DSCUSBS and DSCUSBH USB Strain Gauge or Load Cell Digitiser Modules

Size: px
Start display at page:

Download "DSCUSBS and DSCUSBH USB Strain Gauge or Load Cell Digitiser Modules"

Transcription

1 OEM PCB Cased version DSJ2 OEM Module DSCUSBS and DSCUSBH USB Strain Gauge or Load Cell Digitiser Modules User Manual

2 Contents Chapter 1 Introduction... 5 Overview... 5 Key Features... 5 Special Facilities... 6 The Product Range... 7 Chapter 2 Getting Started... 8 Communications Interface Information... 8 Checking the Device Protocol Type... 9 Instrument Explorer... 9 What Can Instrument Explorer Do?... 9 Installing Instrument Explorer... 9 Installation... 9 Found New Hardware Wizard...10 Connecting up the Evaluation Kit...12 Initial Checks...12 Establishing the Assigned COM Port...13 Open the Device Manager...13 Device Manager...14 Instrument Explorer...16 Running the Instrument Explorer Software...17 Instrument Explorer Icon...17 Instrument Explorer Window...17 Instrument Settings...18 Viewing Device Data...19 Instrument Explorer Parameter List...19 Connecting a Load Cell...20 DSJ2 Evaluation Board Sensor Connections...20 Performing a System Calibration...22 Sys Calibration, Table method...22 Sys Calibration, Auto Method...25 Chapter 3 Explanation of Category Items...27 Communications...27 Output Format Controls, DP and DPB (ASCII ONLY)...27 Information...27 Software Version, VER...27 Serial Number, SERL and SERH...27 Strain Gauge...27 mv/v output, MVV...28 Nominal mv/v level, NMVV...28 mv/v Output In Percentage Terms, ELEC...28 Temperature Value, TEMP...28 Output Rate Control, RATE...28 Dynamic Filtering, FFST and FFLV...28 Cell...30 Temperature Compensation in brief...30 Cell Scaling, CGAI, COFS...30 Two Point Calibration Calculations and Examples...30 Calibration Methods...31 Cell Limits, CMIN, CMAX...31 Linearisation In Brief...32 System...32 System Scaling, SGAI, SOFS...32 Example of calculations for SGAI and SOFS...32 System Limits, SMIN, SMAX...33 System Zero, SZ Mantracourt Electronics Limited DSCUSB User Manual

3 SYS = SRAW SZ...33 System Outputs, SYS, SOUT...33 Reading Snapshot, SNAP, SYSN...33 Control...34 Shunt Calibration Commands, SCON and SCOF...34 Digital I/O...34 Digital input...34 Digital Output, OPON and OPOF...34 Digital I/O connection Details...34 OEM PCB:...34 OEM Module:...35 Cased version Digital Output...35 Flags...36 Diagnostics Flags, FLAG and STAT...36 Latched Warning Flags (FLAG)...36 Meaning and Operation of Flags...37 Dynamic Status Flags (STAT)...38 Meaning and Operation of Flags...38 Output Update Tracking...38 User Storage...38 USR1 USR Reset...39 The Reset command, RST...39 WARNING: Finite Non-Volatile Memory Life...39 Chapter 4 The Reading Process...40 Flow diagram...40 Cell and System Scaling...41 CGAI...41 COFS...41 CMIN...41 CMAX...41 SGAI...41 SOFS...41 SMIN...41 SMAX...41 SZ...41 Calibration Parameters Summary and Defaults...42 Chapter 5 Temperature Compensation...43 Purpose and Method of Temperature Compensation...43 Temperature Module Connections and Mounting (DTEMP)...43 OEM Module DTEMP Connections:...43 OEM PCB DTEMP Connections:...44 Cased Version DTEMP Connections:...44 Control Parameters...44 Internal Calculation...45 The Temperature Measurement...45 How to Set Up a Temperature Compensation...46 Parameter Calculations...46 Chapter 6 Linearity Compensation...47 Purpose and Method of Linearisation...47 Control Parameters...47 Internal Calculation...47 How to Set Up Linearity Compensation...48 Parameter Calculations and Example...48 Chapter 7 Self-Diagnostics...50 Diagnostics Flags...50 Diagnostics LEDs...50 Chapter 8 Communication Protocols...51 Mantracourt Electronics Limited DSCUSB User Manual 2

4 Bus Standards...51 Serial Data Format...51 Communications Flow Control...51 Communications Errors...51 Choosing a Protocol...51 Communications Software for the Different Protocols...51 Common Features of All Protocols...52 Data Type Conversions and Rounding...53 Type Conversion...53 The ASCII Protocol...53 Continuous Output Stream (ASCII ONLY)...55 Station Number, STN...55 Baud rate Control, BAUD...56 The MODBUS-RTU Protocol...57 The Mantrabus-II Protocol...59 Chapter 9 Software Command Reference...61 Commands in Access Order...61 Chapter 10 Installation...63 Before Installation...63 Physical Mounting...63 OEM PCB:...63 OEM Module...63 Electrical Protection...64 Moisture Protection...64 Soldering Methods...64 Power Supply Requirements...64 Cable Requirements...65 USB...65 OEM Module...65 OEM PCB...65 Strain Gauge Input (DSCUSB)...65 Power and Communication...65 Temperature Sensor...66 Identifying Strain Gauge Connections...66 OEM PCB 4-wire load cell...66 OEM PCB 6-wire load cell...66 OEM Module 4-wire load cell...67 OEM Module 6-wire load cell...67 Cased Version 4-wire load cell...68 Cased Version 6-wire load cell...68 Strain Gauge Cabling and Grounding Requirements...69 DSC Strain Gauge Cabling Arrangement...69 Key Requirements...69 Strain Gauge Sensitivity Adjustment...70 Chapter 11 Troubleshooting...72 LED Indicator...72 No Communications...72 Bad Readings...73 Unexpected Warning Flags...73 Problems with Bus Baud Rate...74 Recovering a lost DSCUSB...74 Chapter 12 Specifications...75 Technical Specifications DSCUSBS...75 Technical Specifications DSCUSBH...76 Mechanical Specification for DSCUSBS and DSCUSBH...77 OEM PCB:...77 OEM Module:...77 Environmental Approvals Mantracourt Electronics Limited DSCUSB User Manual

5 CE Approvals...78 Warranty...78 Mantracourt Electronics Limited DSCUSB User Manual 4

6 Chapter 1 Introduction This chapter provides an introduction to the DSCUSB products, describing the product range, main features and application possibilities. Overview The DSCUSB products are miniature, high-precision Strain Gauge Converters; converting a strain gauge sensor input to a digital USB serial output. They allow high precision measurements to be made and communicated directly to a PC. With the appropriate drivers installed, the DSCUSB appears as a virtual communication port to the PC. Key Features Three Form factors: The product is available in three formats depending on how it is to be integrated: PCB Only: for OEM integration into the customer s own products. This can include fitting into a load cell body if space allows. OEM Field Connector Module: the DSJ2 provides field terminals and a USB Type B connector. Cased: supplied in a desk mounting case (approx 86 x 57 x 25mm) with 1.4m of USB cable terminating in a type A plug and a 9 way D-Type socket for the strain gauge connections. High Stability` 25ppm/ C basic accuracy (equates to 16 bit resolution) Adjustable sensitivity Supplied pre-configured for standard 2.5mV/V full-scale strain gauges. A single additional resistor re-configures the input between 0.5 and 100 mv/v full-scale. Temperature sensing and compensation (optional) An optional temperature sensor module (DTEMP) is available which will enable an advanced 5-point temperaturecompensation of measurements. Linearity compensation Advanced 7-point linearity compensation available as standard. USB Uses a simple Virtual Communications Port as its connection method to a PC. Device addressing allows up to 127 devices. ASCII version allows for continuous output stream. Low current Functions as a Low Power Device i.e. draws less than 100mA (one unit load) when connected to a 350 Ohm Bridge. Digital calibration Completely drift-free, adjustable in-system and/or in-situ via standard communications link. Two independent calibration stages for load cell and system-specific adjustments. Programmable compensation for non-linearity and temperature corrections. Calibration data is transferable between devices for in-service replacement. Self-diagnostics Continuous monitoring for faults such as strain overload, over/under-temperature, broken sensors or unexpected power failure. All fault warnings are retained on power-fail. Multiple output options Choice of three different protocols for ease of integration: ASCII, MODBUS or MANTRABUS All variants provide identical features and performance. 5 Mantracourt Electronics Limited DSCUSB User Manual

7 Special Facilities Output Capture Synchronisation A single command instructs all devices on a bus to sample their inputs simultaneously, for synchronised data capture. Output Tare Value An internal control allows the removal of an arbitrary output offset, enabling independent readings of net and gross measurement values. Dynamic Filtering Gives higher accuracy on stable inputs, without increasing settling time. Programmable Output Modes Output rate control enables speed/accuracy trade-off. ASCII output version provides a decimal format control and continuous output mode for dumb terminal output. Unique Device Identifier Every unit carries a unique serial-number tag, readable over the communications link. External Temperature Sensing (optional) An external temperature module is available for improved accuracy (especially tracking changing temperature conditions). Software Reset A special communications command forces a device reboot as a failsafe to ensure correct operation. Mantracourt Electronics Limited DSCUSB User Manual 6

8 The Product Range The DSCUSBS and DSCUSBH modules are available in three physical formats: OEM PCB Description and dimensions OEM PCB with plated through holes for cable connections. Dimensions: PCB: 43 x 28 x 4mm ( x x inches) DSJ2 OEM Module OEM PCB fitted to DSJ2 motherboard providing screw-type field connections for load cell, temperature, digital I/O and USB plus B type 4-pole USB connector. Dimensions: Module: 82 x 60 x 20mm ( x x inches) Cased version Free-standing module fitted with 9-way D type socket for load cell, temperature and digital I/O connections. Integral USB lead with type A connector. Dimensions: Case: 86 x 57 x 26.5mm excluding connector (95mm (3.740 ) including 9-way D type socket) with 136cm (4.462 feet) USB cable. 7 Mantracourt Electronics Limited DSCUSB User Manual

9 Chapter 2 Getting Started This chapter explains how to connect up a DSCUSB for the first time and how to get it working. If you have an ASCII device we supply a simple DSC Toolkit software application that is simple to use. If you have any other type of device you must use Instrument Explorer to configure the device. Note that Instrument Explorer can be used with ASCII devices as well, so if you need more complex configuration than DSC Toolkit offers you can use Instrument Explorer. For simplicity, this chapter is based on the standard DSCUSB OEM Evaluation Kit, which contains everything needed to communicate with a PC. It is advised that first time users wishing to familiarise themselves with the product, use the Mantracourt Evaluation Kit. This provides a low cost, easy way to get started. If you do not have an Evaluation Kit, the instructions in this chapter mostly still apply, but you will need to wire up the device and have some means of communicating with it. The OEM Evaluation Kit A 6 way screw connector for the strain gauge A 4 way screw connector for a temperature sensor and the digital I/O A 4 way USB screw connector A type B USB connector to interface to a computer An Evaluation DSCUSB with the Comms protocol of your choice A CD ROM containing Instrument Explorer software and USB drivers A USB lead A DTEMP temperature sensor Other Things you will need: A PC running Windows XP or above, with a spare USB port and 45Mb free disk space and, ideally - A strain gauge, load cell or simulator typically ohms impedance. (Refer to specifications Chapter 12) Communications Interface Information DSCUSB devices can connect to a PC by plugging into a USB port and do not require an external power supply as they appear as a single unit load i.e. they draw <100mA. Appropriate drivers must be installed which are bundled with Instrument Explorer and DSC Toolkit. These create a virtual serial port allowing the DSCUSB to appear to the PC as a normal COM port device. Mantracourt Electronics Limited DSCUSB User Manual 8

10 Checking the Device Protocol Type Before running the communications application, you will need to know both the protocol to use and the Com Port number allocated to the USBDSC (see the section Establishing the Assigned COM Port later in this chapter). DSCUSB Order Codes DSCSUASC DSCSUEASC DSCHUASC DSCHUEASC DSJ2 Description ASCII Protocol USB Industrial Stability Cased version ASCII Protocol USB Industrial Stability ASCII Protocol USB High Stability Cased version ASCII Protocol USB High Stability Motherboard PCB with field terminals for uncased Can Use Instrument Explorer Yes Yes Yes Yes - Can Use DSC Toolkit Yes Yes Yes Yes - Instrument Explorer Instrument Explorer is Mantracourt s own communication interface for our range of standard products. It provides communications drivers for the DCell/DSC/DSCUSB products. A complimentary copy is provided on CD-ROM with the DSCUSB Evaluation Kit. Instrument Explorer can also be downloaded from Mantracourt s website Instrument Explorer is a software application that enables communication with Mantracourt Electronics instrumentation for configuration, calibration, acquisition and testing purposes. The clean, contemporary interface allows full customisation to enable your Instrument Explorer to be moulded to your individual requirements. What Can Instrument Explorer Do? Save and restore customisable user workspace Read and Write individual instrument parameters Save and restore parameter configurations Log data to a window or file Perform calibration and compensation Installing Instrument Explorer Install the Instrument Explorer software by inserting the CD in the CD ROM drive. This should start the AutoRun process, unless this is disabled on your computer. (If the install program does not start of its own accord, run SETUP.EXE on the CD by selecting Run from the Start Menu and then entering D:\SETUP, where D is the drive letter of your CD-ROM drive). The install program provides step-by-step instructions. The software will install into a folder called InstrumentExplorer inside the Program Files folder. You may change this destination if required. Shortcut icons can be created on your desktop and shortcut bar. After installation you may be asked to restart the computer. This should be done before proceeding with communications. This section deals with using Instrument Explorer to communicate with the DSCUSB device and the drivers are installed during Instrument Explorer setup. If you are planning to communicate with the DSC with your own software contact Mantracourt for information on where to get a stand alone set of drivers. Installation Install Instrument Explorer (Version 1 build 6.4 or higher) ensuring that the option for installing the DSC USB drivers is selected. 9 Mantracourt Electronics Limited DSCUSB User Manual

11 If you already have an older version of Instrument Explorer installed or did not select this option when you installed the newer version you can safely install again without uninstalling first. In the above example the CAN drivers have not been selected as they are not required. The installation software is trying to pre-install the required drivers so that they can be automatically found when the hardware is plugged in later on. This will appear twice during the installation. After installing the software you can connect the DSCUSB device to the computer. The new hardware will be detected and the computer may display a dialog window asking whether to use Windows Update or the Internet to search for software. Found New Hardware Wizard Once the software has been installed you can plug in the hardware. The Found New Hardware Wizard should now appear. Select No, not at this time so that the wizard does not try searching online for a driver. Click Next. Mantracourt Electronics Limited DSCUSB User Manual 10

12 Select Install the software automatically (Recommended) and click Next. Now the wizard will start searching for the drivers. The wizard should then proceed with installing the software drivers. 11 Mantracourt Electronics Limited DSCUSB User Manual

13 Please note that there are two interfaces to the hardware so that there are two drivers that will be installed The USB DSC Port and the USB DSC Bus. So the next dialog box you will see will be for the USB DSC Port and the steps will be repeated from step 2. Connecting up the Evaluation Kit Simply connect to a spare USB port on the PC using the lead provided in the kit. Initial Checks With no load cell connected the LED on the DSCUSB should flash OFF for 100ms every 0.5, 1 or 2 seconds depending on the protocol according to the following table: Protocol ASCII LED Flash Period 0.5 seconds Connect a load cell to the six-way screw connector following the labelling on the DSJ2 PCB Note: If there are no errors the LED will Flash ON for 100mS then OFF for the above period. This is the normal healthy state. Mantracourt Electronics Limited DSCUSB User Manual 12

14 Establishing the Assigned COM Port The DSCUSB device actually creates a virtual serial port (COM port) even though it is plugged into a USB port. This allows the PC software to communicate with the devices as if they were connected to a serial port. Unfortunately the PC will allocate a COM port to each device over which we have no control. Therefore we need to perform the next step to establish which COM port has been assigned to the DSC device. Instrument Explorer only supports COM ports 1 to 8 so if a COM port greater than this has been assigned it will need to be changed as follows: Open the Device Manager Click the Start button and select Run Type devmgmt.msc into the box and click OK. This will open the Device Manager window 13 Mantracourt Electronics Limited DSCUSB User Manual

15 Device Manager Select the Ports (COM & LPT) item and expand it. If the DSC USB device has been installed correctly you should see an item named USB DSC Port (COMx) where the COM port assigned is shown in brackets. If this COM port is between 1 and 8 then note the number as it will be needed when Instrument Explorer is used to connect to the device. If the COM port is greater than 8 then it must be changed as follows: Right click the device and select Properties from the pop-up menu. Please Note: The BAUD rate of 9600 is displayed in the dialog box but is not the actual BAUD rate of the device and does not need changing at this point. Mantracourt Electronics Limited DSCUSB User Manual 14

16 Select the Port Settings Tab from the window that appears. Click the Advanced button. You can now select a new COM Port Number from the dropdown list at the top of this dialog. When you drop the list you may find that next to some of the listed COM ports there is an (in use) note. Unless you have physical COM ports at the destination you wish to use then you can ignore this. The in use note will be shown against any COM port that has, at some time, ever been allocated as a virtual COM port. Once changed, select OK on all dialogs until they are closed. You have now established which COM port your DSC device is connected to. NOTE: The selected COM port should now remain with the DSC device regardless of which USB port it is plugged into. However, plugging the device into a different USB port may, depending on operating system, result in a request for drivers again. If this occurs follow the above procedure from the Found New Hardware Wizard section. Plugging in a new DSC device will also result in a driver request on Windows XP. Again, follow the above procedure from the Found New Hardware Wizard section. 15 Mantracourt Electronics Limited DSCUSB User Manual

17 Instrument Explorer Launch Instrument Explorer and select the appropriate DSC USB device from the instrument list in the left hand pane. You need to know whether you have a Mantrabus, ModBus or ASCII device. After clicking on the device name the following dialog will appear: As can be seen in the above screenshot, the dialog message will indicate whether a device was detected and at what COM Port. In this example it is at COM7 so select Port 7 from the drop-down list. Clicking OK will start communications with the device. Mantracourt Electronics Limited DSCUSB User Manual 16

18 NOTE: The screenshots have been taken from a computer running Vista so you may see windows that appear slightly different depending on your operating system. Running the Instrument Explorer Software Having installed Instrument Explorer you can now run the application which the rest of this chapter is based on. From the Windows Start button, select Programs, then Instrument Explorer or double-click on the shortcut on your desktop. Instrument Explorer Icon The application should open and look like the following screen shot. Instrument Explorer Window The layout of Instrument Explorer s window and child windows allows the user full customisation to their requirements. If the application show a different arrangement of child windows than the above screen shot, then load one of the default workspaces as follows: 17 Mantracourt Electronics Limited DSCUSB User Manual

19 Click File on the menu and select Open Workspace. From the file dialogue window select Layout Standard.iew. This will ensure your application layout matches this document. A list of available instruments is displayed in the Select Instrument pane of Instrument Explorer. Select the relevant device and protocol to match the device you are working with, by clicking on the device icon. Instrument Settings One of the following dialogue windows will be displayed: Modbus MantraASCII MantraBus Select the serial port to which the device is connected from the drop-down list and click the OK button. Mantracourt Electronics Limited DSCUSB User Manual 18

20 Viewing Device Data The following main parameter list should now appear in the central pane. Instrument Explorer Parameter List When an instrument has been selected from the Select Instrument window this parameter list window will become populated. The parameters and commands which are available for the selected device will appear in this list in a structured hierarchic manner enabling the user to expand or contract categories by clicking the and buttons on the left of the list. There are four types of parameters and commands: Read/write Numeric These parameter values are displayed in the right hand column and can be edited by clicking the value. The value can then be changed and pressing the Enter key or moving away from the edited value will cause the new value to be written to the device. There are no checks on the data entered and it is up to the user to enter the correct data. Read-Only These parameter values are displayed greyed out and cannot be changed. 19 Mantracourt Electronics Limited DSCUSB User Manual

21 Read/write Enumerated These parameters can only be changed by selecting the new value from a drop down list. Clicking in the right hand column will display a down arrow button which when clicked will display the parameter value options in a list. Note that all enumerated data (apart from on/off) will be displayed with a numeric value, hyphen then the description of the value. The numeric value is the value of the parameter and the description is just there to help. Commands These commands have Click to execute displayed in the right hand column. Clicking here will display a button. Click this to issue the command to the device. As parameters are changed the communications traffic is displayed in the Comms Traffic pane. If any errors occur they will be shown in red in the Errors pane. Once an error occurs it will need to be reset before any more communications can take place. Reset errors by either right-clicking the Errors pane and selecting Reset Errors from the pop-up menu or select the Communications menu and click the Reset Errors item. To manually refresh the parameter list click the menu. button on the toolbar or select Sync Now from the Parameters Now you have successfully established communications with your evaluation device the next step is to perform a simple calibration. Connecting a Load Cell You can now connect a strain gauge bridge, load cell or simulator to the DSCUSB. A suitable strain gauge should have an impedance of Ohms and (at least for now) a nominal output of around 2.5mV/V. DSJ2 Evaluation Board Sensor Connections Next, we will set Instrument Explorer to automatically update dynamic parameters from the device so that we can see values such as SYS changing on the screen. To do this either click the button on the toolbar or click on the Parameters menu and select the Auto Sync item. Note that these options toggle so be sure to leave your selection in the active state. Mantracourt Electronics Limited DSCUSB User Manual 20

22 From the Parameter List click the as follows: next to the System heading to expand this level. The Parameter List should look This now exposes more levels that can be expanded as required by clicking the next to the heading name. Dynamic values (such as SYS and SRAW) will now be updating in real-time from the device. Once you have connected the load cell the SYS parameter should display realistic values in the parameter list pane. These values should correspond to mv/v assuming the device is in its factory default state. For diagnostics, the device has two sets of flags, one being latched and held within the device s non volatile memory (FLAG parameter) and the other being dynamic and volatile (STAT parameter). Instrument Explorer provides a simple method of displaying and resetting individual flags although these are held within the device in FLAG and STAT parameters. 21 Mantracourt Electronics Limited DSCUSB User Manual

23 To quickly clear all the flags simply write zero to the FLAG parameter. If no problems exist, all flags should remain in their off state. If any flags remain on then refer to Chapter 8 for flag definitions. Performing a System Calibration The values obtained so far are in mv/v units, these are factory calibrated and fixed to within 0.1% accuracy. The device also contains two separate user-adjustable calibration parameter groups termed Cell and System. Cell is used to convert from mv/v to a calibration value and System to convert this calibration value to the required engineering units. The use of CELL is optional. We shall be using System for the following exercise where we rescale the output value to read in units of your choice, and to calibrate precisely to your load cell / system hardware. Instrument Explorer provides Wizards to allow quick and simple calibration operations to be undertaken without the use of a calculator. Wizards can be activated by simply selecting the required item from the Wizard menu. Since we are now calibrating at system level we have a choice of two calibration methods: Sys Calibration Table This technique is used when a manufacturer s calibration document is available for the connected strain gauge. This normally gives mv/v to engineering unit values. Sys Calibration Auto This technique is used when the input can be stimulated with real input values i.e. test weights or forces can be applied. We will now describe each of these techniques with an example. Sys Calibration, Table method A 10 tonne load cell manufacturer gives the following data: mv/v output Force tonne tonne Start the wizard by selecting Sys Calibration Table from the Wizard menu Mantracourt Electronics Limited DSCUSB User Manual 22

24 Click the Next button and enter the low values as shown below. Click the Next button and enter the high values as shown below. Click Next the following window will be displayed showing the calibrated SYS value which is dependent on the current input values. 23 Mantracourt Electronics Limited DSCUSB User Manual

25 The device is now calibrated. However you may find SYS has been clamped if the resultant SYS is greater than SMAX or less than SMIN. If this is the case then change these values to suitable limits. In this example we may set SMIN to 0.5 (tonne) and SMAX to 12.0 (tonne). This would then provide clamping of SYS to these values and also a flags being set in FLAG and STAT. Mantracourt Electronics Limited DSCUSB User Manual 24

26 Sys Calibration, Auto Method Assume we need to calibrate for kg output and we have available accurate 10 kg and 100 kg test weights. Start the wizard by selecting Sys Calibration Auto from the Wizard menu Click Next. Apply the low known test weight and enter the required SYS value for this weight. In this case it will be 10 as we want the units of SYS to be kg. Click Next to continue 25 Mantracourt Electronics Limited DSCUSB User Manual

27 Apply the high known test weight and enter the required SYS value for this weight. In this case it will be 100. Click Next to continue. The device is now calibrated. However you may find SYS has been clamped if the resultant SYS is greater than SMAX or less than SMIN. If this is the case then change these values to suitable limits. In this example we may set SMIN to 0.5 (Kg) and SMAX to (Kg). This would then provide clamping of SYS to these values and also a flags being set in FLAG and STAT. For detailed information about calibration calculations please refer to chapter 3. Mantracourt Electronics Limited DSCUSB User Manual 26

28 Chapter 3 Explanation of Category Items Instrument Explorer shows the categories to which parameters and generated variables belong. This provides a convenient method for describing the functionality and purpose of each. The categories can be seen from Instrument Explorer s Parameter List pane and are as follows. Communications For the ASCII protocol there are DP and DPB controls which set the format of the ASCII string returned by the device (see Chapter 12). Care should be taken when changing the station number or baud rate as communications can be lost with the host. Also note that some commands require the reset (RST) command to be sent or a power cycle before the new values take effect. STN, BAUD, DP and DPB are such commands. When using Instrument Explorer to change either the STN or BAUD parameter, communications with the device will be lost after the RST command has been issued as the software will be using the previous settings. In this case you need to change the device settings in Instrument Explorer by selecting Change Settings from the Communications menu. Output Format Controls, DP and DPB (ASCII ONLY) The parameters DP and DPB are used to control the formatting of floating-point values in the ASCII protocol. DP controls the number of decimal places after the point and DPB controls the number of decimal places before the point. Values of 1..8 are appropriate in both cases. All output values are then transmitted in this same format. As values are limited to a normal 4-byte accuracy, about 7 digits, it may sometimes be necessary to alter the formatting for best accuracy in reading/writing values. eg. if DP=5 and DPB=2, the value is output as The new value of DP and DPB does not take effect until the RST command is issued or the device is power cycled. Information The Information heading in the parameter list reports the current version of the device s software and the device s unique serial number. Note that VERSION is the readable item derived from the device s internal value of VER and SerialNumber is derived from SERL and SERH. Software Version, VER The VER parameter (read-only byte) returns a value identifying the software release number, coded as 256*(major-release) + (minor-release). eg. current version 3.1 returns VER=769 Serial Number, SERL and SERH SERL and SERH are read-only integer parameters returning the device s serial-number. This is decoded as = 65536*SERH + SERL. The VisualLink/Instrument Explorer drivers include a convenience Serial Number property that automatically calculates this. Strain Gauge This is where the measurement process starts. If the optional temperature module is fitted then TEMP will display actual temperature in C. Otherwise TEMP will display 125 C. RATE is the parameter that selects the measurement cycle update rate. 27 Mantracourt Electronics Limited DSCUSB User Manual

29 mv/v output, MVV MVV is the factory calibrated mv/v output and it is this value that all other measurement output values are derived from. Factory calibration is within 0.05%. Nominal mv/v level, NMVV This is used to represent the nominal mv/v value representing 100% of full scale. This value is used solely for the generation of ELEC. It is factory set for 2.5mV/V. If the electronic gain is adjusted by changing the gain resistor then if ELEC is used NMVV value must be changed to represent the new nominal mv/v. mv/v Output In Percentage Terms, ELEC This is mainly for backwards compatibility with Version 2. It is the mv/v value represented in percentage terms, 100% being the value set by NMVV. Temperature Value, TEMP If the optional temperature module DTEMP is fitted, then TEMP will display actual temperature in C. Otherwise TEMP will display 125 C. TEMP is used by the temperature compensation. See chapter 5 Output Rate Control, RATE The RATE parameter is used to select the output update rate, according to the following table of values RATE value update rate (readings per second) The default rate is 10Hz (RATE=3): The other settings give a different speed/accuracy trade-off. Invalid RATE values default to 3 (10Hz). The underlying analogue to digital conversion rate is 4.8kHz. These results are block averaged to produce the required output rate. To Change the Output Rate 1. Set RATE to the new value 2. Click on the RST button to reboot the device 3. Wait for one second for the reset procedure to complete and measurement cycle to start With RATE set to 0, you should be able to see the SYS update rate slow down to once a second and the noise level should also noticeably decrease. All the main-reading output values are updated at this rate. Rate does not change the rate at which temperature output TEMP is updated. Dynamic Filtering, FFST and FFLV The Dynamic filter is basically a recursive filter and therefore behaves like an RC circuit. It has two user settings, a level set in mv/v by FFLV and the maximum number of steps (up to 255) set by FFST. Instead of outputting every new value, a fraction of the difference between the new input value (RMVV) and the current filtered value (MVV) is added to the current filtered value (MVV) to produce the filtering action. If this difference is less than the value set in FFLV then the fractional amount added each time is decremented until it reaches the minimum level set by FFST i.e. FFST is the limit of the divisor. e.g. if FFST = 10 the fractional part of the difference between the new value (RMVV) and the current filtered value (MVV) will be decremented as follows: 1/1, 1/2, 1/3, 1/4, 1/5, 1/6... 1/10, 1/10, 1/10 before being added to the current filtered value (MVV). Mantracourt Electronics Limited DSCUSB User Manual 28

30 If a rapidly changing or step input occurs and the difference between the new input value (RMVV) and the current filtered value (MVV) is greater than the value set in FFLV then the output of the filter will be made equal to the new input reading i.e. the fractional amount of the new reading added to the current reading is reset to 1 This allows the Filter to respond rapidly to fast moving input signals. When a step change occurs which does not exceed FFLV, the new filtered value is calculated as follows: New Filter Output value = Current Filter Output Value + ((Input Value - Current Filter Output Value) / FFST) The time taken to reach 63% of a step change input (which is less than FFLV) is the frequency at which values are passed to the dynamic filter, set in RATE, multiplied by FFST. The table below gives an indication of the response to a step input which is less than FFLV. Update Rate = 1/RATE see Output Rate Control above. % Of Final Value Time To settle 63% Update Rate * FFST 99% Update Rate * FFST * % Update Rate * FFST * 7 For example, If RATE is set to 7 = 100Hz = 0.01s and FFST is set to 30 then the time taken to reach a % of step change value is as follows. % Of Final Value Time To settle 63% 0.01 x 30 = 0.3 seconds 99% 0.01 x 30 x 5 = 1.5 seconds 99.9% 0.01 x 30 x 7 = 2.1 seconds The following table shows the number of updates x FFST and the % Error that the Filtered Output value will differ from the constant Input Value. x FFST % Error Mantracourt Electronics Limited DSCUSB User Manual

31 Remember: if the step change in mv/v is greater than the value set in FFLV then: New Filter Output value = New Input Value i.e. the output jumps to the new input value and the internal working value of FFST is reset to 1. This is then incremented each update (set by RATE) until it reaches the user set value of FFST. Cell This is the level where integration between the DSCUSB and the strain gauge bridge takes place (see Chapter 4 for more details). Features include: A 5-point compensation to produce a temperature compensated value CMVV when the optional temperature module, D Temp is fitted. Scaling, using a gain and offset, CGAI and COFS respectively, producing the value CRAW. Linearisation, using up to 7-points, producing the final output from this section known as CELL. Over load and under load values can be set in CMIN & CMAX to alert the user to forces outside the intended or safe operating area. These features allow the output CELL to be in force units which can be used by System to convert to units of weight. Temperature compensation and Linearisation are covered in detail in their own chapters. Temperature Compensation in brief When the optional temperature hardware module DTEMP is connected temperature compensation is available. This facility can remove the need for fitting compensation resistors to strain gauges. The compensation can apply for both gain and offset with up to 5 temperature points. The input for the temperature compensation is MVV and the output from the process is CMVV. If no temperature compensation is invoked, CMVV is equal to MVV A detailed explanation is given in chapter 5 Cell Scaling, CGAI, COFS The temperature compensated value CMVV is scaled with gain and offset using CGAI and COFS respectively. The gain is applied first and the offset then subtracted. This would be used to produce a force output in the chosen units, this output being termed CRAW. CRAW = (CMVV X CGAI) COFS Two Point Calibration Calculations and Examples Examples are given here for two point calibration, as this is by far the most common method. Cell Calibration The scaling parameters are CGAI and COFS CGAI is in cell-units per mv/v COFS is in cell units The cell output calculation is (in the absence of temperature and linearity corrections) CRAW = (CMVV CGAI) COFS If we have two electrical-output (MVV) readings for two known force loads, fa and fb, we can convert the output to the required range. So if test load = fa CMVV reading = ca test load = fb CMVV reading = cb then calculate the following gain value CGAI = (fb fa) / (cb ca) and the offset is Mantracourt Electronics Limited DSCUSB User Manual 30

32 COFS = (ca x CGAI) fa The outputs, CELL should then be the true forces applied. Calibration Methods There are a number of ways of establishing the correct control values. Method 1 - Nominal (data sheet) Performance Values This is the simplest method, where the given nominal mv/v sensor output is used to calculate an approximate value for CGAI. Example. A 50 kn load cell has nominal sensitivity of 2.2mV/V full-scale. To get 50.0 for an input of 2.2mV/V, set CGAI to 50/ This assumes the output for 0kN is 0mV/V. Method 2 - Device Standard (Calibration) Values With some load cells you may have a manufacturer s calibration document. This gives precise cell-output gain and offset specifications for the individual cell. These values can be used to calculate CGAI and COFS. Example. A 10 tonne load cell has a calibration sheet specifying mV/V full-scale output, and mV/V output offset. CGAI is set to 10 / ( ) COFS is set to x NOTE: Methods 1 and 2 require no load tests. This means that systematic installation errors cannot be removed, such as cells not being mounted exactly vertically. The accuracy is also limited by the DSCUSB electrical calibration accuracy, which is about 0.1%. The remaining methods require testing with known loads, but are therefore inherently more reliable in practice, as they can remove unexpected complicating factors relating to installation. Method 3 - Two-Point Calibration Method This is a simple in-system calibration procedure, and probably the commonest method in practice (as in the previous example). Two known loads are applied to the system, and reading results noted, then calibration parameters are set to provide exactly correct readings for these two conditions. eg. a 10kN (1-tonne) load cell has a CELL reading of mV/V with no load, and mV/V with a known 100kg test-weight. To calibrate this to read in a 1.0 to +1.0 tonne range, Calculate CGAI as 0.1 / ( ) = Set COFS= x = Method 4 - Multi-point Calibration Test For ultimate accuracy, a whole series of point measurements may be taken to determine the best linear scaling of input to output: Effectively, a best line through the data is then chosen, and the calibration is set up to follow the line. Testing of this sort is also used to establish linearity corrections, and similar tests at different temperatures are used to set up temperature compensation (see Chapters on Temperature Compensation and Linearity Compensation). Note: Instrument Explorer provides wizards for easy calibration of the Cell stage. There are two wizards, Cell Calibration Auto and Cell Calibration Table, these can be found under the menu item Wizards. 31 Mantracourt Electronics Limited DSCUSB User Manual

33 Cell Limits, CMIN, CMAX These are used to indicate that the desired maximum and minimum value of CRAW have been exceeded. They are set in Force units. If CRAW exceeds the value set in CMAX the CRAWOR flag is set in both FLAG and STAT, the value of CRAW is also clamped to this value. If CRAW is less than the value set in CMIN the CRAWUR flag is set in both FLAG and STAT, the value of CRAW is also clamped to this value. Linearisation In Brief Linearisation allows for any non-linearity in the strain gauge measurement to be removed. Up to 7 points can be set using CLN. The principle of operation is that the table holds a value at which an offset is added. The point in the table that refer to CRAW are named CLX1..CLX7. The offsets added at these point are named CLK1.. CLK7 and are set in thousandths of a cell unit. The output from the Linearisation function is CELL. If no Linearisation is used (CLN < 2) the CELL is equal to CRAW. A Detailed explanation is given in chapter 6 System System is where the Force output, CELL, is converted to weight when installed into a system (see Chapter 4 for more details). Other features such as SZ offers a means of zeroing the system output SYS. Peak and Trough values are also recorded against the value of SYS, these are volatile and reset on power up. A command SNAP records the next SYS value and stores in SYSN, this is useful where there is more than 1 device in a system and to prevent measurement skew across the system the SNAP command can be broadcast to all devices ready for polling their individual SYSN values. System Scaling, SGAI, SOFS The cell output value CELL is scaled with gain and offset using SGAI and SOFS respectively. The gain is applied first and the offset the subtracted. This would be used to give a force output in the chosen units, this output being termed SRAW. SRAW = (CELL X SGAI) SOFS If we have two cell-output (CELL) readings for two known test loads, xa and xb, we can convert the output to the required range. So if Test load = xa CELL reading = ca Test load = xb CELL reading = cb Then we calculate the following gain value SGAI = (xb xa) / (cb ca) And then the offset SOFS = (ca x SGAI) - xa SRAW now indicates the true load applied. Example of calculations for SGAI and SOFS Example: A 2500kgf load cell installation is to be calibrated by means of test weights. The cell calibration gives an output in kgf ranging A system calibration is required to give an output reading in the range tonnes. Calculations Mantracourt Electronics Limited DSCUSB User Manual 32

34 Take readings with two known applied loads, such as For test load of xa = 99.88Kg : CELL reading ca = For test load of xb = Kg: CELL reading cb = Calculate gain value. In this case put SGAI = (xb xa) / (cb ca) = ( ) / ( ) = x10-3 Calculate offset value. In this case SOFS = (ca x SGAI) xa = ( x x10-3 ) Check Putting the values back into the equation, results for the two test loads should then be For x = 99.88Kg, CELL = , so SRAW ( x10-3) For x = Kg, CELL = , so SRAW ( x10-3 ) The remaining errors are due to rounding the parameters to 7 figures. Internal parameter storage is only accurate to about 7 figures, so errors of about this size can be expected in practice. System Limits, SMIN, SMAX These are used to indicate that the desired maximum and minimum value of SRAW have been exceeded. They are set in weight units. On SRAW being greater than the value set in SMAX the SRAWOR flag is set in both FLAG and STAT, the value of SRAW is also clamped to this value. On SRAW being less than the value set in SMIN the SRAWUR flag is set in both FLAG and STAT, the value of SRAW is also clamped to this value. System Zero, SZ SZ provides a means of applying a zero to SYS and SOUT. This could be used to generate a Net value making SRAW in effect a gross value. SYS = SRAW SZ Care should be taken on how often SZ is written to, see WARNING: Finite Non-Volatile Memory Life later in this chapter. System Outputs, SYS, SOUT SYS is considered to be the main output value and it is this value that would be mainly used by the master. SOUT is for backwards compatibility with Version 2 Reading Snapshot, SNAP, SYSN The action command SNAP samples the selected output by copying SYS to the special result parameter SYSN. The main use of this is where a number of different inputs need to be sampled at the same instant. 33 Mantracourt Electronics Limited DSCUSB User Manual

35 Normally, multiple readings are staggered in time because of the need to read back results from separate devices in sequence: By broadcasting a SNAP command at the required time, all devices on the bus will sample their inputs within a few milliseconds. The resulting values can then be read back in the normal way from all the devices SYSN parameters. Note: Instrument Explorer provides wizards for easy calibration of the System stage. There are two wizards, Sys Calibration Auto and Sys Calibration Table these can be found under the menu item Wizards. Control Shunt Calibration Commands, SCON and SCOF The Device is fitted with a Shunt calibration resistor whose value is 100K.This can be switched across the bridge, using SCON, giving an approximate change of 0.8mV/V at nominal 2.5mV/V. The command SCOF removes the resistor from across the bridge. It is important for the user to remember to switch out the shunt calibration resistor after calibration has been confirmed. Digital I/O Digital input The state of the digital input pin is interrogated via bit 1, IPSTAT, of the Dynamic Status Flags (STAT). The digital input is a volt-free contact type (10k pull-up resistor to +5V) and will accept switch or relay contacts etc. Digital Output, OPON and OPOF The OEM PCB and OEM Module versions feature a digital input and a digital output. As supplied, the cased version only provides a digital output due to the insufficient number of spare pins on the 9 way D type connector. This can be changed to a digital input instead by removing and fitting 0603 surface-mount resistors (see below for details). The digital output is an open collector transistor rated at 100mA/30V maximum. Care must be taken to limit the current to this value. The output can be switched on and off using the commands OPON and OPOF respectively. Digital I/O connection Details OEM PCB: Mantracourt Electronics Limited DSCUSB User Manual 34

36 OEM Module: Cased version Digital Output To change the cased version to accept a digital input the PCB must be modified. This requires removing one 0603 SM zero Ohm resistor and re-fitting it in another location. The PCB must be removed from its housing by unscrewing the four screws and withdrawing the PCB from the case. A fine-tipped temperature controlled soldering iron should be used to avoid damage to the PCB and surrounding components: 35 Mantracourt Electronics Limited DSCUSB User Manual

37 Flags Diagnostics Flags, FLAG and STAT All the self-diagnostics rely on the FLAG & STAT parameters, which are 16-bit integer register in which different bits of the value represent different diagnostic warnings. FLAG is stored in EEPROM and is therefore non-volatile; STAT is stored in RAM and reset on power-up to 0. FLAG is latching and needs to be reset by the user whereas STAT is non-latching showing the current error status. Latched Warning Flags (FLAG) The flags are normally used as follows:- FLAG is read at regular intervals by the host (like the main output value, but generally at longer intervals) If some warnings are active, i.e. FLAG is non-zero, then the host tries to cancel the warnings found by writing FLAG= 0 The host then notes whether the error then either remains (i.e. couldn t be cancelled), or if it disappears, or if it re-occurs within a short time, and will take action accordingly. The warning flags are generally latched indicators of transient error events: by resetting the register, the host both signals that it has seen the warning, and readies the system to detect any re-occurrence (i.e. it resets the latch). What the host should actually do with warnings depends on the type and the application: sometimes a complete log is kept, sometimes no checking at all is needed. Often, some warnings can be ignored unless they recur within a short time. Warning flags survive power-down, i.e. they are backed up in non-volatile (EEPROM) storage. Though useful, this means that repeatedly cancelling errors which then shortly recur can wear out the device s nonvolatile storage see Chapter 3 Basic Set-up and Calibration. Mantracourt Electronics Limited DSCUSB User Manual 36

38 Meaning and Operation of Flags The various bits in the FLAG value are as follows Bit Value Description Name 0 1 (unused reserved) Unused 1 2 (unused reserved) Unused 2 4 Temperature under range ( TEMP) TEMPUR 3 8 Temperature over-range (TEMP TEMPOR 4 16 Strain gauge input under-range ECOMUR 5 32 Strain gauge input over-range ECOMOR 6 64 Cell under-range (CRAW) CRAWUR Cell over-range (CRAW) CRAWOR System under-range (SRAW) SYSUR System over-range (SRAW) SYSOR (unused reserved) Unused Load Cell Integrity Error (LCINTEG) LCINTEG Watchdog Reset WDRST (unused reserved) Unused Brown-Out Reset BRWNOUT Reboot warning (Normal Power up) REBOOT NOTE: The mnemonic names are used by convenience properties in Instrument Explorer, but are otherwise for reference only the flags can only be accessed via the FLAG parameter. The various warning flags have the following meanings TEMPUR and TEMPOR indicate temperature under and over-range. The temperature minimum and maximum settings are part of the temperature calibration, fixed at 50.0 and ºC. These flags are only active when the optional temperature module, DTEMP is fitted. ECOMUR and ECOMOR are the basic electrical output range warnings. These are tripped when the electrical reading goes outside fixed ±120% limits: This indicates a possible overload of the input circuitry, i.e. the input is too big to measure. The tested value, ECOM is an un-filtered precursor of ELEC CRAWUR and CRAWOR are the cell output range warnings. These are tripped when the cell value goes outside programmable limits CMIN or CMAX. The tested value, CRAW is the cell output prior to linearity compensation. SYSUR and SYSOR are the system output range warnings. These are triggered if the SYS value goes outside the SMIN or SMAX limits. LCINTEG indicates a missing or a problem with the Load cell. It is based on the common mode of the SIG being correct. NOTE: this flag will also be set when the shunt calibration has been switched on. WDRST indicates that the Watchdog has caused the device to re-boot. If this error continually occurs consult the factory. BRWNOUT indicates that the device has re-booted due to the supply voltage falling below 4.1V, the minimum spec for supply voltage is 5.6V and this must include any troughs in the AC element of this supply. REBOOT is set whenever the DSCUSB is powered up and is normal for a power up condition. This flag can be used to warn of power loss to device. 37 Mantracourt Electronics Limited DSCUSB User Manual

39 Dynamic Status Flags (STAT) Status flags are live flags, indicating current status of the device. Some of these flags have the same bit value & description as FLAG. Meaning and Operation of Flags The various bits in the STAT value are as follows Bit Value Description Name 0 1 Setpoint output status SPSTAT 1 2 Digital Input status IPSTAT 2 4 Temperature under range (TEMP) TEMPUR 3 8 Temperature over-range (TEMP TEMPOR 4 16 Strain gauge input under-range ECOMUR 5 32 Strain gauge input over-range ECOMOR 6 64 Cell under-range (CRAW) CRAWUR Cell over-range (CRAW) CRAWOR System under-range (SRAW) SYSUR System over-range (SRAW) SYSOR (unused reserved) Unused Load Cell Integrity Error (LCINTEG) LCINTEG Shunt Calibration Resistor ON SCALON Stale output value (previously read) OLDVAL (unused reserved) Unused (unused reserved) Unused SPSTAT indicates the state of the Open collector output, 1 being output on, 0 being output off. IPSTAT indicates the state of the digital input. If the bit is set it indicates input is closed to 0V (-V or GND). SCALON Used to indicate that the Shunt Calibration command, SCON, has been issued & therefore the shuntcal resistor is now in circuit with the strain gauge bridge. SCOF command resets this bit. Note that when Shunt Calibration is active the Load Cell Integrity Error will also be generated. OLDVAL is set when the device is read via the communications. Thus indicating this value has already been sampled. It is reset when a new result has been made available. Output Update Tracking The OLDVAL flag can be used for output update tracking This allows sampling each result exactly once: To achieve this poll, the STAT value until OLDVAL is cleared to indicate a new output is ready, then read SYS, this reading will set the OLDVAL flag in STAT. This scheme works as long as the communications speed is fast enough to keep up. With faster update rates and slower baud rates, it may not be possible to read out the data fast enough. User Storage USR1 USR9 There are nine storage locations USR1 to USR9. These are floating point numbers which can be used for storage of data. This data could be calibration time and date, operator number, customer number etc. This data is not used in any way by the DSCUSB. Mantracourt Electronics Limited DSCUSB User Manual 38

40 Reset The Reset command, RST This command is used to reset the device. This command MUST be issued if the following parameters are changed before the change will take effect: RATE, STN, BAUD, DP & DPB. Alternatively the power maybe cycled. The reset action may take up to about a second to take effect, followed by the normal start-up pause of 1 second. WARNING: Finite Non-Volatile Memory Life The DSCUSB uses EEPROM-type memory as the storage for non-volatile controls (i.e. all the settings that are retained even when powered down). The device EEPROM itself is specified for 100,000 write cycles (for any one storage location), although typically this is 1,000,000. Therefore When automatic procedures may write to stored control parameters, it is important to make sure this does not happen too frequently. So you should not, for example, on a regular basis adjust an offset calibration parameter to zero the output value. However, it is reasonable to use this if the zeroing process is initiated by the operator, and won t normally be used repeatedly. For the same reason, automatically cancelling warning flags must also be implemented with caution: It is okay as long as you are not getting an error recurring repeatedly, and resetting it every few seconds. 39 Mantracourt Electronics Limited DSCUSB User Manual

41 Chapter 4 The Reading Process This chapter gives an account of the reading process except for the linearity-and temperature-compensation processes (which have their own chapters later on). Flow diagram Electrical Cell System MMV SGAI x MMV/NMVV x 100% *CTGx (Ctx) x SOFS ELEC *CTOx (Ctx) SMIN < SRAWUR *OPTIONAL MODULE * TEMP CMVV CGAI X COFS SMAX > SRAWOR SRAW SZ CMIN < CMAX > CRAWUR CRAWOR SYS SOUT CRAW CLKx (CLXx) + CELL The underlying analogue to digital conversion rate is 4.8kHz. These results are block averaged to produce the required output rate set by the RATE control This block averaged result is then passed through the dynamic filter at the same rate and then into the chain of above calculations. The named values shown in the boxes are all output parameters, which can be read back over the comms link. The diagram shows three separate calibration stages, called the Electrical, Cell and System. This allows independent calibrations to be stored for the device itself, the load cell and the installed system characteristics Electrical The Electrical calibration produces corrected electrical readings from the internal measurements. This is factory-set by Mantracourt during the production process. The main outputs from this are: MVV is the factory calibrated output, in mv/v units. ELEC is the mv/v in % terms. Where the 100% value is set using NMMV. This is for backwards compatibility only. TEMP is a device temperature measurement, in C and requires an optional module. There are also two flags, ECOMUR and ECOMOR (not shown on the diagram), which indicate an input electrical under or over-range. Mantracourt Electronics Limited DSCUSB User Manual 40

42 Cell The Cell calibration converts the mv/v output into a cell-force reading. This can be used by an OEM sensor manufacturer to provide a standard, calibrated output in force units, which could be based on either typical or device-specific calibration data. (This stage also includes the temperature and linearity-corrections, not covered here) The outputs from this are: CMVV is the temperature compensated mv/v (MVV). CRAW is the scaled temperature compensated value CMVV CELL is a load cell force reading in Force units (e.g. kn) CRAWUR and CRAWOR are two flags indicating under or, over range for the force measurement. System The System calibration converts the Cell output into a final output value, in the required engineering units. This is normally be set up by a systems installer or end user, to provide whatever kind of output is needed, independently of device-specific information in the Cell calibration. (Making this split allows in-service replacement without re calibration). The outputs from this are: SRAW is a re-scaled and offset adjusted output derived from CELL SYS is the final output value, after removing a final user output offset value (SZ) from SRAW SRAWUR and SRAWOR are output warning limit flags. In practice, SRAW and SYS can be used to represent something like gross and net values. Cell and System Scaling Both the Cell and System calibrations are simply linear rescaling calculations i.e. they apply a gain and offset. In both cases, four parameters define the scaling, offset and min and max limit values. These calculations are applied in the following way: Output = (Input GAI) OFS Output = min (output, MAX) Output = max (output, MIN) (In addition, if the value exceeds either limit, one of two dedicated error flags is set) The control parameters thus have the following characteristics: GAI is the multiplying factor, set in output-units per input-unit OFS is the value that gives zero output, set in output units MAX and MIN are output limit values, set in output units The units and functions of the main scaling controls can thus be summarised as Cell Calibration CGAI COFS CMIN CMAX Force/mV/V Force Force Force mv/v gain factor CELL Offset Value Minimum value for CRAW Maximum value for CRAW System Calibration SGAI Eng/ Force SOFS Eng SMIN Eng SMAX Eng SZ Eng SYS/CELL gain factor SRAW value offset Minimum value for SRAW Maximum value for SRAW SYS value offset (MVV is mv/v, Force is force units, and Eng is engineering units) 41 Mantracourt Electronics Limited DSCUSB User Manual

43 Calibration Parameters Summary and Defaults The various control parameters are listed for each stage. This also includes the compensation parameters, not covered in this chapter, but shown in the flow diagram The Default values shown set the device back to its nominal default calibration (mv/v) Cell Control Defaults Command Action Default Values FFLV Filter dynamic level FFST Filter Steps (max) 100 NMMV Nominal 2.5mV/V 2.5 RATE Rate 10Hz 3 CGAI basic cell gain 1.0 COFS basic cell offset 0.0 CTN number of temp points 0 CT1..5 temp points (Deg C) 0.0, 0.0, 0,0 CTO1..5 offset adjusts 0.0, 0.0, 0,0 CTG1..5 gain adjusts 1.0, 1.0, 1.0, 1.0 CMIN CRAW min limit 3.0 CMAX CRAW max limit +3.0 CLN number of linearity points 0 CLX1..7 linearity raw-value points 0.0, 0.0, 0,0 CLK1..7 linearity adjusts 0.0, 0.0, 0,0 System Control Defaults Command Action Default Values SGAI basic gain 1.0 SOFS basic offset 0.0 SMIN SRAW min limit SMAX SRAW max limit SZ output zero offset 0.0 Mantracourt Electronics Limited DSCUSB User Manual 42

44 Chapter 5 Temperature Compensation This chapter explains how to use the Temperature Compensation facilities, to compensate for changes in the measurement with ambient temperature. Temperature compensation is only provided when an optional module (DTEMP) comprising a digital temperature sensor is wired to the DSCUSB. Purpose and Method of Temperature Compensation Most measurement methods are affected by changes in temperature, and (uncompensated) load cells are especially sensitive, having a large overall temperature coefficient. Temperature compensation adjusts the measured value in a way that depends on a temperature measurement, so that (ideally) the output is independent of the current temperature. In practice, it is usual to refer to a calibration reference temperature: The ideal output value is then what the reading would have been if made at the reference temperature. The DSCUSB temperature compensation facilities make adjustments to the Cell calibration parameters (i.e. gain and offset) which depend on temperature, according to a digitally programmed curve. These adjustments are automatically applied, based on the current device temperature measurement. With some care, this can remove the need for the usual electrical compensation components altogether. Note that the temperature compensation will also remove the temperature drift of the DSCUSB itself if the temperature compensation data is collected when the DSCUSB and strain gauges are tested together as a system. Temperature Module Connections and Mounting (DTEMP) The temperature module is a connected using only two wires. The temperature sensor is the Dallas 1-Wire digital device DS18S20. One connection is ground, the other is the 1 wire DQ connection which provides the bi-directional data line. OEM Module DTEMP Connections: 43 Mantracourt Electronics Limited DSCUSB User Manual

45 OEM PCB DTEMP Connections: Cased Version DTEMP Connections: The temperature module is a small double sided PCB with an 8 pin SOIC integrated circuit mounted to it. The dimensions are 10.5 x 7.6 x 2.5mm (0.413 x x ). There are two solder pads for connection to the DSCUSB. A 2mm hole is used for fixing the temperature module to the body of the load cell. The module should, ideally, be positioned as close as possible to the strain gauges. The IC on the temperature module must also be in good thermal contact with the load cell body so the strain gauges and temperature sensor see the same temperature. Control Parameters The temperature compensation parameters define a pair of lookup tables that contain adjustments to the cell calibration gain and offset over temperature. The parameters concerned are the following: CTN CT1 CT5 CTO1 CTO5 CTG1 CTG5 [-] [ C] mv/v ppm Number of temperature table points Indicated TEMP value at table point N MV/V (x10 4 ) Offset adjustment at Offset table point N Gain (x10 6) at Gain table point N Mantracourt Electronics Limited DSCUSB User Manual 44

46 CTN sets the number of points in the gain & offset tables. A CTN value of less than two effectively switches off temperature compensation. The maximum number of point is 5, values greater than 5 reset CTN to 0 switching off temperature compensation. CT1 to CT5 sets the temperature in C of the correction points. The table must be filled from CT1 up to & including CT(CTN) and must be entered in order of increasing temperature value. CTO1 to CTO5 provide the offset adjustment in mv/v x10 4. The reason for the multiplication is due to the limitation set by the ASCII protocol of only being able to enter up to 6 decimal places. The CTOx value is subtracted from the uncompensated value. CTG1 to CTG5 provide the gain adjustment in ppm terms. The actual gain value used is calculated as 1 + CTGn x 10-6 Internal Calculation The temperature compensation calculation is described as follows:- The GAIN correction is applied first. The current measured temperature is checked against the table values CT1 to CT(CTN) to establish an index value if the measured temperature is below that of CT1 then CT1 is used as the index, If the temperature is above CT(CTN-1) then CT(CTN-1) is used. This can be represented as follows:- A working table index, i, is derived from the current measured temperature, T, as follows: (n = number of points used, as set by CTN) When (T < CT1) then i = 1 When (T > CTn-1) then i = (n 1) Otherwise i is chosen so that Ti T Ti+1 Once an index into the table has been established the gain value to be used is extrapolated between the index value and the value above. If the temperature is above CT(CTN) or below CT1 then the calculated temperature gain value is extrapolated from CT(CTN-1) to CT(CTN) or CT1 to CT2 respectively. This can be represented mathematically as follows:- CALC_CTG = CTGi + (CTGi+1 CTGi) (T CTi) / (CTi+1 CTi) The actual gain value used is 1 + CALC_CTGO x 10-6 and is multiplied by the uncompensated value MVV. The offset correction is then applied using the same temperature index i as found for the GAIN index above. The Offset value is extrapolated between the same two temperature points. This can be represented mathematically as follows:- CALC_CTO = CTOi + (CTO i+1 CTO i ) (T CT i ) / (CT i+1 CT i ) The actual offset value used is CALC_CTO x 10-4 and is subtracted from the above gain adjusted value. The output from the temperature compensation (CMVV) is then calculated as CMVV = MVV x (1 + CALC_CTGO x 10-6 ) - (CALC_CTO x 10-4 ) The Temperature Measurement The temperature sensor used is a Dallas (MAXIM) DS18S20 Digital Thermometer using the 1-Wire bus technology. This gives a temperature measurement accuracy of +/-0.5 C over the temperature range 10 to +85 C and +/-2.0 C over temp range 55 to +125 C. The resolution of the measurement is C. The temperature is sampled and the TEMP variable updated every 5 seconds. 45 Mantracourt Electronics Limited DSCUSB User Manual

47 How to Set Up a Temperature Compensation There are a number of ways of obtaining a temperature compensation curve. The best possible compensation for a given piece of physical hardware can only be achieved by performing experiments on that particular unit (DSCUSB and associated strain gauges), to characterise the measurement output at a variety of different, stable temperatures in the required operating range. The basic choice of methods depends on trading off ideal accuracy against the complexity of the calibration procedure. Method 1 Apply a simple linear drift correction (i.e. for known constant gain and offset changes per degree), by specifying zero correction at the calibration temperature, and appropriately adjusted correction values at extreme temperatures above and below this. This can be used when the measurement or sensor has known temperature coefficients. Method 2 Where the temperature characteristics of the measurement are known, but not linear, a similar scheme to Method 1 can be used, with a multi-point table defining an approximation to the known, ideal temperature curves of offset and gain variations. NOTE: Both of the above methods are based on known characteristics, which could come from datasheets but these methods would not compensate for the DSCUSB. Method 3 Do a series of measurements at different temperatures and install the appropriate correction values to give exactly correct results at those same temperatures i.e. calculate ideal gain and offset corrections at the tested temperatures. (This method is the most common). There is a wizard available in Instrument Explorer which will enable this method to be easily completed by calculating the gain and offset corrections for you. Method 4 Use a set of test results to plan a best correction curve (not necessarily perfect at test temperatures, but slightly better overall). NOTES: All of these methods can be applied either to data from individual devices or to an average correction for a particular type of sensor hardware. During testing, temperatures should be measured using the internal TEMP measurement, as this is the measurement used to do the corrections. For in-system tests, the environment of the DSCUSB must always be as near as possible to the exact conditions of the eventual in-system use. Parameter Calculations Instrument Explorer provides a Wizard for the calculation of the parameters required by the DSCUSB. This is based on Method 3 where data is collected. The wizard allows for small changes in the sampled temperature point that may occur when taking a set of results for gain and offset. Also taken into account is any variation in the test weights at different temperatures. This is a complex mathematical procedure which is best solved by a PC programme such as the wizard. Mantracourt Electronics Limited DSCUSB User Manual 46

48 Chapter 6 Linearity Compensation This chapter describes the Linearity Compensation features and how to use them. Purpose and Method of Linearisation Load cell sensor outputs are never precisely proportional to the input (applied load). If the graph of the measurement output against the true value shows slight deviations from the ideal straight-line, then slight errors remain even when the basic calibration (offset and gain) is as good as possible. Linearity compensation adjusts the raw measurement by a small amount that is calculated as a function of the raw measurement value itself. Ideally this will adjust the output response, for any given input load, by exactly the right amount to place the final result onto the ideal straight line. The DSCUSB non-linearity compensation uses a single lookup table, similar to those used for temperature compensation (see previous chapter). This provides a linearly-interpolated compensating value with up to 7 control points, which is then added to the output result. Generally, linearisation is a finer level of compensation than temperature compensation. It should only be applied after the basic Cell calibration and temperature compensation (if any) have been set up. Although the tests are generally simpler than testing over temperature, the accuracy requirement is often greater. See below for notes of possible difficulties to be avoided. Control Parameters Refer to Chapter 9 for command numbers The lookup table (based on parameters CLXi, CLKi) defines an offset adjustment based on the CRAW value, which is then added in to give the final CELL output. (N.B. linearity correction is applied after any temperature compensation.) The Parameters Involved Are : CLN Sets the number of linearisation points (from 2 up to 7) CLX1..7 Raw input (CRAW) value points CLK1..7 Output (CELL) adjustments to apply at these points They are used like this: The number of calibration points is set by CLN (from 2 up to 7) Raw input value points are set by CLX1, CLX2.. CLX7 (or up to the number set by CLN) These must be arranged in order of increasing input value. The output corrections at these points are set by CLK1, CLK2.. CLK7 Corrections are specified in thousandths of a cell unit i.e. a CLKi value of 1.0 actually adds to the CELL output. This due to a limitation in the ASCII conversion to floating point numbers. Internal Calculation This uses the same basic interpolated table lookup method as for temperature compensation. First, a working table index, i, is derived from the current raw input CRAW=x, as follows : (n = number of points used, as set by CLN) When (x < CLX1 ) then i = 1 When (x > CLXn-1 ) then i = (n 1) Otherwise i is chosen so that CLXi x CLX i+1 The resulting interpolated adjustment value is then calculated as ofs = CLKi + (CLKi+1 CLKi) (x CLXi) / (CLXi+1 CLXi) The compensated cell value is then calculated as: CELL = CRAW + ofs 47 Mantracourt Electronics Limited DSCUSB User Manual

49 How to Set Up Linearity Compensation A linearity correction can be set up either from sensor specification, calibration data, or more commonly from insystem testing results. Assuming we do not have any prior information on linearity errors, the usual approach is to do a series of controlled tests with accurately known test loads. Just as with temperature compensation, it is possible to obtain a detailed graph of linearity error and then choose a best-fit piecewise linear curve for the compensation table. However, it is generally good enough, and much simpler, to simply test at several different points and then apply an exact correction at those points. If the error curve is reasonably smooth, this should give exact results at the test points, and reasonably accurate values in between. NOTES: Linearisation tests should only be done after the cell calibration is set, because the correction values are dependent on the cell calibration. Similarly, linearisation testing should only be done at the calibration reference temperature, or after temperature compensation is installed, to avoid temperature effects from distorting the results. The linearisation tests should not reveal any significant remaining linear trend in the errors. If errors do appear to lie on a definite line, this could drastically reduce the accuracy of the correction. If this does happen, it shows that the cell calibration is wrong and should be redone. The table points must always cover more-or-less the whole range of output values to be used, because corrections are extrapolated outward beyond the first and last points. It is always worthwhile including more test-points than will be used in the correction table, because this gives confidence that no regions of rapidly changing error have been missed. Tests should be done both with steadily increasing and decreasing load values, as hysteresis effects (for load cells) are often of a similar size to non-linearities. Parameter Calculations and Example Based on the simple method outlined above, we suppose that we have obtained test results for a series of precisely known load values test loads Xi give readings of CRAW = Ci, for (i = 1..n) Then calculate the errors that need to be removed at these points Ei = X i C i Now just enter these values into the correction table, remembering to scale the errors CLN = n CLX i = X i Example CLKi = 1000 E i Suppose we have a load cell and Cell calibration giving a result in the range kgf. The following test results were obtained using a series of known test loads For test load of x1 = 0kg : CELL reading c1 = For test load of x2 = kg : CELL reading c2 = For test load of x3 = kg : CELL reading c3 = For test load of x4 = kg : CELL reading c4 = For test load of x5 = kg : CELL reading c5 = We choose these precise test points as our linearisation reference points, so CLN = 5 CLX1 = CLX2 = CLX3 = CLX4 = Mantracourt Electronics Limited DSCUSB User Manual 48

50 CLX5 = (Note that these are the raw reading values, not the known true values.) Now calculate all the residual errors, and set up the correction factors CLK1 = 10 3 (x1 c1) 1000 ( ) = 1.0 CLK2 = 10 3 (x2 c2) 1000 ( ) = CLK3 = 10 3 (x3 c3) 1000 ( ) = CLK4 = 10 3 (x4 c4) 1000 ( ) = CLK5 = 10 3 (x5 c5) 1000 ( ) = The CELL output values will now have the required values at all these 5 points. Note on the example: If you graph the errors from the above example, the results look like this This doesn t show any very definite linear trend, so the calibration is okay. However there is a big jump between points 3 and 4, which might be worth a more detailed investigation: Some important features of the error curve could have been missed by the test. 49 Mantracourt Electronics Limited DSCUSB User Manual

51 Chapter 7 Self-Diagnostics Diagnostics Flags The main diagnostics facilities are by means of the flags. See Flags in chapter 3 for a full description of the flags and their meaning. The flags are normally used in the following way: FLAG is read at regular intervals by the host (like the main output value, but generally at longer intervals). If some warnings are active, i.e. FLAG is non-zero, then the host tries to cancel the warnings found by writing FLAG= 0 The host then notes whether the error then either remains (i.e. couldn t be cancelled), or if it disappears, or if it re-occurs within a short time, and will take action accordingly. The warning flags are latched indicators of transient error events. By resetting the register, the host both signals that it has seen the warning, and readies the system to detect any re-occurrence (i.e. it resets the latch). What the host should actually do with warnings depends on the type and the application: Sometimes a complete log is kept; sometimes no checking at all is needed. Often, some warnings can be ignored unless they recur within a short time. Warning flags survive power-down, i.e. they are backed up in non-volatile (EEPROM) storage. Though useful, this means that repeatedly cancelling errors which then shortly re-occur can wear out the device s non-volatile storage see WARNING: Finite Non-Volatile Memory Life in chapter 3. Diagnostics LEDs The Diagnostic LED indicates the current status of the device and also its protocol. If all is healthy the LED should flash ON for a period of 100ms. The rate at which the LED flashes is used to indicate the protocol as indicated in the table below. Protocol ASCII MODBUS MANTRABUS II LED Flash Period 0.5 seconds 1 second 2 seconds If an error conditions occurs which is based on any of the following error flags being set then the operation of the LED will invert, i.e. the LED will flash off for 100mS at the rate set in the table above. The flags in question are: TEMPUR, TEMPOR, ECOMUR, ECOMOR, CRAWUR, CRAWOR, SYSUR, SYSOR & LCINTEG. The USB Rx and Tx LEDs indicate the presence of USB traffic. N.B. due to the nature of the USB waveform these LEDs are not very bright but do serve as diagnostic indicators. Mantracourt Electronics Limited DSCUSB User Manual 50

52 Chapter 8 Communication Protocols This chapter gives details of communication protocols and bus connections. There are effectively three layers involved in communicating with the DSCUSB: 1. Internally, all devices support the same command set, as described in earlier sections. 2. Command-accesses are coded into actual byte sequences according to the communications protocol used. Three protocols, ASCII, Mantrabus and Modbus are available. 3. Serial communications are carried out via a Virtual COM Port assigned by the PC. The protocol type is fixed for a given device during production. The communications baud rate and station number (the bus address ) are configured for each device by the control parameters STN and BAUD (see Chapter 2 Getting Started). Bus Standards Serial Data Format Serial data formatting is the same for all the protocols and is fixed to one start-bit one stop-bit 8 data bits no parity Communications Flow Control Bus flow control is managed as part of the protocol (managed differently by each). No hardware or software flow control signals are to be used for any of the bus standards. Communications Errors Serial data which does not conform to the expected format causes a serial framing error to be registered, which increments the Communication Failure Counter CFCT. What this actually means is that, following a start bit (1 to 0 transition), a stop (1) bit was not seen in the expected place. This is obviously baud rate dependent; the commonest cause being data transmitted at a lower baud rate than the unit was configured for. Choosing a Protocol The current choices are: ASCII Printable characters, easy to drive, direct output to printers/displays MODBUS RTU Binary industry standard, inter-compatible with other devices such as PLCs MANTRABUS-II Efficient binary protocol, checksums give better security than ASCII Communications Software for the Different Protocols To access a DSCUSB, you will need a communications application running on your PC or PLC in addition to the appropriate hardware connections. The simplest approach for initial experiments is to use the Instrument Explorer evaluation application. Instrument Explorer can provide a window into intended parameters and variables. This is supplied on a CD with the DSCUSB Evaluation kit or can be downloaded from our website: A full version of Mantracourt s VisualLink (SCADA) toolkit can be used for much more complex control and monitoring applications. Contact our sales office for details. Other simple ways of using the different protocols are as follows : 1. The ASCII protocol only uses basic printable characters, and so can be accessed with a simple terminal program like Windows HyperTerminal. 51 Mantracourt Electronics Limited DSCUSB User Manual

53 2. The MODBUS protocol can be accessed via a proprietary generic MODBUS application. For evaluation purposes, we suggest the free shareware demo of ModScan32 from Win-Tech software (visit 3. MANTRABUS needs a purpose-designed program to handle full 8-bit data bytes and the proprietary checksum calculations. Instrument Explorer and VisualLink provide this. Common Features of All Protocols The communications protocols are all of the master/slave type: A central host device (normally a PC or PLC) acts as a bus master in control of all communications. Communications consist of the master transmitting command messages addressed to particular DSCUSB slave devices. The target slave may then transmit a response message back to the master. Because there is only one bus master, and slaves never initiate communications, the master is in control of all communications. This enables multi-drop operation, i.e. a single master can control any number of slave devices at a time. In practice, the master usually polls the attached slaves, interrogating them in a fixed rotation. Command Types A single command sent to a device can instruct it to read from or write to an internal parameter value, or to execute a Control Action. The device responds by returning data (for a parameter read) or a simple acknowledge (for write or action). Precise details depend on the protocol in use. Each Command Message Contains the Following Information: 1. The intended slave address (or broadcast) 2. The command to access 3. The access type, one of read / write /execute 4. (For write accesses only) the write value The Command Response will then be one of the following three types: 1. An error indication 2. A simple acknowledge 3. A read data-value (implicit acknowledge) The various protocols differ quite a lot in the available types of error and acknowledgements. The distinction between different access types is also protocol-dependent, in that some use a dummy read or write command to execute access. Slave Addressing and Broadcast Every slave device on the bus is identified by a unique address value, known variously as its station number, node id etc. depending on the protocol. Each command message contains an address specifying to which slave device it is directed. A slave will ignore all communications that are not addressed to it. All the protocols also define a special address value (normally 0) which is reserved for broadcast commands, which all slaves act on. No response is allowed to broadcast commands, as multiple replies would collide with one another. Parameters Parameters are the values used for all control settings and output values. They have an associated storage type (byte, integer or real-value), and may be either read/write, read-only or write-only. Output or result values are mostly read-only. Configurable parameters are held in non-volatile storage, so control settings are retained permanently even when power is removed. Mantracourt Electronics Limited DSCUSB User Manual 52

54 Data Type Conversions and Rounding Type Conversion Depending on the protocol, an integer/byte parameter may need to be converted to or from a floating-point representation for reading or writing. The rules are as follows For reading, integer and byte parameters are treated as unsigned, and never read negative i.e. read value ranges are 0 to and 0 to For writing, values written to integer and byte parameters are truncated to the nearest integer, and negative or positive values are acceptable NOTE: Floating-point data is not always exact, even when reading integral data e.g. could get instead of 4 e.g. for a byte write, 240, and are all the same value Rounding Although rounding is applied when writing to integral values, data read from a device is not rounded off. The ASCII Protocol The ASCII protocol uses only printable characters and carriage-return ( <CR> ), which allows a dumb terminal device or a PC programme like Hyper-Terminal to interrogate the device - Host Command Message Format The basic command request structure is shown in the following example, illustrating the message:!001:sgai= <cr>, meaning write to parameter SGAI on station 1: Framing Station Separator Command Access Data End of Character Address Identifier Code frame! 001 : SGAI = <CR> An Explanation of Each Field is as Follows: Framing Character: a! character is used to signal the start of a new message. This character is only ever transmitted by the host, for framing purposes. Station Address: a three-digit ASCII decimal number (0-999) determines which slave device(s) the command is intended for. All three digits must be sent. Address 000 is reserved for broadcast addressing. Separator: always present. As no checksum or message verification technique is used, slaves use this as an extra check on message validity. Command Identifier: up to 4 alpha-numeric characters, case insensitive, giving the name of the required command. Access Code: Defines what sort of response is expected : = means write data is expected to follow? means the host is expecting to receive read data back <CR> (i.e. nothing more before end) means the command is an action type (execute) Data: an ASCII decimal-formatted number, can include 0-9, +,,. and spaces. This field can have a maximum length of 15 characters. End of frame: a <CR> is always present to indicate the end of the message. Summary A command message begins with!, followed by a three-digit station address, then a :, and finishes with a <CR>. The! and <CR> only appear at the beginning and end of commands respectively From the : to the final <CR> is the command instruction (of read, write or execute type) All instructions begin with an alphanumeric command identifier of up to 4 characters, and end with a nonalphanumeric (which may be the final <CR>). Slave Response Message Formats 53 Mantracourt Electronics Limited DSCUSB User Manual

55 Each slave monitors the bus for command messages. It responds to any message that is addressed to it by sending a response message. To be accepted by a slave device, a message must start with!, the correct three-digit slave address and :, and end with <CR>, with no intervening extra!. The slave will then always respond. There are three possible types of response: acknowledge (ACK), acknowledge with data (for a read), and notacknowledge (NAK) ACK is a single <CR> character. This confirms an execute or write command. ACK-with-data is a decimal number, followed by <CR>. This confirms a read and returns the data value. NAK is an? <CR> sequence. The device rejected the command. There are several possible reasons for a NAK response: Command identifier not recognised Badly formatted command: Missing command identifier, unrecognised access-code character, or unexpected character somewhere else Access attempted not supported by this command. NOTES: The maximum time from receipt of the host s terminating <CR> to a response from the device (if any) will be 50mS. After this time it can be assumed there is no response. There is no value-checking: A slave cannot NAK a command because a write data value is unsuitable in some way, only if write access itself is disallowed. For the Ack-with-data (i.e. a successful read command), the returned value consists of printable ASCII characters finishing with a <CR>, formatted according to the DP and DPB settings as follows Write Command If the device accepts the command then a <CR> is transmitted. There is no error checking on the data received by the device. Example: A command to set the BAUD parameter to 3 on station 1 could look like this!001:baud=3<cr> assuming a device with STN=1 is present, it will respond with <CR> Read Command Returns the requested value specified by the command. The returned value is formatted according to the DP and DPB values: The response consists of a sign character (±), DPB decimal digits before a decimal point, DP digits after the point and a terminating <CR>: The length of the response is thus fixed at DP+DPB+3 characters. Example: A command to read the SOUT output could look like this!001:sout?<cr> if the value=32.1, and format settings are DP=3 and DPB=5, the response string will be <CR> Action Command If the device accepts the command then a <CR> is transmitted. Example: A command to reset device 14 would look like!014:rst<cr> Mantracourt Electronics Limited DSCUSB User Manual 54

56 the response string will be solely <CR> Broadcast Commands If the station address in a command message is 000, this means a broadcast command. All slaves act as normal on a broadcast command, but do not respond. Example: A command to all devices on the bus to sample their inputs would look like this!000:snap<cr> - no response Bad Commands If any command is not understood by the device then a? is transmitted followed by a <CR>. Example: A unrecognised command, correctly addressed to station 173!173:XYWR?<CR> produces the general error response?<cr> Continuous Output Stream (ASCII ONLY) For the ASCII protocol only, there is a continuous output mode: The SOUT value is continually broadcast at intervals set by the RATE parameter (see Chapter 3). The maximum output rate is 300Hz with the baud rate set to a minimum of This feature is intended for outputting data to a single simple serial device such as a display or printer. There are two continuous output streaming modes which are determined by the station number being set to either 998 or 999 (see below for how to change the station number). When set to 999 streaming does not start automatically, a ctrl/q (0x11) character must be sent to initiate it. This means that if there is, for example, a brief power interruption then streaming will stop even when power is restored. A further ctrl-q character must be sent to re-start streaming. When STN is set to 998 the continuous output stream will start automatically from power up. The streaming can be switched on and off by sending the standard ASCII XON/XOFF control bytes (ctrl/q = 0x11 and ctrl/s = 0x13). Station Number, STN The STN parameter controls the station number, which specifies the device address for bus communications. Historically this was introduced to allow multi-dropping on RS485 versions of other DSC and DCell products in Mantracourt s product range. As supplied, devices have the station-number factory set to 001 Please note: because the DSCUSB communicates through a virtual comm port (VCP), its unique identity is determined by the assigned Comm Port number rather than its station number, STN. For this reason the station number can be left at its default setting of 001 unless the continuous streaming feature described above is required (STN = 998 or 999). Two DSCUSB devices with the same station number can co-exist without any conflicts when connected to a single PC via separate USB sockets or a hub. Please note: The new value of STN does not take effect until the RST command is issued or the device is power cycled. 55 Mantracourt Electronics Limited DSCUSB User Manual

57 To Change the Station Number of your device: 1. First set STN to the new value.!001:stn=999<cr> assuming a device with STN=1 is present, it will respond with <CR> 2. Send a RST command or power cycle the device for the change to take place. If using Hyper Terminal or similar applications it may be necessary to Disconnect then Call (disconnect then re-connect) after cycling the power in order to re-establish communications.!001:rst<cr> - no response The station number will now be set to 999. Subsequent commands should be addressed to!999: Please note: if using Hyper Terminal or similar applications it may be necessary to Disconnect then Call (disconnect then re-connect) after cycling the power in order to re-establish communications. NOTES: The valid range of STN for the ASCII protocol is If STN is set outside the valid range, it behaves as if set to a default of 1. Ctrl/Q will cause the DSCUSB to start streaming its data. Ctrl/S will stop the streaming. Baud rate Control, BAUD The BAUD parameter is a read/write byte value specifying a standard communications baud rate according to the following table BAUD value baud rate (bps) k2 38k4 57k6 76k8 115k2 230k4 460k8 Default setting value 7 for BAUD rate BAUD can only take the values shown above. If set <0 or >9, the baud rate reverts to default of Warning: When changing this setting it is possible to lose communication with the device. As well as keeping track of the correct baud rate, it is also essential in this case to be sure that your hardware supports the rate you are changing to. The evaluation kit supports all possible DSCUSB baud rates. The new value of BAUD does not take effect until the RST command is issued or the device is power cycled. To Change the Baud Rate, follow a similar sequence to changing the STN value: 1. First set Baud to the new value.!001:baud=4<cr> assuming a device with STN=1 is present, it will respond with <CR> 2. Send a RST command or power cycle the device for the change to take place. If using Hyper Terminal or similar applications it may be necessary to Disconnect then Call (disconnect then re-connect) after cycling the power in order to re-establish communications.!001:rst<cr> - no response Mantracourt Electronics Limited DSCUSB User Manual 56

58 1. Change the device settings in Instrument Explorer by selecting Change Settings from the Communications menu. Select new baud rate. The MODBUS-RTU Protocol MODBUS is a proprietary standard of Modicom Inc. The full specification is quite complex, including a timeout-based framing strategy and polynomial CRC calculation, so full details are not given here. Refer to Modicom documentation. Knowledge of the MODBUS protocol is therefore assumed. The MODBUS protocol is a partial implementation of the RTU (binary) form of the MODBUS standard, sufficient to allow DSCUSB units to coexist on a serial bus with other MODBUS-compliant devices. NOTE: Third-party applications for MODBUS communications are readily available (e.g. ModScan from Win-Tech software, who offer a free trial version). Modbus Messages All messages and responses are formatted and check summed according to the normal RTU rules. The slave number is the device station number: Slave 0 may also be used for broadcast writes. The device command-set is mapped into the MODBUS Output or Holding Registers Parameters (read or write) are mapped onto a pair of registers containing a 4-byte floating-point value Action Commands are implemented as dummy parameters: Writing activates the command and reading returns a dummy value (with no action) Only two valid Message Function Codes are supported Function 03 Read Holding Registers - to read a register-pair Function 16 Preset Multiple Registers - to write a register-pair The start address must always be a valid parameter address, which is always an odd number (see the following). The only permitted data length is two registers, i.e. 4 bytes. Registers cannot be read or written singularly, in larger groups or using other addresses (i.e. even-numbered registers cannot be addressed directly). Parameter Addresses All MODBUS parameter addresses are derived from the equivalent MANTRABUS register number by a simple times 2 plus 1 calculation. For example, the FLAG parameter is Mantrabus register#14, so this occupies MODBUS holding registers 29 and 30 (i.e = 29). See the command table in Chapter 9 for the starting register numbers. Parameter Values All exchanged values (read and write parameters) are in the standard IEEE 4-byte floating-point format: The 32 Bits of the number are distributed as follows: MSB 31 Sign bit, 1=negate Exponent, 7-bit excess-127 LSB 22-0 Mantissa, 23-bit fraction with implicit 1 The value of the number is thus { (-1) Sign * 2 (Exponent-127) * 1.Mantissa }, 57 Mantracourt Electronics Limited DSCUSB User Manual

59 Note the assumed 1 before the mantissa. The exception to this is the special value 0.0, which is represented as 4 zeroes. e.g. a floating point number of is represented as [hex] C6 40 E6 B6 These 32 bits are mapped onto a register pair in the following way: The lower register holds bits 15-0 and the upper register bits These values are coded according to normal Modbus conventions, so the actual byte sequence in a read/write message is thus R1 hi, R1 lo, R2 hi, R2 lo Which in terms of bits is 15:8, 7:0, 31:24, 23:16 Error Codes Only three Modbus Error Codes are supported, which are used as follows: 01 Illegal Function request for function other than 3 or Illegal Data Address attempt to read an unsupported register address 03 Illegal Data Value attempt to write a read-only parameter, or message too long for buffer (valid messages have a known maximum length) Write Command Example: Write value 1.23 (represents as hex 3F9D70A4) to registers 57,58 on slave#4 by sending: [hex] 04 station address 10 function code (write) start-reg hi,lo (N.B. h38=56 addresses register 57) quantity = 2 registers 04 byte-count = 4 70 A4 first=lower register (17) value = hi,lo 3F 9D second=upper register (18) value = hi,lo 6B AB checksum = hi,lo A correct response would then be: [hex] 04 station address 10 function code (write) the Data Address of the first register the number of registers written C0 50 checksum = hi,lo Read Command Example: Read a value from registers 13,14 on slave#52 by sending: [hex] 34 station address 03 function code (read) 00 0C start-reg hi,lo quantity = 2 registers 01 AD checksum = hi,lo A correct response with a value of (Hex C25CED51) would then be: [hex] 34 station response 03 function code (read) 04 byte-count ED 51 C2 5C data AA D4 checksum = hi,lo Execute Command Example: Execute command 101 on slave#17 by sending: [hex] 11 station address 10 function code (write) start-addr h64=100 register quantity = 2 registers Mantracourt Electronics Limited DSCUSB User Manual 58

60 04 byte-count data (value irrelevant) A0 B4 checksum = hi,lo The Acknowledge response is then: [hex] 11 station response 10 function code (write) the Data Address of the first register the number of registers written checksum = hi,lo The Mantrabus-II Protocol Mantrabus-II is a two-wire system where data is transmitted & received over a common pair of wires. Comms traffic is synchronised by using a unique 8 bit framing character. For this reason the framing character must not appear as data in a command or reply from the responding DSCUSB. The protocol ensures this does not occur by splitting data bytes into 4 bit nibbles while the framing character & station number remain as 8 bits. Framing Character The framing character for Mantrabus-II is FEh, (this being different from the older Mantrabus-I FFh to allow the two protocols to be mixed on one bus). Checksum Both Host & Device send their EXOR checksum of all data sent, excluding framing character, in nibble format with the MS nibble being first. e.g. EXOR Checksum of data is A7h. Checksum characters sent = 0Ah, 07h Data Transfer Data is both sent and received as 4 bytes split into 8 nibbles following the station number, plus two nibbles of checksum. Floating-Point Data Format All data sent & received in Mantrabus-II is in the IEEE floating-point format, this being a 4-byte floating-point number. The byte containing the sign & exponent is sent first, with the LS byte of the mantissa being last. The memory layout of the 4-byte floating-point numbers is: MSB 31 Sign bit, 1=negate Exponent, 7-bit excess-127 LSB 22-0 Mantissa, 23-bit fraction with implicit 1 The value of the number is thus { (-1) Sign * 2 (Exponent-127) * 1.Mantissa }, Note the assumed 1 before the mantissa. The exception to this is the special value 0.0, which is represented as 4 zeroes. e.g. a floating-point number of is represented as [hex] C6, 40, E6, B6 This is transmitted in nibble format as [hex] 0C, 06, 04, 00, 0E, 06, 0B, 06. End of Data Identifier As the protocol has no fixed length or length identifiers the last nibble of data sent to the device has its MS nibble set. This indicates to the device that all data has been received & the next two bytes will be checksum data. This does not apply to the response from the remote device as the master knows how many bytes to expect in the reply to each of its commands. ACK & NAK Mantrabus-II supports ACK & NAK, sending ACK (06h) at the end of a successful operation, and NAK (15h) for an unknown command or failed operation. These are always preceded by the station number (see examples below). N.B. Mantrabus-II will not transmit a NAK for invalid checksum data, but instead remains silent. (This is different from the behaviour of the older Mantrabus-I). 59 Mantracourt Electronics Limited DSCUSB User Manual

61 Writing to Variables Station number and command number are followed by 8 bytes of nibble data (the last having its MS bit set), followed by the two checksum nibbles. e.g. To write the value (Floating point = 42h, C8h, 00h, 00h) to variable CGAI (command number 40) at station 20, send the following FEh, 14h, 28h, 04h, 02h, 0Ch, 08h, 00h, 00h, 00h, 80h, 0Bh, 0Eh [ DATA ] [EXOR CS] Frame Station Cmd MS bit character number of last Byte set The response is then 14h, 06h i.e. station number + ACK. Reading of Variables To read an individual variable, the command number is sent with the MS bit set (i.e. no data following). e.g. To read CGAI (command number 40) from station number 20, send the following FEh, 14h, A8h, 0Bh, 0Ch [ ] [EXOR CS] Frame Station Cmd with char number MS bit set of last byte Assuming the value was (coded as C640E6B6h, representing -1 * 2 13 * / 8192), the response will be 14h, 0Ch, 06h, 04h, 00h, 0Eh, 06h, 0Bh, 06h, 01h, 0Fh [ DATA ] [EXOR CS] Station number N.B. this is a response, therefore MS bit of last byte does not need to be set Action Commands These are transmitted like read commands, i.e. no data sent. The response is identical to write commands. eg. To reset station three (command 100), send the following. FEh, 03h, E4h, 0Eh, 07h [EXOR CS] Frame Station Cmd with char number MS bit set The response is then 03h, 06h i.e. station number + ACK. Mantracourt Electronics Limited DSCUSB User Manual 60

62 Chapter 9 Software Command Reference This chapter contains tables of all DSCUSB commands, with brief details of each. Commands in Access Order ASCII name description datatype access MB reg MD reg CMVV Temp Compensated mv/v float RO 5 11 STAT Status int RO 6 13 MVV Filtered & factory calibrated float RO 8 17 mv/v SOUT selected output float RO 9 19 SYS main output float RO TEMP temperature float RO SRAW raw system output float RO CELL cell output float RO FLAG error flags int RW CRAW raw cell output float RO ELEC electrical output float RO SZ system zero float RW SYSN snapshot result float RO PEAK Peak value Float RO TROF Trough value Float RO CFCT Communications failure count Float RW VER software version byte RO SERL serial number low int RO SERH serial number high int RO STN station number int RW BAUD baud rate select byte RW OPCL Output Control (Value select) byte RW RATE reading rate select byte RW DP digits after point byte RW DPB digits before point byte RW NMVV Nominal mv/v for scaling ELEC float RW CGAI cell gain float RW COFS cell offset float RW CMIN cell range min float RW CMAX cell range max float RW CLN lin n-points byte RW CLX1..7 lin raw-values float RW CLK1..7 lin corrections float RW SGAI system gain float RW SOFS system offset float RW SMIN system range min float RW SMAX system range max float RW USR1..9 g.p. storage values float RW FFLV Dynamic Filter Level Float RW FFST Dynamic filter steps Float RW RST reboot X SNAP take snapshot X RSPT Reset peak & trough X SCON Shunt cal ON X SCOF Shunt cal OFF X OPON Digital Output on - X OPOF Digital output off - X Mantracourt Electronics Limited DSCUSB User Manual

63 CTN tempco n-points byte RW CT1..5 tempco Temp points float RW CTG1..5 tempco gain-adjust float RW CTO1..5 tempco offset-adjust float RW Table Key.. - Denotes a range (e.g. CLK1..7 means CLK1 to CLK7 ) Access RW/RO/WO/X = read-write / read-only / write-only / execute Datatype float/int/byte/ = 4-byte real / two-byte integer / 1-byte integer / none MB reg = register number for MANTRABUS protocol MD reg = start register address (always odd) for MODBUS protocol NOTES: All Modbus accesses are in register pairs, Modbus addresses are (2*MANTRABUS)+1 Mantracourt Electronics Limited DSCUSB User Manual 62

64 Chapter 10 Installation This chapter gives detailed information on integrating the DSCUSB into a production system including mounting, protection, adjustments, wiring and electrical requirements. Before Installation Carefully remove the DSCUSB device from its shipment box. Check that the device is complete and undamaged. Check the Product Type Code on the product label is that which you ordered. The DSCUSB can operate in any industrial environment providing the following limits are not exceeded Operating Temperature -40 ºC to +85 ºC Humidity 95% non condensing Storage temperature -40 ºC to +85 ºC For precise details of Environmental Approvals, see chapter 15. It is advisable to follow the following installation practices where possible: Minimise vibration Do not mount next to strong electrical or magnetic fields (transformers, power cables) Install electrical protection device as the unit is not internally fused Always ensure the package is secure and protected Physical Mounting OEM PCB: The PCB can be fitted to a motherboard by fitting in-line pins to the 6-way, 4-way and 5-way rows of holes and plugging them into corresponding sockets on the motherboard or directly soldering through holes. The 6-way and 4-way holes are on a 0.1 pitch, the 5-way holes are on a 2mm pitch. OEM Module 63 Mantracourt Electronics Limited DSCUSB User Manual

65 The OEM Module can also be DIN rail mounted by means of suitable clips e.g. Wago fitted to a separate base plate. Ideally, the DSCUSB should be installed in a protective enclosure, such as a metal box. Electrical Protection Electrostatic protection is sufficient for installation purposes only. No over-current or over-voltage protection is provided in case of faults, the supply arrangements should therefore employ adequate power limiting or fusing. NOT PROTECTED AGAINST REVERSE POLARITY OF SUPPLY. Moisture Protection The DSCUSB must only be operated in a dry environment, as moisture can dramatically degrade the measurement performance. Any simple box or enclosure can be used, however, in extreme conditions an enclosure with the appropriate IP rating should be chosen. If a metal enclosure is used it should be grounded to the SH connection. Soldering Methods Take care when soldering cables to the pads. Use a temperature controlled soldering iron set to a maximum 330ºC, for no longer than 2 seconds per pad. Excessive heat or increased soldering time may result in damage to the PCB. NOTES: 1. Solder with water-soluble flux should not be used (even low-residue), as this can leave a surface film which attracts atmospheric moisture, degrading measurement performance. Power Supply Requirements The DSCUSB is a low power device (<100mA) and normally derives its power from the host machine. It will operate over the worst-case voltage range stated in the USB rev 2.0 specification i.e V. The OEM-Module version, as supplied with the Evaluation kit, can be operated in Self powered mode i.e. powered by a separate supply (4.25V to 5.5V) connected to pins 1 and 4 of J3 follow the screen printed legend on the PCB for the polarity. Care should be taken to assure that this supply is not also connected to the host by the USB cable. A single device consumes typically 70mA with a 350 Ohm gauge connected. An installation should therefore assume at least 80mA per unit, and allow for extra current being taken at power-on (though supply voltage can safely drop temporarily), and for possible voltage drops in long cables. The DSCUSB can supply enough excitation current to drive up to four 350 Ohm gauges connected in parallel. In this case Self powered mode must be used (see note above for the OEM-Module) as the total supply current will rise to approximately 135mA taking it above the USB specification for Bus Powered devices. Any power-supply ripple should be below 100mV, and supply arrangements should provide current limiting for fault conditions (see Electrical Protection, above). Mantracourt Electronics Limited DSCUSB User Manual 64

66 Cable Requirements USB OEM Module USB Connections VCC (1 - Red) USBDM (2 - White) USBDP (3 - Green) GND (4 - Black) SCR EXC+ IN+ IN- EXC- GND GND USBDP USBDM VCC DSCSUSB PCB USB SOCKET DSCUSB MOTHERBOARD OEM PCB 4-way connector VCC (1 - Red) USBDM (2 - White) USBDP (3 - Green) GN D (4 - Black) 5-way connector Shield GND (4 - Black) USBDP (3 - Green) USBDM (2 - White) VCC (1 - Red) Issue 1 PCB Issue 2 PCB Strain Gauge Input (DSCUSB) For optimal performance twin twisted pair with individual shields is recommended, this gives good noise immunity. Maximum length should not exceed 20m. Normal 4 core shielded cable can be used in areas of low electromagnetic noise. Power and Communication Standard, good quality USB cables should be used. In the case of the self-powered OEM Module described above, use a USB type A to wire tails cable or cut off the B type connector of a standard cable and strip back the outer sheath and connect the GND, USBDP and USBDM cores to the 4-way screw connector J3. Leave the Vcc core unconnected. Connect the external 5V supply to GND and VCC. Ensure that the 5V supply stays within the limits 4.25V to 5.5V. 65 Mantracourt Electronics Limited DSCUSB User Manual

67 Temperature Sensor A shielded twisted pair is recommended, with a maximum length of 10m the shield being connected to the load cell body or (SH if DSC). For short lengths (< 2m) in a low noise environment (inside load cell body for example) then normal cable can be used. Identifying Strain Gauge Connections OEM PCB 4-wire load cell OEM PCB 6-wire load cell Mantracourt Electronics Limited DSCUSB User Manual 66

68 OEM Module 4-wire load cell OEM Module 6-wire load cell 67 Mantracourt Electronics Limited DSCUSB User Manual

69 Cased Version 4-wire load cell Cased Version 6-wire load cell Mantracourt Electronics Limited DSCUSB User Manual 68

70 Strain Gauge Cabling and Grounding Requirements To achieve full performance specifications and conform to environmental approvals, it is important to follow the wiring procedures outlined in this section. DSC Strain Gauge Cabling Arrangement Key Requirements If the OEM PCB is fitted within the body of a load cell, the strain gauge wires should be kept as short as possible, at most 20cm. The EXC+/ wires should be twisted together, also the SIG+/ pair, and the two pairs kept apart. It is also recommended to secure the wires from moving due to shock or vibration. The shield connection SH should be connected to the body of the load cell via a very short length of wire (20mm max). If the DCell is mounted outside the body of the load cell then, for optimal performance, twin twisted cable should be used, although standard 4 core shielded cable can be used in low noise environments. 69 Mantracourt Electronics Limited DSCUSB User Manual

71 Strain Gauge Sensitivity Adjustment The DSCUSB is factory optimised for 2.5mV/V. If your strain gauge does not deliver a 2.5mV/V full scale output, you may want to adjust the sensitivity of the electronics (hardware) and/or the software gain controls. If an input mv/v setting of more than 2.5mV/V is required, the hardware sensitivity must be adjusted to avoid saturating the input. If the setting is less than 2.5mV/V, you can correct in software alone, but increasing the hardware sensitivity will generally improve accuracy. There is provision on the DSCUSB PCB for changing the mv/v setting. R20 can be changed, an extra resistor R19 added and/or a track cut as shown below: The PCB track can be cut as shown above to disconnect the 100 Ohm gain resistor R20 and a suitable value resistor fitted as R19 to change the sensitivity. A high quality 0805 surface-mount resistor 25ppm/ C or better should be used to maintain performance. Reducing Sensitivity: To accommodate a sensor output larger than 2.5mV/V, it is necessary to reduce the electrical sensitivity of the input circuitry. To decrease the sensitivity, the track should be cut to remove R20 from the circuit and resistor R19 fitted as calculated by the following formula: R 19 = (required mv/v) x 40 Example: for 10mV/V R 19 = 10 x 40 = 400 Ohms Increasing Sensitivity When the full-scale output is less than 2.5 mv/v, it may be desired to increase the sensitivity. However, it is often possible instead to compensate partly or entirely in software, by increasing either or both of the software gain controls CGAI or SGAI. Mantracourt Electronics Limited DSCUSB User Manual 70

72 To increase the sensitivity, R20 is left in place by leaving the PCB track intact and R19 fitted in parallel. R19 is calculated as: R 19 = 1 / (( 0.025/(reqd. mv/v)) 0.01) Example: for 1.5mV/V R 19 = = 1 / (( 0.025/1.5) 0.01) = 150 Ohms Two effects should be noted: 1. The purpose of increasing the hardware gain is to reduce reading noise which governs the effective resolution. This gives better performance than increasing the gain in software. 2. The sensitivity should, however, not be set greater than typically 1mV/V. Beyond this figure, input noise usually dominates and no extra benefit can be achieved. 71 Mantracourt Electronics Limited DSCUSB User Manual

73 Chapter 11 Troubleshooting This chapter gives a quick guide to problem solving for DSCUSB devices. Bear in mind that the quickest way to pin down problems is to usually replace items with known good alternatives. This also applies to cables, power supplies, devices etc. LED Indicator The LED is used to indicate the protocol selection, the device is powered and the Device is operating. During correct operation the LED should Flash ON for 100mS then repeat at a rate depending on the protocol as shown in the following table. If this is not the case then follow the instructions below. Protocol ASCII MODBUS MANTRABUS II LED Flash Period 0.5 seconds 1 second 2 seconds If the LED is OFF check the power supply polarity & voltage: If the LED is permanently ON then contact the factory. If The LED is ON for the majority of time then Flashes OFF for 100mS then a fault exists. This fault can be read back using the communications. Likely causes of this are Strain Gauge Integrity Error or Limits reached for MVV, CRAW, SRAW or TEMP. First check the connections to the strain gauge are correct. Next check the input is not over-range or the limits set for CMIN, CMAX, SMIN or SMAX have not been exceeded. No Communications The majority of problems involve a failure to communicate, as there are a number of optional settings that must be set to the same value at both ends of the link. For this reason, any communications application should always check command responses, and flag a problem when these responses are not activated. Possible problems can be categorised according to where in the chain of communication the problem may be. The typical chain runs as follows: PC software (port connection, baud rate, station number, protocol) PC serial port (working) USB lead to DSCUSB Bus wiring DSCUSB device (wiring, station number, baud rate, protocol, working) Mantracourt Electronics Limited DSCUSB User Manual 72

74 A quick checklist elaborates on these areas, if you are using the Instrument Explorer evaluation software (other software may have different requirements at the PC end): Check as follows: PC End 1. PC software settings: correct serial port, baud rate and protocol (standard data setup is 1 start bit + 1 stop bit, no flow control). 2. PC serial port okay: check with another serial device, e.g. wire two PCs together with Hyper Terminal running on both. Evaluation Board or Device 1. Power reaches the device with correct polarity. 2. USB Connections correct. 3. Device settings: correct station-number, baud rate (How do you know these are correct? A substitute device is very useful here!) 4. Device protocol: double-check product label 5. Device running okay: LED is flashing. 6. Devices take 45-55mA supply current without sensor attached, 65-75mA with 350 Ohm gauge. Bad Readings The cause can be either hardware or software related. Software 1. Check the MVV reading first and ensure it is correct. This figure is the RAW input and is not affected by the user configurable calibration settings. 2. If MVV looks correct, check the calibration settings step by step. Consider resetting all the calibration controls to default values see Chapter 4 The Reading Process. This should make SOUT=MVV at all times. Hardware 1. Load Cell problem should be indicated by flags in STAT, LCINTEG 2. Genuine hardware problems usually show up as total failure i.e. unchanging fixed readings, usually either near zero or permanently at full-scale. Check wiring, take voltage level readings and again if possible use a known good device and set up. 3. Check the sensor is connected properly, and has some resistance across the excitation leads, output leads and across each arm of the bridge. For a 350 Ohm gauge these readings should be approximately 350 Ohms, 350 Ohms and 262 Ohms respectively (when disconnected from the device). 4. Check for a damaged DSCUSB device by replacement. Unexpected Warning Flags Remember that all warning flags in FLAG must be explicitly reset they do not clear themselves when a problem is resolved. If a flag cannot be cleared, the cause must be persistent i.e. it keeps occurring. This can be immediate, regular (every few seconds) or irregular (occasional). See the Flags section chapter 3 for precise details of how the individual warnings operate. Bear in mind the following possible problems 1. REBOOT or an increasing CFCT may indicate intermittent connections. 2. Where ECOMUR/OR or EXCUR/EXCOR are triggered, suspect input wiring. 3. Various range errors (CRAWUR/OR, SRAWUR/OR) are also likely to be set if the excitation was interrupted (EXCUR/OR). 4. For range errors, check the associated limit parameters (CMIN/MAX, SMIN/MAX). 5. Problems are likely if any calibration MIN/MAX parameters are set the wrong side of zero (i.e. MIN>0 or MAX<0). 73 Mantracourt Electronics Limited DSCUSB User Manual

75 Problems with Bus Baud Rate There are a number of special difficulties to be considered here: Systems with very long cabling may not work with higher baud rates Always remember, devices need to be rebooted before certain changes take effect Recovering a lost DSCUSB For baud rate problems, see previous section. If the protocol is unknown e.g. the label has been removed or the diagnostic LED is not visible then try all three protocols (ASCII, MODBUS and MANTRABUS II) until a response is obtained. If a station number is unknown, it can be reset via broadcast command (STN = 0). Always remember that a reboot (power-off or RST command) is needed to change STN and BAUD settings! Mantracourt Electronics Limited DSCUSB User Manual 74

76 Chapter 12 Specifications Technical Specifications DSCUSBS The DSCUSB is factory set for 2.5mV/V sensitivity. Parameter Min Typical Max Units Strain Gauge Excitation System 4 Wire Strain Gauge Excitation Voltage VDC Strain Gauge Drive Capability Ohms Strain Gauge Sensitivity mv/v Offset Temperature Stability 5 10 ppm/c Gain Temperature Stability ppm/c Offset Stability with Time ppm of FR (1) Gain Stability with Time 300 ppm of FR (2) Non Linearity before Linearization 5 25 ppm of FR Internal Resolution 16 Million Counts/divs 1Hz readings (Noise stable) over 100s 66,000 Counts/divs 10Hz readings (Noise stable) over 100s 40,000 Counts/divs 100Hz readings (Noise stable) over 100s 10,000 Counts/divs 500Hz readings (Noise stable) over 100s 5,000 Counts/divs Signal Filter Dynamic recursive type user programmable Optional Temperature Resolution (DTEMP) Temperature Measurement Resolution Deg C Temperature Measurement Accuracy (-10 to 85) 0.5 Deg C Temperature Measurement Accuracy (-55 to 125) 2.0 Deg C Temperature update Speed 5 Seconds Electrical Power Supply voltage V dc Power Supply current (350 Ohm Bridge) ma Data transmission Data transmission rate kbps Output cable length (speed dependant) 5 m Environmental Operating temperature range C Storage temperature C Humidity 0 95 %RH Dimensions PCB Dimensions DSCUSB OEM PCB 43 x 28 x 4mm ( x x ) PCB Dimensions DSCUSB OEM Module 82 x 60 x 20mm ( x x ) (OEM PCB mounted on DSJ2) Cased version 86 x 57 x 26.5mm ( x x ) excluding connector (95mm ) including 9-way D type connector) with 136 cm feet USB cable. Notes. 1. From original offset at any time 2. 1st Year 75 Mantracourt Electronics Limited DSCUSB User Manual

77 Technical Specifications DSCUSBH Set for 2.5mV/V sensitivity. Parameter Min Typical Max Units Strain Gauge Excitation System 4 Wire Strain Gauge Excitation Voltage VDC Strain Gauge Drive Capability Ohms Strain Gauge Sensitivity mv/v Offset Temperature Stability 5 10 ppm/c Gain Temperature Stability ppm/c Offset Stability with Time ppm of FR (1) Gain Stability with Time 300 ppm of FR (2) Non Linearity before Linearization 5 25 ppm of FR Internal Resolution 16 Million Counts/divs 1Hz readings (Noise stable) over 100s 200,000 Counts/divs 10Hz readings (Noise stable) over 100s 120,000 Counts/divs 100Hz readings (Noise stable) over 100s 50,000 Counts/divs 500Hz readings (Noise stable) over 100s 18,000 Counts/divs Signal Filter Dynamic recursive type user programmable Optional Temperature Resolution (DTEMP) Temperature Measurement Resolution Deg C Temperature Measurement Accuracy (-10 to 85) 0.5 Deg C Temperature Measurement Accuracy (-55 to 125) 2.0 Deg C Temperature update Speed 5 Seconds Electrical Power Supply voltage V dc Power Supply current (350 Ohm Bridge) ma Data transmission Data transmission rate kbps Output cable length (speed dependant) 5 m Environmental Operating temperature range C Storage temperature C Humidity 0 95 %RH Dimensions PCB Dimensions DSCUSB OEM PCB 43 x 28 x 4mm ( x x ) PCB Dimensions DSCUSB OEM Module 82 x 60 x 20mm ( x x ) (OEM PCB mounted on DSJ2) Cased version 86 x 57 x 26.5mm ( x x ) excluding connector (95mm ) including 9-way D type connector) with 136 cm feet USB cable. Notes. 3. From original offset at any time 4. 1st Year Mantracourt Electronics Limited DSCUSB User Manual 76

78 Mechanical Specification for DSCUSBS and DSCUSBH OEM PCB: The PCB can be fitted to a motherboard by fitting in-line pins to the 6-way, 4-way and 5-way rows of holes and plugging them into corresponding sockets on the motherboard or directly soldering through holes. The 6-way and 4-way holes are on a 0.1 pitch, the 5-way holes are on a 2mm pitch. The diagram shows the x,y coordinates of one hole of each connector. OEM Module: Dimesions: 72 x 50mm with 4 x 3.5mm dia holes ( x with 4 x dia holes) The OEM Module can also be DIN rail mounted by using suitable clips e.g. Wago (below) fitted to a separate base plate. Ideally, the DSCUSB should be installed in a protective enclosure, such as a metal box. 77 Mantracourt Electronics Limited DSCUSB User Manual

DCell & DSC Strain Gauge or Load Cell Embedded Digitiser Module 2 nd Generation Software Version 3 onwards

DCell & DSC Strain Gauge or Load Cell Embedded Digitiser Module 2 nd Generation Software Version 3 onwards DCell DSC DCell & DSC Strain Gauge or Load Cell Embedded Digitiser Module 2 nd Generation Software Version 3 onwards User Manual mantracourt.com Contents Chapter 1 Introduction... 4 Overview... 4 Key Features...

More information

DSCUSB-PT Advanced User Manual. mantracourt.com DSCUSB. Digital Sensor Card USB Potentiometer Input

DSCUSB-PT Advanced User Manual. mantracourt.com DSCUSB. Digital Sensor Card USB Potentiometer Input DSCUSB-PT Advanced User Manual mantracourt.com DSCUSB Digital Sensor Card USB Potentiometer Input Contents Chapter 1 Introduction...2 Overview... 2 Manual Scope... 2 Chapter 2 DSCUSB Toolkit Software...3

More information

DSCUSB Advanced User Manual. mantracourt.com DSCUSB. Digital Sensor Card USB Strain Gauge Input

DSCUSB Advanced User Manual. mantracourt.com DSCUSB. Digital Sensor Card USB Strain Gauge Input DSCUSB Advanced User Manual mantracourt.com DSCUSB Digital Sensor Card USB Strain Gauge Input Contents Chapter 1 Introduction...2 Overview... 2 Manual Scope... 2 Chapter 2 DSC Toolkit Software...3 Information

More information

DSCUSB. DSCUSB Advanced User Manual. Digital Sensor Card USB Input. Load Cell Central. Toll Free:

DSCUSB. DSCUSB Advanced User Manual.   Digital Sensor Card USB Input. Load Cell Central. Toll Free: DSCUSB Advanced User Manual www.800loadcel.com DSCUSB Digital Sensor Card USB Input Load Cell Central follows a policy of continuous improvement and reserves the right to change specifications without

More information

DCell & DSC Miniature, Hi Precision Strain Gauge Converters - Version 2

DCell & DSC Miniature, Hi Precision Strain Gauge Converters - Version 2 DCell & DSC Miniature, Hi Precision Strain Gauge Converters - Version 2 DCell DSC Converts a strain gauge sensor input to a digital serial output www.mantracourt.co.uk Contents Chapter 1 Introduction...

More information

DSCUSB Standard User Manual. mantracourt.com DSCUSB. Digital Sensor Card USB Strain Gauge Input

DSCUSB Standard User Manual. mantracourt.com DSCUSB. Digital Sensor Card USB Strain Gauge Input DSCUSB Standard User Manual mantracourt.com DSCUSB Digital Sensor Card USB Strain Gauge Input Contents Chapter 1 Introduction...2 Overview... 2 Manual Scope... 2 LED Status Indication... 2 Chapter 2 Getting

More information

FSU User Manual. mantracourt.com FSU-SSB. Fast Strain USB Strain Gauge Input

FSU User Manual. mantracourt.com FSU-SSB. Fast Strain USB Strain Gauge Input FSU User Manual mantracourt.com FSU-SSB Fast Strain USB Strain Gauge Input Contents Chapter 1 Introduction...2 Overview... 2 LED Status Indication... 2 Chapter 2 Getting Started...3 Communications Interface

More information

7561-PSD Manual Portable Battery Powered Indicator

7561-PSD Manual Portable Battery Powered Indicator 7561-PSD Manual Portable Battery Powered Indicator Lebow Products Inc. 1728 Maplelawn Drive P.O. Box 1089 Troy, Michigan 48084-1089 (800) 803-1164 Phone: (248) 643-0220 FAX: (248) 643-0259 Visit our web

More information

DS485DIS Digital Strain RS458 Display Module

DS485DIS Digital Strain RS458 Display Module DS485DIS Digital Strain RS458 Display Module User Manual mantracourt.com Contents DS485DIS Overview... 2 Requirements... 2 Configuration... 2 Operational Modes... 2 Item Mode... 2 Result Mode... 2 Button

More information

IPM650 Intelligent Panel-Mount Display

IPM650 Intelligent Panel-Mount Display Quick Start Guide IPM650 Intelligent Panel-Mount Display Sensor Solutions Source Load Torque Pressure Multi Component Calibration Instruments Software www.futek.com Getting Help TECHNICAL SUPPORT For more

More information

Thank you for choosing Loadstar Sensors. Need additional help? Call us at or us at

Thank you for choosing Loadstar Sensors. Need additional help? Call us at or  us at LoadVUE User Guide LoadVUE LoadVUE Lite Thank you for choosing Loadstar Sensors. Need additional help? Call us at 510-623-9600 or email us at support@loadstarsensors.com LoadVUE is compatible with Windows

More information

PSD Strain Gauge or Load Cell Hand Held Display TEDS enabled

PSD Strain Gauge or Load Cell Hand Held Display TEDS enabled TEDS Enabled TEDS enabled 2 label options available for the PSD PSD Strain Gauge or Load Cell Hand Held Display TEDS enabled User Manual www.mantracourt.co.uk What is TEDS?...2 Basic concept...2 How it

More information

SY061 Portable Load Meter with IEEE TEDS capability User Instructions

SY061 Portable Load Meter with IEEE TEDS capability User Instructions SY061 Portable Load Meter with IEEE1451.4 TEDS capability User Instructions Preliminary, relates to firmware version 1.2i Introduction The SY061 is a portable load meter, which can indicate the load present

More information

LCM SYSTEMS. TR150 Portable Battery Powered Indicator. Instruction Manual. Software version V2.XX

LCM SYSTEMS. TR150 Portable Battery Powered Indicator. Instruction Manual. Software version V2.XX TR50 Portable Battery Powered Indicator Instruction Manual Software version V2.XX CONTENTS What is TEDS? Basic concept How it works Advantages Introduction User operation Electrical connection information

More information

QUICK START. DevCom2000 User Manual

QUICK START. DevCom2000 User Manual QUICK START DevCom2000 uses Device Descriptions (DDs) to access data stored in the memory of the smart field device. These DDs are developed by the manufacturer for their products and, in turn, distributed

More information

TR150 Digital Readout Unit SL755. Impact Test Equipment Ltd & User Guide. User Guide

TR150 Digital Readout Unit SL755. Impact Test Equipment Ltd   &   User Guide. User Guide TR150 Digital Readout Unit SL755 Impact Test Equipment Ltd www.impact-test.co.uk & www.impact-test.com User Guide User Guide Impact Test Equipment Ltd. Building 21 Stevenston Ind. Est. Stevenston Ayrshire

More information

Installation & Operation

Installation & Operation LED Readout Installation & Operation WARRANTY Accurate Technology, Inc. warrants the ProScale Systems against defective parts and workmanship for 1 year commencing from the date of original purchase. Upon

More information

The GENIE Light Kit is ideal for introducing simple lighting projects, such as an electronic die, a wearable badge or a night-time warning system.

The GENIE Light Kit is ideal for introducing simple lighting projects, such as an electronic die, a wearable badge or a night-time warning system. Introduction 1 Welcome to the GENIE microcontroller system! The GENIE Light Kit is ideal for introducing simple lighting projects, such as an electronic die, a wearable badge or a night-time warning system.

More information

GSV-1A4 M12/2 M12/2. Highlights

GSV-1A4 M12/2 M12/2. Highlights GSV-1A4 M12/2 M12/2 Highlights Input sensitivity: 2mV/V; 4mV/V, 2 mv/v, 1mV/V, 0.5mV/V configurable via jumpers Output signals ±10V AND 12mA+-8mA on 15 pin Sub-D Integrated half and quarter bridge completion

More information

P/N: AX Applications: power gen set engine control systems oil and gas equipment automation off-highway machine automation

P/N: AX Applications: power gen set engine control systems oil and gas equipment automation off-highway machine automation TECHNICAL DATASHEET #TDAX031200 11:9 CAN CONTROLLER 11 Inputs (Analog, Digital, Magnetic Pick Up, Universal Signal) 4 Relay, 4 Analog, 1 Valve Driver Outputs 2 CAN (SAE J1939) with Electronic Assistant

More information

FG-3000R Digital Force Gauge Operation Manual

FG-3000R Digital Force Gauge Operation Manual FG-3000R Digital Force Gauge Operation Manual Operators should wear protection such as a mask and gloves in case pieces or components break away from the unit under test. Whether the unit is ON or OFF,

More information

Characteristics and functioning

Characteristics and functioning Characteristics and functioning 1/1 enod4-t Characteristics and functioning 216702-C_NU-eNod4T-ETH-E-0314 2/2 enod4-t Characteristics and functioning 216702-C_NU-eNod4T-ETH-E-0314 1 ENOD4 PRODUCT RANGE...

More information

RTE for WIN32. Installation Manual (Rev.7.0) Midas lab

RTE for WIN32. Installation Manual (Rev.7.0) Midas lab Midas lab REVISION HISTORY Date Revision Chapter Explanation of revision March 11,2000 4.0 RTE4W32 Ver.5.0 (First edition) January 10,2002 4.1 Add Windows XP support (RTE4W32 Ver.5.05) October 29,2002

More information

Characteristics and functioning

Characteristics and functioning Characteristics and functioning 1/27 enod4-c Characteristics and functioning NU-eNod4C-ETH-E-1014_216706-A 1 ENOD4 PRODUCT RANGE... 4 1.1 General presentation... 4 1.2 Versions and options... 4 1.2.1 Versions...

More information

FG-3000 Digital Force Gauge Operation Manual

FG-3000 Digital Force Gauge Operation Manual FG-3000 Digital Force Gauge Operation Manual Operators should wear protection such as a mask and gloves in case pieces or components break away from the unit under test. Whether the unit is ON or OFF,

More information

WTS SOFTWARE GUIDE. Revision History. Date Issue Author Comments Approved by. 25/08/11 A JRK First Issue MAB. Document No.

WTS SOFTWARE GUIDE. Revision History. Date Issue Author Comments Approved by. 25/08/11 A JRK First Issue MAB. Document No. WTS SOFTWARE GUIDE Revision History Date Issue Author Comments Approved by 25/08/11 A JRK First Issue MAB Sheet 1 of 10 -a WTS SOFTWARE GUIDE.doc CONTENTS 1 OVERVIEW... 3 2 INSTALLING SOFTWARE... 3 3 WTS

More information

INSTRUCTION MANUAL STATION CONTROLLER SC1000 MOTOR PROTECTION ELECTRONICS, INC.

INSTRUCTION MANUAL STATION CONTROLLER SC1000 MOTOR PROTECTION ELECTRONICS, INC. INSTRUCTION MANUAL STATION CONTROLLER SC1000 MOTOR PROTECTION ELECTRONICS, INC. 2464 Vulcan Road, Apopka, Florida 32703 Phone: (407) 299-3825 Fax: (407) 294-9435 Revision Date: 9-11-08 Applications: Simplex,

More information

D7000 SERIES MODBUS TCP/IP ETHERNET INTERFACE MODULES

D7000 SERIES MODBUS TCP/IP ETHERNET INTERFACE MODULES 11/17 D7000 SERIES MODBUS TCP/IP ETHERNET INTERFACE MODULES D7000 FEATURES Complete data acquisition systems. Analog and Digital I/O models available. RJ-45 Ethernet 10/100MB interface. Modbus TCP/IP Ethernet

More information

E401. User Manual. The New Vision of Touch

E401. User Manual. The New Vision of Touch E401 User Manual The New Vision of Touch E401 User Manual OVERVIEW This kit is designed for evaluation and development of QT401-based QSlide slider controls. It includes a fully assembled slider PCB, demo

More information

Accessories: PL-DTM06-12SA-12SB Mating Plug Kit (1 DTM06-12S, DTM06-12SB, 2 W12S, 24 contacts) Electronic Assistant Configuration KIT: AX070502

Accessories: PL-DTM06-12SA-12SB Mating Plug Kit (1 DTM06-12S, DTM06-12SB, 2 W12S, 24 contacts) Electronic Assistant Configuration KIT: AX070502 TECHNICAL DATASHEET #TDAX200000 4 Channel Strain Gauge CAN Controller CAN (SAE J1939) Features: 4 channels for inputs from 4-wire full bridge strain gauges: o +/- 19.5 mv to +/- 2.5 Vdc (selectable) 1

More information

Gateway 1400 Reference Manual

Gateway 1400 Reference Manual Profibus-DP Gateway 1400 Reference Manual Copyright All Rights Reserved. No part of this document may be copied, reproduced, republished, uploaded, posted, transmitted, distributed, stored in or introduced

More information

DriveWizard Plus Instruction Manual

DriveWizard Plus Instruction Manual DriveWizard Plus Instruction Manual To properly use the product, read this manual thoroughly. MANUAL NO. TOEP C730600 20C Table of Contents Safety Symbols and Markings...4 Manual Overview...5 Related Manuals...5

More information

TRACKER 240 SERIES. Load Cell and Weighing Indicators. A Precision Measurement Instrument with Outstanding Features

TRACKER 240 SERIES. Load Cell and Weighing Indicators. A Precision Measurement Instrument with Outstanding Features TRACKER 240 SERIES Load Cell and Weighing Indicators A Precision Measurement Instrument with Outstanding Features TRACKER 240 SERIES INDICATORS Ratiometric Measurement Tare and Auto Transducer Excitation

More information

TECHNICAL DATASHEET #TDAX023240

TECHNICAL DATASHEET #TDAX023240 Preliminary TECHNICAL DATASHEET #TDAX023240 2 Quadrature Decoder Inputs, Dual Valve Controller 2 Quadrature Decoder Inputs 2-3A Outputs CAN (SAE J1939) Configurable with Electronic Assistant P/N: AX023240

More information

Analogue Signal Transmitter AST 3 From prog.name A001A140. Operating instructions, Quick installation

Analogue Signal Transmitter AST 3 From prog.name A001A140. Operating instructions, Quick installation GB Analogue Signal Transmitter AST 3 From prog.name A001A140 Operating instructions, Quick installation Operating instructions, Quick operation Contents Introduction... 1 Operating instruction General...

More information

DS2788K Evaluation Kit Standalone Fuel Gauge IC with LED Display Drivers

DS2788K Evaluation Kit Standalone Fuel Gauge IC with LED Display Drivers s DS2788K Evaluation Kit Standalone Fuel Gauge IC with LED Display Drivers www.maxim-ic.com FEATURES Demonstrates the capabilities of the DS2788 Standalone Fuel Gauge IC with LED Display Drivers, including:

More information

Strain gauge Measuring Amplifier GSV-1A8. Instruction manual GSV-1A8, GSV-1A8USB, GSV-1A16USB

Strain gauge Measuring Amplifier GSV-1A8. Instruction manual GSV-1A8, GSV-1A8USB, GSV-1A16USB Strain gauge Measuring Amplifier GSV-1A8 Instruction manual GSV-1A8, GSV-1A8USB, GSV-1A16USB GSV-1A8USB SubD1 (front side) GSV-1A8USB M12 (front side) GSV-1A16USB (rear side) GSV-1A8USB K6D (front side)

More information

INTRINSICALLY SAFE DUPLEXER PROTECTION. ELECTRONICS, INC Vulcan Road Apopka, Florida MOTOR INSTRUCTION MANUAL

INTRINSICALLY SAFE DUPLEXER PROTECTION. ELECTRONICS, INC Vulcan Road Apopka, Florida MOTOR INSTRUCTION MANUAL INTRINSICALLY SAFE DUPLEXER INSTRUCTION MANUAL MOTOR PROTECTION ELECTRONICS, INC. 2464 Vulcan Road Apopka, Florida 32703 Phone: Website: (407) 299-3825 www.mpelectronics.com Operating Program Revision:

More information

Flex Series User Guide

Flex Series User Guide User Programmable Current 4..20mA Digital RS485 Dual & Single Axis Up to 360º 2016 Flex Series User Guide Sensor Installation, Wiring, Flexware App Instructions Page 1 of 33 Page 2 of 33 Table of Contents

More information

USER INSTRUCTION MANUAL FOR LOADCELL TRANSMITTER MODEL TDC/I/0550 (SOFTWARE: VER2A) INDEX

USER INSTRUCTION MANUAL FOR LOADCELL TRANSMITTER MODEL TDC/I/0550 (SOFTWARE: VER2A) INDEX USER INSTRUCTION MANUAL FOR LOADCELL TRANSMITTER MODEL TDC/I/0550 (SOFTWARE: VER2A) INDEX DOCUMENT NO: TDC 0550 MANUAL - 2 1.0) INTRODUCTION. PAGE 2 1.1) ABOUT THIS MANUAL. PAGE 2 1.2) INTRODUCTION. PAGE

More information

Temperature-Humidity Sensor Configuration Tool Rev. A 1/25/

Temperature-Humidity Sensor Configuration Tool Rev. A 1/25/ Rev. A 1/25/213 172 Contents Contents Temperature-Humidity Sensor Configuration Tool... 3 Read Sensor Screen... 3 Manual Calibration Screen... 4 Register View Screen... 5 Modbus Registers... 6 Reprogram

More information

TouchKit TouchScreen Controller User Manual for Windows NT4 Version: 3.4.0

TouchKit TouchScreen Controller User Manual for Windows NT4 Version: 3.4.0 TouchKit TouchScreen Controller User Manual for Windows NT4 Version: 3.4.0 1 CONTENT CHAPTER 1. TOUCH PANEL CONTROLLER 2 1.1 Controller 2 1.2 Specifications and Features 3 CHAPTER 2. INSTALLING TOUCHKIT

More information

TECHNICAL DATASHEET #TDAX023300

TECHNICAL DATASHEET #TDAX023300 Preliminary TECHNICAL DATASHEET #TDAX023300 2 Universal Inputs, Dual Universal Valve Controller 2 Universal Inputs 2-3A Outputs CAN (SAE J1939) Configurable with Electronic Assistant P/N: AX023300 Features

More information

Handheld force display AE 703

Handheld force display AE 703 Handheld force display AE 703 Original of Manual Marschnerstraße 26 01307 Dresden, Germany Phone +49 3 51 44 55 30 Fax +49 3 51 44 55 555 www.ast.de vertrieb.dd@ast.de 1 Contents 1. Scope of use... 1

More information

BV4615. Dual Interface Zero Keypad. Product specification. Dec 2009 V0.a. ByVac Page 1 of 11

BV4615. Dual Interface Zero Keypad. Product specification. Dec 2009 V0.a. ByVac Page 1 of 11 Product specification Dec 2009 V0.a ByVac Page 1 of 11 Contents 1. Introduction...3 2. Features...3 3. Physical Specification...3 3.1. Serial connector...3 3.2. Multiple Devices...4 3.3. I2C...4 4. Output

More information

SY021 Portable Load/Force Meter User instructions

SY021 Portable Load/Force Meter User instructions SY021 Portable Load/Force Meter User instructions Relates to firmware version 5.2 INTRODUCTION The SY021 is a portable load meter, which can indicate the load present on any attached cell. A dual channel

More information

RST INSTRUMENTS LTD.

RST INSTRUMENTS LTD. RST INSTRUMENTS LTD. VW0420 Analog VW Interface Instruction Manual Ltd. 11545 Kingston St Maple Ridge, BC Canada V2X 0Z5 Tel: (604) 540-1100 Fax: (604) 540-1005 Email: Info@rstinstruments.com i VW0420

More information

MODBUS RTU I/O Expansion Modules - Models C267, C277, and C287. Installation and Operations Manual Section 50

MODBUS RTU I/O Expansion Modules - Models C267, C277, and C287. Installation and Operations Manual Section 50 MODBUS RTU I/O Expansion Modules - Models C267, C277, and C287 Installation and Operations Manual 00-02-0651 09-01-09 Section 50 In order to consistently bring you the highest quality, full featured products,

More information

Cảm ơn các bạn đã tham khảo tài liệu cân điện tử từ CÂN ĐIỆN TỬ GIA PHÁT!

Cảm ơn các bạn đã tham khảo tài liệu cân điện tử từ CÂN ĐIỆN TỬ GIA PHÁT! Đ/c1: 534 Điện Biên Phủ, Phường 21, Quận Bình Thạnh, Tp Hồ Chí Minh Đ/c2: 42 Hùng Vương, Phường Xuân Bình, Thị xã Long Khánh, Tỉnh Đồng Nai Website: www.cangiaphat.com Email: giaphat.scale@gmail.com Zalo,

More information

TouchKit TouchScreen Controller User Guide for Windows NT4 Version: 3.2.1

TouchKit TouchScreen Controller User Guide for Windows NT4 Version: 3.2.1 TouchKit TouchScreen Controller User Guide for Windows NT4 Version: 3.2.1 TouchKit Guide for WinNT4 v3.2.1 0 CONTENT CHAPTER 1. TOUCH PANEL CONTROLLER... 2 1.1 CONTROLLER... 2 1.2 SPECIFICATIONS AND FEATURES...

More information

DS2760K Li + Battery Monitor Evaluation Kit

DS2760K Li + Battery Monitor Evaluation Kit Li + Battery Monitor Evaluation Kit www.dalsemi.com FEATURES Demonstrates the capabilities of the DS2760 Li + Battery Monitor, including: Temperature measurement Voltage measurement Current measurement

More information

ICA S & H Strain Gauge or Load Cell Embedded Analogue Amplifier. User Benefits. Ideal Applications

ICA S & H Strain Gauge or Load Cell Embedded Analogue Amplifier. User Benefits. Ideal Applications ICA S & H Strain Gauge or Load Cell Embedded Analogue Amplifier User Benefits A range of high performance robust signal conditioners in a miniature OEM format and designed specifically for fitting inside

More information

DFI 9000 PORTABLE DIGITAL INDICATOR USER S GUIDE

DFI 9000 PORTABLE DIGITAL INDICATOR USER S GUIDE DFI 9000 PORTABLE DIGITAL INDICATOR USER S GUIDE www.cooperinstruments.com PH: 540-349-4746 FAX: 540-347-4755 CONTENTS 1.0 INTRODUCTION...1 2.0 SETUP AND USE...1 2.1 Your DFI 9000...1 2.2 Additional Tools...1

More information

DS2781EVKIT+ Standalone Fuel Gauge IC Evaluation Kit

DS2781EVKIT+ Standalone Fuel Gauge IC Evaluation Kit 19-4852; Rev 9/09 Standalone Fuel Gauge IC Evaluation Kit www.maxim-ic.com FEATURES Demonstrates the capabilities of the DS2781 Standalone Fuel Gauge, including: Estimation of available capacity for Li+

More information

High Voltage DC Meter

High Voltage DC Meter High Voltage DC Meter Javelin D PD644 0-300 VDC input NEMA 4X, IP65 front Scale in engineering units Sunlight readable LED display 4-20 ma analog output Two form C 3 A relays option RS-485 serial communications

More information

DS2756EVKIT+ High Accuracy Battery Fuel Gauge With Programmable Suspend Mode Evaluation Kit

DS2756EVKIT+ High Accuracy Battery Fuel Gauge With Programmable Suspend Mode Evaluation Kit 19-4847; Rev 9/09 www.maxim-ic.com FEATURES Demonstrates the capabilities of the DS2756 High Accuracy Battery Fuel Gauge, including: Programmable Suspend Mode Temperature measurement Voltage measurement

More information

D1000M SERIES FOR MODBUS SENSOR TO COMPUTER INTERFACE MODULES

D1000M SERIES FOR MODBUS SENSOR TO COMPUTER INTERFACE MODULES D1000M SERIES FOR MODBUS SENSOR TO COMPUTER INTERFACE MODULES D1000 FEATURES Complete sensor to RS-232/RS-485 interface. 500V rms analog input isolation. 15 bit measurement resolution. Continuous self-calibration;

More information

Vibration-Resistant Weighing Indicator

Vibration-Resistant Weighing Indicator Vibration-Resistant Weighing Indicator Powerful vibration-cancelling function (High Performance Digital Filter) High speed sampling (100 times/second)/high accuracy Circuits equipped with powerful noise

More information

GSC400 Series. GSC400 Programmer and PC Interface User Manual

GSC400 Series. GSC400 Programmer and PC Interface User Manual GSC400 Series GSC400 Programmer and PC Interface User Manual GSC400 Programmer and PC Interface User Manual Full Version File: GSC400 PC Interface Rev1.2.doc, August 2009 2 of 33 Amendments Issue Section

More information

NVIDIA / JMicron RAID Installation Guide

NVIDIA / JMicron RAID Installation Guide NVIDIA / JMicron RAID Installation Guide 1. Introduction to NVIDIA / JMicron RAID Installation Guide. 3 1.1 Installing Windows 2000 / XP / XP 64-bit / Vista / Vista 64-bit With RAID Functions. 4 1.1.1

More information

Liquid Volume Dispenser

Liquid Volume Dispenser Liquid Volume Dispenser Table of Contents 1. Introduction 3 2. Installation 3 3. Volume Accuracy 3 4. Operator Controls 4 5. Operating States 4 5.1 Ready 4 5.2 Dispensing 5 5.3 Manual Dispensing 5 5.4

More information

L200 User Manual. Operating Instructions for L200-TC & L200-PT Temperature Monitor. RoHS compliant

L200 User Manual. Operating Instructions for L200-TC & L200-PT Temperature Monitor. RoHS compliant L200 User Manual Operating Instructions for L200-TC & L200-PT Temperature Monitor RoHS compliant Contents 1. About the L200................................................................... 3 2. Installation.......................................................................

More information

SWC1090 configuration software for G.M. International Isolators series D1000 and E1000. Installation and use manual

SWC1090 configuration software for G.M. International Isolators series D1000 and E1000. Installation and use manual SWC1090 configuration software for G.M. International Isolators series D1000 and E1000 Installation and use manual ISM0084-2 Installation and use of the SWC1090 calibration software Page 1 of 12 Index

More information

FG-7000 Digital Force Gauge Operation Manual

FG-7000 Digital Force Gauge Operation Manual FG-7000 Digital Force Gauge Operation Manual Operators should wear protection such as a mask and gloves in case pieces or components break away from the unit under test. Whether the unit is ON or OFF,

More information

HIGH-VOLTAGE DC METER

HIGH-VOLTAGE DC METER HIGH-VOLTAGE DC METER Javelin D PD644 0-300 VDC input NEMA 4X, IP65 front Scale in engineering units Sunlight readable LED display 4-20 ma analog output Two form C 3 A relays option RS-485 serial communications

More information

ATL20 ATL30 Automatic transfer switch controller

ATL20 ATL30 Automatic transfer switch controller I 194 GB 07 07 ATL20 ATL30 Automatic transfer switch controller REMOTE CONTROL SOFTWARE MANUAL Summary Introduction... 2 Minimum resources of the PC... 2 Installation... 2 Activation of the PC-ATL connection...

More information

Multi-Function Smart Indicator User Manual

Multi-Function Smart Indicator User Manual Multi-Function Smart Indicator User Manual EC30006 Content 1 Notice... 2 2 Specification... 2 3 Main parameter... 3 4 How to fix... 3 5 Port... 4 6 On/Off... 4 7 Charging... 4 8 Display... 5 9 Screen keypad...

More information

EnGenius Mesh AP Reset Tool Quick Guide

EnGenius Mesh AP Reset Tool Quick Guide EnGenius Mesh AP Reset Tool Quick Guide Revision : 1.1 Table of Contents EnGenius MESH AP Reset Tool Quick Guide 1. Overview...3 2. Installation Procedure...3 3. Uninstallation Procedure...3 4. Tool Layout...4

More information

Manual Software R-LAS-LT-Scope (LT-Scope) V1.1

Manual Software R-LAS-LT-Scope (LT-Scope) V1.1 Manual Software R-LAS-LT-Scope (LT-Scope) V1.1 (PC software for Microsoft Windows 7, 8, 10) for Laser Reflection Sensor R-LAS-LT-110-HD2 This manual describes the installation process of the software for

More information

USER GUIDE. Tolomatic Motion Interface (TMI) Actuator Control Solutions for: ACS Stepper Drive/Controller Tolomatic Electric Linear Actuators

USER GUIDE. Tolomatic Motion Interface (TMI) Actuator Control Solutions for: ACS Stepper Drive/Controller Tolomatic Electric Linear Actuators USER GUIDE Tolomatic Motion Interface (TMI) Actuator Control Solutions for: ACS Stepper Drive/Controller Tolomatic Electric Linear Actuators 3600-4167_02_TMI_Gui LINEAR SOLUTIONS MADE EASY Tolomatic reserves

More information

MISUMI SUPPORT SOFTWARE. RS-Manager. User s Manual C1 / C21 / C22 / P1 EXWM KE114. Ver. 2.00

MISUMI SUPPORT SOFTWARE. RS-Manager. User s Manual C1 / C21 / C22 / P1 EXWM KE114. Ver. 2.00 MISUMI SUPPORT SOFTWARE RS-Manager User s Manual C1 / C21 / C22 / P1 Ver. 2.00 EXWM14200 KE114 CONTENTS RS-Manager User s Manual Before getting started 1 1. About RS-Manager 2 2. Installing and uninstalling

More information

Trident and Trident X2 Digital Process and Temperature Panel Meter

Trident and Trident X2 Digital Process and Temperature Panel Meter Sign In New User ISO 9001:2008 Certified Quality System Home Products Online Tools Videos Downloads About Us Store Contact Policies Trident and Trident X2 Digital Process and Temperature Panel Meter Products

More information

MX OPC Server 5.0 Help Documentation

MX OPC Server 5.0 Help Documentation 5.0 Help Documentation Contents 1. Introduction to MX OPC Server 1-1 2. Starting MX OPC Server Configuration 2-1 3. Address Space 3-1 4. Alarm Definitions 4-1 5. Simulation Signals 5-1 6. Runtime Operations

More information

Table of Contents. D-Link SharePort Plus... 4 Introduction...4 System Requirements...4 Features...5. Installation... 6

Table of Contents. D-Link SharePort Plus... 4 Introduction...4 System Requirements...4 Features...5. Installation... 6 Table of Contents D-Link SharePort Plus... 4 Introduction...4 System Requirements...4 Features...5 Installation... 6 SharePort Plus Utility... 11 Utility Overview... 11 Device Server View... 12 Utility

More information

BNI USB A501. USB IO-Link Master User's Guide. english

BNI USB A501. USB IO-Link Master User's Guide. english User's Guide english 1 2 4 Notes to the user 1.1 About this guide 1.2 Structure of the guide 1. Typographical conventions 1.4 Symbols 1.5 Abbreviations Safety 4 2.1 Intended use 4 2.2 General safety notes

More information

ResTest v1 User Instruction Manual

ResTest v1 User Instruction Manual ResTest v1 User Instruction Manual Contents Introduction... 3 Electrical Specification... 3 Unpacking... 3 Connections/Interface... 4 Setup Instructions... 5 Settings... 6 Measurement Setup... 7 Measuring

More information

DT-CONFIG SOFTWARE USER S MANUAL

DT-CONFIG SOFTWARE USER S MANUAL DT-CONFIG SOFTWARE USER S MANUAL CONTENTS 1. Introductions ------------------------------------------------------------------- 3 2. System Requirement and Connection ----------------------------------------

More information

6220 Ethernet-Based Voltage Measurement Module

6220 Ethernet-Based Voltage Measurement Module Ethernet-Based Voltage Measurement Module Features 12 voltage inputs 16-bit, 100 khz per channel sample rate ±10 V input range Eight digital I/O Simultaneous sampling BNC connectors Multiple trigger modes

More information

SR5 Serial Protocol - Issue 1.6

SR5 Serial Protocol - Issue 1.6 cctalk bus SR5 Serial Protocol - Issue 1.6 This document is the copyright of Money Controls Ltd and may not be reproduced in part or in total by any means, electronic or otherwise, without the written

More information

Download Software User Guide Software Version

Download Software User Guide Software Version Download Software User Guide Software Version 1.3.51 AMALGAMATED INSTRUMENT CO PTY LTD ACN: 001 589 439 Unit 5, 28 Leighton Place Hornsby Telephone: +61 2 9476 2244 e-mail: sales@aicpl.com.au NSW 2077

More information

N2KAnalyzer. User s Manual

N2KAnalyzer. User s Manual N2KAnalyzer NMEA 2000 Network Analysis Software User s Manual Revision 1.3.9 Copyright 2008 Maretron, LLP All Rights Reserved Maretron, LLP 9014 N. 23 rd Ave #10 Phoenix, AZ 85021-7850 http://www.maretron.com

More information

GTWIN 1.1 CONTROL TECHNOLOGY CORPORATION. GTWIN 2.8 Quick Start. MGT Panel & GTWIN Quick Start Guide

GTWIN 1.1 CONTROL TECHNOLOGY CORPORATION. GTWIN 2.8 Quick Start. MGT Panel & GTWIN Quick Start Guide GTWIN 1.1 CONTROL TECHNOLOGY CORPORATION GTWIN 2.8 Quick Start MGT Panel & GTWIN Quick Start Guide CONTROL TECHNOLOGY CORPORATION MGT Panel & GTWIN Quick Start Guide Copyright 2004-2007 Control Technology

More information

Connected to the FP World

Connected to the FP World Connected to the FP World User Manual 2 mailcredit User Manual About this manual Target group Topics mailcredit.exe [Next] The User Manual of mailcredit is primarily aimed at users of FP franking machines

More information

Table of Contents. Keyspan:USB Server - User Manual

Table of Contents. Keyspan:USB Server - User Manual Table of Contents 1 Introduction Compatible USB Devices Connectivity to USB Devices Connectivity to Network Requirements What's Inside The Package 2 Installation Instructions Installing the USB Server

More information

TECHNICAL DATASHEET #TDAX Analog Signal Output CAN Controller (SAE J1939)

TECHNICAL DATASHEET #TDAX Analog Signal Output CAN Controller (SAE J1939) Distributed I/O for Engine Control Systems Features: 1 analog signal output (voltage or current) User selectable output range from +/-10V or +/-20 ma, including: 0-5V; 0-10V; +/-5V; +/-10V; 0-20mA; and

More information

Fox Thermal Instruments, Inc.

Fox Thermal Instruments, Inc. Fox Thermal Instruments, Inc. THERMAL MASS FLOW METER & TEMPERATURE TRANSMITTER FT3 View www.foxthermalinstruments.com 399 Reservation Road Marina, CA. 93933 104845 Rev. D Notice FOX THERMAL INSTRUMENTS

More information

USB-COMi-TB USB to Industrial Single RS-422 / 485 Adapter Manual. Specifications and Features

USB-COMi-TB USB to Industrial Single RS-422 / 485 Adapter Manual. Specifications and Features USB-COMi-TB USB to Industrial Single RS-422 / 485 Adapter Manual The USB-COMi-TB USB-to-Industrial Single RS-422/485 Adapter is designed to make industrial communication port expansion quick and simple.

More information

SFP+ Breakout 2. Data Sheet. Datasheet SFP+ Breakout. 1 Overview. Table of Contents. 2 Features

SFP+ Breakout 2. Data Sheet. Datasheet SFP+ Breakout. 1 Overview. Table of Contents. 2 Features Data Sheet 2 1 Overview The is an interface board designed to connect the high speed lines of an SFP or SFP+ module to SMA connectors for test and evaluation. In addition to high speed breakout, the unit

More information

2 Table of Contents 1. TABLE OF CONTENTS. 1. Table of Contents Introduction Wiring Diagram Terminals Review...

2 Table of Contents 1. TABLE OF CONTENTS. 1. Table of Contents Introduction Wiring Diagram Terminals Review... TPR-6 Temperature Protection Relay Instruction Manual Ver. June 1 st 2010 2 Table of Contents 1. TABLE OF CONTENTS 1. Table of Contents... 2 2. Introduction... 3 3. Wiring Diagram... 5 4. Terminals Review...

More information

UWE-1707 SERIES CONTENTS OPERATION MANUAL ELECTRONIC WEIGHING INDICATOR 1. SPECIFICATIONS 2. INSTALLATION

UWE-1707 SERIES CONTENTS OPERATION MANUAL ELECTRONIC WEIGHING INDICATOR 1. SPECIFICATIONS 2. INSTALLATION UWE-1707 SERIES CONTENTS ELECTRONIC WEIGHING INDICATOR OPERATION MANUAL 1. SPECIFICATIONS PLEASE READ THIS MANUAL VERY CAREFULLY BEFORE ATTEMPT TO OPERATE THE SCALE 2. INSTALLATION 3. ROUTINE OPERATION

More information

Digivu Quick Start Guide. Digivu User Instructions

Digivu Quick Start Guide. Digivu User Instructions Digivu Quick Start Guide Digivu User Instructions Page - 2 Digivu User Instructions Page - 3 Table of contents Quick Start Guide 2 Digivu Functions 6 Connecting to a Vehicle Unit 6 Digivu Internal Memory

More information

Model HM-535 Power Supply Installation and Service Instructions

Model HM-535 Power Supply Installation and Service Instructions Model HM-535 Power Supply Installation and Service Instructions 430-535 0104 2004 Heritage MedCall, Inc SENTRY INSTALLATION & SERVICE INSTRUCTIONS POWER SUPPLY UNIT Model HM-535 IMPORTANT SAFETY INSTRUCTIONS

More information

QC-3265 Checkweigher User s Manual

QC-3265 Checkweigher User s Manual QC-3265 Checkweigher User s Manual CAUTION Risk of electrical shock. Do not remove cover. No user serviceable parts inside. Refer servicing to qualified service personnel. Weigh-Tronix reserves the right

More information

USER GUIDE. Tolomatic Motion Interface (TMI) Actuator Control Solutions for: ACS Stepper Drive/Controller Tolomatic Electric Linear Actuators

USER GUIDE. Tolomatic Motion Interface (TMI) Actuator Control Solutions for: ACS Stepper Drive/Controller Tolomatic Electric Linear Actuators USER GUIDE Tolomatic Motion Interface (TMI) Actuator Control Solutions for: ACS Stepper Drive/Controller Tolomatic Electric Linear Actuators 3600-4167_01_TMI_Gui LINEAR SOLUTIONS MADE EASY Tolomatic reserves

More information

Digital Measurement Metrology, Inc PRECISION IS OUR VISION

Digital Measurement Metrology, Inc PRECISION IS OUR VISION Contents Powering the Gage 2 Using the Gage 3 Optional Settings 8 Dimensions 10 BFG Specification Table 11 Introduction Thank you for choosing the Mecmesin Corporation Basic Force Gage (BFG) instrument.

More information

Thermal Transient Test Installation and Operating Manual

Thermal Transient Test Installation and Operating Manual Thermal Transient Test Installation and Operating Manual 2705A De La Vina Street Santa Barbara, California 93105 Telephone (805) 682-0900 descon@silcom.com www. santabarbaraautomation.com Installation

More information

TouchScreen for Display & Panel-PC

TouchScreen for Display & Panel-PC TouchScreen for Display & PanelPC User Manual for Windows 2000 / XP Version: 4.0.2 TouchKit Manual for Win2000/XP v4.0.2 Page 1 CONTENT CHAPTER 1. TOUCH PANEL CONTROLLER... 3 1.1 CONTROLLER... 3 1.2 SPECIFICATIONS

More information

R310 & N310 R320 & N320 Digital Indicator

R310 & N310 R320 & N320 Digital Indicator T RINSTRUM R310 & N310 R320 & N320 Digital Indicator Trade 4,000 Divisions Compact ABS Housing Internal Batteries RS-232 Serial Output Special Functions 20 mm LCD Display Bright LED Backlighting NORDIC

More information

BLH. DXp-40 Interface Manual Allen-Bradley Remote I/O WEIGH SYSTEM TECHNOLOGY. TM014 Rev D 6/1/11 Doc 35105

BLH. DXp-40 Interface Manual Allen-Bradley Remote I/O WEIGH SYSTEM TECHNOLOGY. TM014 Rev D 6/1/11 Doc 35105 WEIGH SYSTEM TECHNOLOGY BLH DXp-40 Interface Manual Allen-Bradley Remote I/O TM014 Rev D 6/1/11 Doc 35105 NOTICE BLH makes no representation or warranties of any kind whatsoever with respect to the contents

More information

The IQ300 wall mount load cell indicator is a precision digital indicator for load cell and strain gauge applications.

The IQ300 wall mount load cell indicator is a precision digital indicator for load cell and strain gauge applications. IQ300 Wall Mount Load Cell Indicator Data sheet English 1.01 Introduction The IQ300 wall mount load cell indicator is a precision digital indicator for load cell and strain gauge applications. The high

More information