computer Organization and Architecture Introduction Chia-Chi Teng What is computer architecture about? Computer architecture is the study of building computer systems. IT 252 is roughly split into

More information

Architectural Support for Operating Systems

Architectural Support for Operating Systems OS and Architectures Architectural Support for Operating Systems Emin Gun Sirer What an OS can do is dictated, at least in part, by the architecture. Architecture support can greatly simplify (or complicate)

More information

Readings. Storage Hierarchy III: I/O System. I/O (Disk) Performance. I/O Device Characteristics. often boring, but still quite important

Readings. Storage Hierarchy III: I/O System. I/O (Disk) Performance. I/O Device Characteristics. often boring, but still quite important Storage Hierarchy III: I/O System Readings reg I$ D$ L2 L3 memory disk (swap) often boring, but still quite important ostensibly about general I/O, mainly about disks performance: latency & throughput

More information

CS420: Operating Systems

CS420: Operating Systems OS Overview James Moscola Department of Engineering & Computer Science York College of Pennsylvania Contents of Introduction slides are courtesy of Silberschatz, Galvin, Gagne Operating System Structure

More information

1. Microprocessor Architectures. 1.1 Intel 1.2 Motorola

1. Microprocessor Architectures. 1.1 Intel 1.2 Motorola 1. Microprocessor Architectures 1.1 Intel 1.2 Motorola 1.1 Intel The Early Intel Microprocessors The first microprocessor to appear in the market was the Intel 4004, a 4-bit data bus device. This device

More information

Cache Coherence in Bus-Based Shared Memory Multiprocessors

Cache Coherence in Bus-Based Shared Memory Multiprocessors Cache Coherence in Bus-Based Shared Memory Multiprocessors Shared Memory Multiprocessors Variations Cache Coherence in Shared Memory Multiprocessors A Coherent Memory System: Intuition Formal Definition

More information

Evolution of Computers & Microprocessors. Dr. Cahit Karakuş

Evolution of Computers & Microprocessors. Dr. Cahit Karakuş Evolution of Computers & Microprocessors Dr. Cahit Karakuş Evolution of Computers First generation (1939-1954) - vacuum tube IBM 650, 1954 Evolution of Computers Second generation (1954-1959) - transistor

More information

Introduction. What is an Operating System? A Modern Computer System. Computer System Components. What is an Operating System?

Introduction. What is an Operating System? A Modern Computer System. Computer System Components. What is an Operating System? Introduction CSCI 315 Operating Systems Design Department of Computer Science What is an Operating System? A Modern Computer System Computer System Components Disks... Mouse Keyboard Printer 1. Hardware

More information

Even coarse architectural trends impact tremendously the design of systems

Even coarse architectural trends impact tremendously the design of systems CSE 451: Operating Systems Spring 2006 Module 2 Architectural Support for Operating Systems John Zahorjan zahorjan@cs.washington.edu 534 Allen Center Even coarse architectural trends impact tremendously

More information

CS152 Computer Architecture and Engineering Lecture 19: I/O Systems

CS152 Computer Architecture and Engineering Lecture 19: I/O Systems CS152 Computer Architecture and Engineering Lecture 19: I/O Systems April 5, 1995 Dave Patterson (patterson@cs) and Shing Kong (shing.kong@eng.sun.com) Slides available on http://http.cs.berkeley.edu/~patterson

More information

SGI Challenge Overview

SGI Challenge Overview CS/ECE 757: Advanced Computer Architecture II (Parallel Computer Architecture) Symmetric Multiprocessors Part 2 (Case Studies) Copyright 2001 Mark D. Hill University of Wisconsin-Madison Slides are derived

More information

CSE 451: Operating Systems Winter Module 2 Architectural Support for Operating Systems

CSE 451: Operating Systems Winter Module 2 Architectural Support for Operating Systems CSE 451: Operating Systems Winter 2017 Module 2 Architectural Support for Operating Systems Mark Zbikowski mzbik@cs.washington.edu 476 Allen Center 2013 Gribble, Lazowska, Levy, Zahorjan 1 Even coarse

More information

Computing architectures Part 2 TMA4280 Introduction to Supercomputing

Computing architectures Part 2 TMA4280 Introduction to Supercomputing Computing architectures Part 2 TMA4280 Introduction to Supercomputing NTNU, IMF January 16. 2017 1 Supercomputing What is the motivation for Supercomputing? Solve complex problems fast and accurately:

More information

Scalable Distributed Memory Machines

Scalable Distributed Memory Machines Scalable Distributed Memory Machines Goal: Parallel machines that can be scaled to hundreds or thousands of processors. Design Choices: Custom-designed or commodity nodes? Network scalability. Capability

More information

Node Hardware. Performance Convergence

Node Hardware. Performance Convergence Node Hardware Improved microprocessor performance means availability of desktop PCs with performance of workstations (and of supercomputers of 10 years ago) at significanty lower cost Parallel supercomputers

More information

Figure 1-1. A multilevel machine.

Figure 1-1. A multilevel machine. 1 INTRODUCTION 1 Level n Level 3 Level 2 Level 1 Virtual machine Mn, with machine language Ln Virtual machine M3, with machine language L3 Virtual machine M2, with machine language L2 Virtual machine M1,

More information

Chapter Seven. Memories: Review. Exploiting Memory Hierarchy CACHE MEMORY AND VIRTUAL MEMORY

Chapter Seven. Memories: Review. Exploiting Memory Hierarchy CACHE MEMORY AND VIRTUAL MEMORY Chapter Seven CACHE MEMORY AND VIRTUAL MEMORY 1 Memories: Review SRAM: value is stored on a pair of inverting gates very fast but takes up more space than DRAM (4 to 6 transistors) DRAM: value is stored

More information

Operating Systems: Internals and Design Principles, 7/E William Stallings. Chapter 1 Computer System Overview

Operating Systems: Internals and Design Principles, 7/E William Stallings. Chapter 1 Computer System Overview Operating Systems: Internals and Design Principles, 7/E William Stallings Chapter 1 Computer System Overview What is an Operating System? Operating system goals: Use the computer hardware in an efficient

More information

CISC 360. Computer Architecture. Seth Morecraft Course Web Site:

CISC 360. Computer Architecture. Seth Morecraft Course Web Site: CISC 360 Computer Architecture Seth Morecraft (morecraf@udel.edu) Course Web Site: http://www.eecis.udel.edu/~morecraf/cisc360 Overview Intro to Computer Architecture About the Course Organization

More information

CSC 553 Operating Systems

CSC 553 Operating Systems CSC 553 Operating Systems Lecture 1- Computer System Overview Operating System Exploits the hardware resources of one or more processors Provides a set of services to system users Manages secondary memory

More information

Operating System: Chap13 I/O Systems. National Tsing-Hua University 2016, Fall Semester

Operating System: Chap13 I/O Systems. National Tsing-Hua University 2016, Fall Semester Operating System: Chap13 I/O Systems National Tsing-Hua University 2016, Fall Semester Outline Overview I/O Hardware I/O Methods Kernel I/O Subsystem Performance Application Interface Operating System

More information

Introduction to Computer Systems and Operating Systems

Introduction to Computer Systems and Operating Systems Introduction to Computer Systems and Operating Systems Minsoo Ryu Real-Time Computing and Communications Lab. Hanyang University msryu@hanyang.ac.kr Topics Covered 1. Computer History 2. Computer System

More information

Chapter 1: Introduction. Operating System Concepts 9 th Edit9on

Chapter 1: Introduction. Operating System Concepts 9 th Edit9on Chapter 1: Introduction Operating System Concepts 9 th Edit9on Silberschatz, Galvin and Gagne 2013 Chapter 1: Introduction 1. What Operating Systems Do 2. Computer-System Organization 3. Computer-System

More information

Parallel Processing. Computer Architecture. Computer Architecture. Outline. Multiple Processor Organization

Parallel Processing. Computer Architecture. Computer Architecture. Outline. Multiple Processor Organization Computer Architecture Computer Architecture Prof. Dr. Nizamettin AYDIN naydin@yildiz.edu.tr nizamettinaydin@gmail.com Parallel Processing http://www.yildiz.edu.tr/~naydin 1 2 Outline Multiple Processor

More information

Operating Systems CS 571

Operating Systems CS 571 Operating Systems CS 571 Prof. Sanjeev Setia Fall 2003 1 Prerequisites Overview Computer Architecture (CS 365) Data structures and programming (CS 310) (C++/C/Java progamming) Textbooks Modern Operating

More information