EVALUATION KIT FOR TC642/TC646/TC647/TC648/TC649 BDC FAN CONTROLLERS

Size: px
Start display at page:

Download "EVALUATION KIT FOR TC642/TC646/TC647/TC648/TC649 BDC FAN CONTROLLERS"

Transcription

1 EVALUATION KIT FOR TC64/TC646/TC647/TC648/TC649 BDC FAN CONTROLLERS FEATURES Complete Evaluation / Prototyping Vehicle for Microchip s TC64, TC646,TC647, TC648 and TC649 BDC Fan Controllers Works with Any BDC Fan User Prototyping Area Configurable Output Driver Circuit External or Internal Control Voltage Convenient User Test Points BOARD SCHEMATIC GENERAL DESCRIPTION is a fully assembled 4 inch by 6 inch circuit board that allows the user to evaluate and prototype brushless DC fan control circuits using Microchip s TC64, TC646, TC647, TC648 and TC649 BDC fan controllers. The fan speed control signal can be provided by an external sensor or voltage signal, or from the on-board control voltage pot. Minimum speed setting (TC64/TC647) and auto shutdown threshold (TC646/TC648/TC649) are conveniently set by an on-board pot. Jumper blocks allow the user to quickly configure the output stage and input signal source and scaling. Test points provide easy access for instrument readings at critical nodes. A user prototyping area is provided for dedicated circuitry or other user-specific circuits. REG1 TP7 IN 1 3 OUT TC55RP300 GND POT (Min Speed/ Shutdown Level) C3 1 µf POT 1 (Speed Control) REF1 LM INT EXT C µf TP5 External Sensor Input BP1 BP GND BP3 FAN FAN + TO-0 C TO-9 NA* B E B C E SOT-3 SHDN/ RESET EXT SHDN/ RESET TB C1* 1 µf JB4 1 3 JB1 4 TP1 C µf V IN C F V MIN (V AS ) GND TC64* (TC646) (TC648) (TC647) (TC649) Q4 N3906 R1 60 FAULT SENSE V OUT FAULT TP R5 30k TP6 TP4 C8 4.7 µf R* 1.1k 1 JB JB 3 4 C4 C5*, 0.1 µf R4 R3* 4.7 Ohms TP3 * Indicates normal value Dashed Line = Factory Setting Figure 1.

2 1 TABLE OF CONTENTS 1 Table of Contents What Is Included With the / What You Must Provide 3 Before Getting Started 4 Hardware Description 5 Getting Started (Factory Settings) 6 Operation in the Adjustable Output Voltage Mode Appendix A: Board Component Placement/Test Points Appendix B: Bill of Materials

3 WHAT IS INCLUDED WITH / WHAT YOU MUST PROVIDE The items in Table 1 should have been included when you received the. If any of them are damaged or missing, contact Microchip Technology Inc. or the distributor from which you received the kit for assistance. Certain items must be provided by the user to implement a system. They are listed in Table. Table 1. Packing List Item No. Quantity Description x 6 printed circuit board with components installed 1 This user s manual 3 TC647VOA device samples 4 TC649VOA device samples 5 TC648VOA device samples 6 TC647VPA device samples 7 TC649VPA device samples 8 TC648VPA device samples 9 1 TC647 data sheet 10 1 TC649 data sheet 11 1 Fan control article 1 1 TC648 Data Sheet 3 BEFORE GETTING STARTED Please complete the following steps: 1. Check the contents you received against the Packing List (Table 1).. Read the section What Is Included With the / What You Must Provide, and assemble the necessary items. 3. Perform the steps outlined in Getting Started. Table. What You Must Provide Item No. Quantity Description 4 HARDWARE DESCRIPTION The supports evaluation of the TC64/646/ 647/648/649 BDC fan controllers from Microchip Technology Inc. Various jumper options and sites for userinstalled components allow the to operate with virtually any BDC fan. As shown in Figure 1 (page 1), the operates with either a TC64, TC646, TC647, TC648 or a TC649 installed in the 8-pin DIP socket. (The TC646/649 has an auto shutdown mode, whereby the fan is shut off when measured temperature is below a prescribed minimum. The TC64/647 operates the fan continuously, and at a minimum speed when measured temperature is low. For details, please refer to the datasheets for these devices.) As shipped from the factory, the is configured to operate as a TC64/647 that directly drives a 1V BDC fan having a 100mA maximum operating current. The TC64, TC646, TC647, TC648 and TC649 modulate fan speed in direct proportion to the control signal applied to pin 1. This input can be supplied by an off-board sensor, or from the on-board speed control (Pot 1), depending on the setting of the INT/EXT switch. The minimum fan operating speed (TC64/647) or auto shutdown temperature setting (TC646/648/649) is determined by the setting of Pot. In addition,the TC64/646/647/648/649 can be manually shut down (or reset) by pushing the SHDN/RESET switch or applying closed contacts (or a low impedance) to the EXT SHDN/RESET input (TB4). Be sure JB4 is set to match the device (i.e. TC64, TC646, TC647, TC648 or TC649 currently in service). The BDC fan modulation frequency should be between 30Hz and 60Hz. This frequency is determined by capacitor C1 (or user installed capacitor C), and the setting of JB1. The default operating frequency is 30Hz (please see the TC64, TC646, TC647, TC648 and TC649 datasheets for details). The output driver can be either a SOT, a TO-9 or a TO-0 transistor, depending on the fan operating current and application. Resistor R sets the base drive current for this transistor. The configuration as shipped from the factory consists of a NA transistor and a 1.1K base resistor, V, 50mA regulated power supply 1 Power supply with the required output voltage and current capability to operate item 1 from Table Small flat-bladed screwdriver for adjusting the speed control and minimum speed/autoshutdown pots 4 1 DVM 5 1 General purpose oscilloscope 6 Clip leads for power supply and fan connections 7 1 1V, 75mA to 100mA Brushless DC Fan* *Note: The TC64/646/647/648/649 will work with any BDC fan. A 1V, 75 ma to 100 ma fan is recommended for initial start-up since the is pre-configured for this type of fan. If a 1V, 75mA to 100mA BDC fan is not available, the configuration settings of the must be modified accordingly (see Section 5 for details). 3

4 which will drive a BDC fan with an operating current of 100 ma or less. Larger fans can be driven with a different combination of base resistor and output trasistor. Fan commutation pulses are sensed by pin 5 of the TC64/646/647/ 648/649 through R3 and C5. R3 may vary from 1Ω to 10Ω, depending on the operating current of the fan being driven.the is shipped from the factory with a 4.7Ω resistor installed for R3. C5 is a non-critical component and is shipped with a 0.1µF capacitor installed. This value will suffice for all but the most esoteric BDC fans. A fault visual indicator is also provided to facilitate experimentation. The FAULT LED is driven active by Q4 whenever the FAULT output of the TC64/646/647/648/649 goes low. The various jumper blocks and options are summarized in Table 1. 5 GETTING STARTED Initial start-up of the is simplified by using a 1V BDC fan with an operating current between 75mA to 100 ma for the initial start-up. (The is shipped preconfigured for such a fan). If such a fan is available, please proceed to step 1 below. If such a fan is unavailable, the will require modification to certain component values and jumper settings. Please proceed to Section is shipped from the factory configured as outlined in Table 1. Inspect the settings on the board to ensure they match those listed in Table 1. Also be sure that a 4.7Ω resistor is installed for R3, a 1.1kΩ is installed for R, a 0.1µF capacitor is installed for C5, and a NA transistor is installed for Q.. Connect the positive side of a 5V DC supply to (BP1) and the negative side of the supply to GND (BP). 3. Connect the positive lead of a 1V, 100mA (max) BDC fan to the FAN+ terminal. Connect the negative lead of the fan to the FAN- terminal. Table 3. Jumper Options 4. Connect the positive lead of a 1V DC supply to V FAN (BP3). Connect the negative lead from the 1V DC supply to ground. 5. Set the INT/EXT switch to INT (Internal control voltage). Turn Pot 1 (Speed Control) fully clockwise. Turn Pot (Min Speed/Auto Shutdown Level) fully clockwise. 6. Turn both DC supplies ON. The fan should immediately run to full speed and the FAULT L.E.D. should be lit. If this is not the case, re-check the configuration settings and repeat steps 1 through Connect the positive lead of a DC voltmeter to test point TP1 and the negative voltmeter lead to ground. (This is the minimum speed setting voltage). Adjust Pot until a reading of 1.9V is achieved. This voltage corresponds to a minimum speed setting of approximately 40 percent of full speed. 8. Verify proper operation of the TC64/647 by rotating Pot 1 counterclockwise. The fan speed decreases and the FAULT L.E.D. goes off. Fan speed will decrease as Pot 1 is rotated counterclockwise until the voltage on the wiper of Pot 1 is less than the voltage on the wiper of Pot, at which time the fan will operate continuously at 40 percent of full speed. Verify the minimum speed circuit is operating by adjusting Pot clockwise, while Pot 1 is fully counterclockwise. 9. Verify open fan detection by disconnecting one lead of the fan while it is running. The FAULT L.E.D. will light after a disconnect time of about one second. 10. Verify stuck rotor detection by blocking the fan while it is running. The FAULT light will be activated approximately two seconds after the fan is blocked. The may now be custom-configured for your particular combination of control and fan requirements. This is detailed in Section 6. Jumper Shorting Block Function Factory Blocks Installed Setting JB1 1 to TC64/646/647/648/ Hz timebase enabled Shorted 3 to 4 TC64 timebase determined by user-installed capacitor C Open JB 1 to.5ω sense resistor selected Shorted 3 to 4 User-installed sense resistor R4 selected Open JB3 1 to 0.1µF sense capacitor selected (adequate for nearly all BDC fans) Shorted to 3 User-installed sense capacitor C4 selected Open JB4 to 64 configured for TC64/647 Shorted to 646 configured for TC646/648/649 Open 4

5 6 OPERATION IN THE ADJUSTABLE OUT- PUT VOLTAGE MODE Output Driver Transistors such as NA are recommended for use as the output driver. These transistors are low cost, multiple sourced and have a high enough Beta for BDC fan applications of 00mA or less running current. If a single transistor is used, care must be taken to select a transistor having a guaranteed minimum h FE of at least 50 to ensure that the maximum output current specification (5mA) of the TC64/646/647/648/649 is not exceeded. For larger BDC fans, two such transistors connected as a Darlington pair will suffice (Figure ). All component selections should be made based on information in the Applications section of the TC64, TC646, TC647, TC648 and TC649 datasheets. The table shown in Figure is provided as a guide only, and lists typical Fan Module operating configurations for 1V fan applications. The values in the table assume the use of low cost, bipolar transistors (such as NA). Substituting a logic level MOSFET, such as a BS170, for Q results in lower system voltage losses, and significantly reduces output loading on the TC64/646/647/648/649. The low R DSON of the MOSFET (1W in the case of the BS170) enables it to be used instead of the Darlington in high current fan applications (please see the TC64/646/ 647/648/649 datasheet Applications section for details). The pin-out of many logic level MOSFETs is reversed from that of bipolar junction transistors, so care must be taken to properly orient the MOSFET. Sensor Interface Circuit The TC64, TC646, TC647, TC648 and TC649 datasheets provide detailed information relating to the design of a temperature sensor based on a low-cost thermistor. To Fan ( ) From TC64/646/648 Pin 7 R NA NA R3 Darlington Output Stage Full Speed Darlington Single R R3 Fan Motor Current Pair Transistor 50mA X.4K mA X 1.1K mA X mA X mA X 5.6K.4 50mA X 4.7K.0 300mA X 3.9K mA X 3.3K mA X 3.0K mA X.4K 1. Figure. Single Transistor and Darlington Output Configurations 5

6 APPENDIX A: COMPONENT PLACEMENT/TEST POINTS BP1 VDD BP GND BP3 VFAN TP1 TP5 TP7 GND VMIN JB4 SHDN/ RESET Pot (Min/Autoshdn) Pot 1 (Speed Control) C3 VREG 1 VDD JB1 C1 FAULT R1 C6 Q4 VREf 1 C7 U1 TC64/646 EXT INT VIN FAN(+) R5 C8 JB R4 R3 C4 C5 JB3 R B SOT3 EC Q TP3 TP6 TP4 TP TO0 Q3 6

7 APPENDIX C: BILL OF MATERIALS Component Value R1 60Ω, 1/4 Watt, 5% carbon resistor R 1.1 kω, 1/4 Watt, 5% carbon resistor R3 4.7Ω, 1/4 Watt, 5% carbon resistor R4 Not installed R5 30kΩ, 1/4 Watt, 5% carbon resistor Pot 1, Pot 1kΩ board-mounted potentiometer SW-1 Miniature SPDT toggle switch (INT/EXT Switch) SW- Miniature SPDT push button switch (INT/EXT Switch) U1 TC647, TC648, TC649 (Two each provided as samples) BP1 BP3 Banana receptacle C1 1µF tantalum capacitor C Not installed C3 1µF tantalum capacitor C4 Not installed C5 0.1µF ceramic capacitor C6, C7 0.01µF ceramic capacitor C8 4.7µF tantalum capacitor REF-1 LM385, 1.V reference REG-1 TC55RP300EZB 3.0V, % regulator Q1 Not installed (SOT-3 site) Q NA NPN bipolar transistor Q3 Not installed (TO-0 site) Q4 N3906 PNP bipolar transistor LED-1 Miniature L.E.D. JB1 JB4 SIP header terminal strips 7

8 WORLDWIDE SALES AND SERVICE AMERICAS Corporate Office 355 West Chandler Blvd. Chandler, AZ Tel: Fax: Technical Support: Web Address: Rocky Mountain 355 West Chandler Blvd. Chandler, AZ Tel: Fax: Atlanta 500 Sugar Mill Road, Suite 00B Atlanta, GA Tel: Fax: Austin Analog Product Sales 8303 MoPac Expressway North Suite A-01 Austin, TX Tel: Fax: Boston Lan Drive, Suite 10 Westford, MA Tel: Fax: Boston Analog Product Sales Unit A-8-1 Millbrook Tarry Condominium 97 Lowell Road Concord, MA 0174 Tel: Fax: Chicago 333 Pierce Road, Suite 180 Itasca, IL Tel: Fax: Dallas 4570 Westgrove Drive, Suite 160 Addison, TX Tel: Fax: Dayton Two Prestige Place, Suite 130 Miamisburg, OH 4534 Tel: Fax: Detroit Tri-Atria Office Building 355 Northwestern Highway, Suite 190 Farmington Hills, MI Tel: Fax: Los Angeles 1801 Von Karman, Suite 1090 Irvine, CA 961 Tel: Fax: Mountain View Analog Product Sales 1300 Terra Bella Avenue Mountain View, CA Tel: Fax: New York 150 Motor Parkway, Suite 0 Hauppauge, NY Tel: Fax: San Jose Microchip Technology Inc. 107 North First Street, Suite 590 San Jose, CA Tel: Fax: Toronto 685 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: Fax: ASIA/PACIFIC China - Beijing Microchip Technology Beijing Office Unit 915 New China Hong Kong Manhattan Bldg. No. 6 Chaoyangmen Beidajie Beijing, 10007, No. China Tel: Fax: China - Shanghai Microchip Technology Shanghai Office Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, Tel: Fax: Hong Kong Microchip Asia Pacific RM 101, Tower, Metroplaza 3 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: Fax: India Microchip Technology Inc. India Liaison Office Divyasree Chambers 1 Floor, Wing A (A3/A4) No. 11, OíShaugnessey Road Bangalore, , India Tel: Fax: Japan Microchip Technology Intl. Inc. Benex S-1 6F , Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, -0033, Japan Tel: Fax: Korea Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea Tel: Fax: ASIA/PACIFIC (continued) Singapore Microchip Technology Singapore Pte Ltd. 00 Middle Road #07-0 Prime Centre Singapore, Tel: Fax: Taiwan Microchip Technology Taiwan 11F-3, No. 07 Tung Hua North Road Taipei, 105, Taiwan Tel: Fax: EUROPE Australia Microchip Technology Australia Pty Ltd Suite, 41 Rawson Street Epping 11, NSW Australia Tel: Fax: Denmark Microchip Technology Denmark ApS Regus Business Centre Lautrup hoj 1-3 Ballerup DK-750 Denmark Tel: Fax: France Arizona Microchip Technology SARL Parc díactivite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - ler Etage Massy, France Tel: Fax: Germany Arizona Microchip Technology GmbH Gustav-Heinemann Ring 15 D Munich, Germany Tel: Fax: Germany Analog Product Sales Lochhamer Strasse 13 D-815 Martinsried, Germany Tel: Fax: Italy Arizona Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni Agrate Brianza Milan, Italy Tel: Fax: United Kingdom Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: Fax: All rights reserved. 001 Microchip Technology Incorporated. Printed in the USA. 1/01 Printed on recycled paper. Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchipís products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, except as maybe explicitly expressed herein, under any intellectual property rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies. 01/09/01 8

TC642DEMO FAN CONTROL MODULE FOR TC642/646 FEATURES GENERAL DESCRIPTION BOARD SCHEMATIC

TC642DEMO FAN CONTROL MODULE FOR TC642/646 FEATURES GENERAL DESCRIPTION BOARD SCHEMATIC FAN CONTROL MODULE FOR TC642/646 FEATURES Complete Implementation of TC642 or TC646 Fan Control Circuitry on a 1.5" x 2.0" Board Works with Standard Thermistors Temperature-proportional Fan Speed Control

More information

PIC16F84A. PIC16F84A Errata Sheet

PIC16F84A. PIC16F84A Errata Sheet M PIC16F84A Errata Sheet PIC16F84A The PIC16F84A parts you have received conform functionally to the Device Data Sheet (DS35007A), except for the anomalies described below. None. 2001 Microchip Technology

More information

PIC16F872 Rev. A2 Silicon Errata Sheet. As with any windowed EPROM device, please cover the window at all times, except when erasing.

PIC16F872 Rev. A2 Silicon Errata Sheet. As with any windowed EPROM device, please cover the window at all times, except when erasing. PIC16F872 Rev. A2 Silicon Errata Sheet The PIC16F872 Rev. A2 parts you have received conform functionally to the Device Data Sheet (DS30221A), except for the anomalies described below. All the problems

More information

ICSP Socket Module User s Guide

ICSP Socket Module User s Guide ICSP Socket Module User s Guide Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. No representation

More information

PIC17C7XX. PIC17C7XX Data Sheet Errata. Voltage. Frequency. Voltage. Frequency. Clarifications/Corrections to the Data Sheet:

PIC17C7XX. PIC17C7XX Data Sheet Errata. Voltage. Frequency. Voltage. Frequency. Clarifications/Corrections to the Data Sheet: M PIC17C7XX PIC17C7XX Data Sheet Errata Clarifications/Corrections to the Data Sheet: In the Device Data Sheet (DS30289B), the following clarifications and corrections should be noted. 1. Module: Electrical

More information

PS4200EV. PS4200 Evaluation Kit 1.0 INTRODUCTION. 1.1 Evaluation Kit Contents

PS4200EV. PS4200 Evaluation Kit 1.0 INTRODUCTION. 1.1 Evaluation Kit Contents PS4200 Evaluation Kit PS4200EV 1.0 INTRODUCTION The PS4200EV evaluation kit provides the opportunity to evaluate the PS402 IC quickly and easily. The evaluation kit contains all of the hardware and software

More information

AN514. Software Interrupt Techniques CREATING CONSTANT TIME POLLING INTRODUCTION THEORY OF OPERATION

AN514. Software Interrupt Techniques CREATING CONSTANT TIME POLLING INTRODUCTION THEORY OF OPERATION Software Techniques AN514 INTRODUCTION This application note describes a unique method for implementing interrupts in software on the PIC16C5X series of microcontrollers. This method takes advantage of

More information

AN602. How to get 10 Million Cycles out of your Microchip Serial EEPROM 10 MILLION CYCLE GUARENTEE INTRODUCTION ENDURANCE. Thi d t t d ith F M k 4 0 4

AN602. How to get 10 Million Cycles out of your Microchip Serial EEPROM 10 MILLION CYCLE GUARENTEE INTRODUCTION ENDURANCE. Thi d t t d ith F M k 4 0 4 Thi d t t d ith F M k 4 0 4 AN602 How to get 10 Million Cycles out of your Microchip Serial EEPROM Author: INTRODUCTION Microchip Technology Incorporated recently became the first manufacturer of Serial

More information

PIC16C54C/55A/56A/57C/58B

PIC16C54C/55A/56A/57C/58B PIC16C54C/55A/56A/57C/58B (Rev. A Silicon) Errata Sheet The PIC16C54C/55A/56A/57C/58B (Rev. A Silicon ONLY) parts you have received conform functionally to the PIC16C5X Device Data Sheet (DS30453D), except

More information

How to Implement ICSP Using PIC17CXXX OTP MCUs PIC17CXXX IN-CIRCUIT SERIAL PROGRAMMING USING TABLE WRITE INSTRUCTIONS VPP 13V

How to Implement ICSP Using PIC17CXXX OTP MCUs PIC17CXXX IN-CIRCUIT SERIAL PROGRAMMING USING TABLE WRITE INSTRUCTIONS VPP 13V TB015 How to Implement ICSP Using PIC17CXXX OTP MCUs Author: INTRODUCTION Stan D Souza PIC17CXXX microcontroller (MCU) devices can be serially programmed using an RS-232 or equivalent serial interface.

More information

PIC16F872 Rev. A0 Silicon Errata Sheet. As with any windowed EPROM device, please cover the window at all times, except when erasing.

PIC16F872 Rev. A0 Silicon Errata Sheet. As with any windowed EPROM device, please cover the window at all times, except when erasing. PIC16F872 Rev. A0 Silicon Errata Sheet The PIC16F872 (Rev. A0) parts you have received conform functionally to the Device Data Sheet (DS30221A), except for the anomalies described below. All of the problems

More information

Optimizing Serial Bus Operations with Proper Write Cycle Times

Optimizing Serial Bus Operations with Proper Write Cycle Times AN559 Optimizing Serial Bus Operations with Proper Write Cycle Times SERIAL EEPROM WRITE TIME REQUIREMENTS Elements of the Write Cycle Time The total write operation time for a Serial EEPROM is determined

More information

Techniques to Disable Global Interrupts

Techniques to Disable Global Interrupts Techniques to Disable Global Interrupts AN576 This application brief discusses four methods for disabling global interrupts. The method best suited for the application may then be used. All discussion

More information

FIGURE 1 - TABLE READ

FIGURE 1 - TABLE READ Implementing Table Read and Table Write AN548 INTRODUCTION This application brief discusses how to read data from program memory to data memory and write data from data memory to program memory. RETLW

More information

PIC16F87X. PIC16F87X Rev. B3 Silicon Errata Sheet DC SPECIFICATION CHANGES FROM DATA SHEET

PIC16F87X. PIC16F87X Rev. B3 Silicon Errata Sheet DC SPECIFICATION CHANGES FROM DATA SHEET PIC16F87X Rev. B3 Silicon Errata Sheet The PIC16F87X (Rev. B3) parts you have received conform functionally to the Device Data Sheet (DS30292A), except for the anomalies described below. All the problems

More information

TB042. Interfacing a KEELOQ Encoder to a PLL Circuit THE RF ENABLE OUTPUT OVERVIEW WHY USE A PLL HCS362 INTERFACE INTERFACING TO PLLS

TB042. Interfacing a KEELOQ Encoder to a PLL Circuit THE RF ENABLE OUTPUT OVERVIEW WHY USE A PLL HCS362 INTERFACE INTERFACING TO PLLS Interfacing a KEELOQ Encoder to a PLL Circuit Author: OVERVIEW Most of the recently introduced advanced KEELOQ Encoders, like the HCS362, HCS365, HCS370 and HCS412, have provisions for controlling a multiple

More information

AN767. Interfacing Microchip's Fan Speed Controllers to a SPI Port STANDARD IMPLEMENTATION INTRODUCTION

AN767. Interfacing Microchip's Fan Speed Controllers to a SPI Port STANDARD IMPLEMENTATION INTRODUCTION Interfacing Microchip's Speed Controllers to a SPI Port Author: INTRODUCTION Paul Paglia, Microchip Technology, Inc. Microchip's TC642, TC643, and TC646 are the world's first integrated circuits dedicated

More information

ICSP SOCKET MODULE USER S GUIDE

ICSP SOCKET MODULE USER S GUIDE M ICSP SOCKET MODULE USER S GUIDE 2002 Microchip Technology Inc. DS51113D All rights reserved. Copyright 2002, Microchip Technology Incorporated, USA. Information contained in this publication regarding

More information

PIC16C745/765. PIC16C745/765 Rev. A2 Silicon/Data Sheet Errata

PIC16C745/765. PIC16C745/765 Rev. A2 Silicon/Data Sheet Errata Rev. A2 Silicon/Data Sheet Errata The (Rev. A2) parts you have received conform functionally to the Device Data Sheet (DS41124C), except for the anomalies described below. None. Note: The silicon revision

More information

SEEVAL 32 Quick Start Guide

SEEVAL 32 Quick Start Guide SEEVAL 32 Quick Start Guide 2003 Microchip Technology Inc. Advance Information DS51338A Information contained in this publication regarding device applications and the like is intended through suggestion

More information

MPLAB ICE. Processor Module and Device Adapter Specification 2.0 TERMINOLOGY CONTENTS 1.0 INTRODUCTION SYSTEM. 2.1 Host to Pod Cable. 2.

MPLAB ICE. Processor Module and Device Adapter Specification 2.0 TERMINOLOGY CONTENTS 1.0 INTRODUCTION SYSTEM. 2.1 Host to Pod Cable. 2. MPLAB ICE Processor Module and Device Adapter Specification CONTENTS 1.0 INTRODUCTION... 1 2.0 TERMINOLOGY... 1 3.0 PROCESSOR MODULES... 2 4.0 EMULATOR-RELATED ISSUES... 4 5.0 DEVICE ADAPTER ISSUES...

More information

How to Implement ICSP Using PIC16CXXX OTP MCUs VDD. MCLR/VPP ICSP Connector. To application circuit Isolation circuits

How to Implement ICSP Using PIC16CXXX OTP MCUs VDD. MCLR/VPP ICSP Connector. To application circuit Isolation circuits TB013 How to Implement ICSP Using PIC16CXXX OTP MCUs Author: Rodger Richey INTRODUCTION In-Circuit Serial Programming (ICSP ) is a great way to reduce your inventory overhead and time-to-market for your

More information

TB004. Automatic Calibration of the WDT Time-out Period CONCLUSION INTRODUCTION IMPLEMENTATION FIGURE 1: PROGRAM FLOWCHART

TB004. Automatic Calibration of the WDT Time-out Period CONCLUSION INTRODUCTION IMPLEMENTATION FIGURE 1: PROGRAM FLOWCHART This document was created with FrameMaker 404 TB004 Automatic Calibration of the WDT Time-out Period Author: INTRODUCTION Stan D Souza Advanced Microcontroller Technology Division The WDT timer is a simple

More information

TC74 Serial Temperature Sensor Demo Board User s Guide

TC74 Serial Temperature Sensor Demo Board User s Guide TC74 Serial Temperature Sensor Demo Board User s Guide 2002 Microchip Technology Inc. DS51303A Note the following details of the code protection feature on Microchip devices: Microchip products meet the

More information

AN583. Implementation of the Data Encryption Standard Using PIC17C42 KEY SCHEDULE INTRODUCTION THE DATA ENCRYPTION STANDARD

AN583. Implementation of the Data Encryption Standard Using PIC17C42 KEY SCHEDULE INTRODUCTION THE DATA ENCRYPTION STANDARD Implementation of the Data Encryption Standard Using PIC17C42 Authors: INTRODUCTION Al Lovrich Mark Palmer Microchip Technology Inc. In January 1977, The United States government adopted a product cipher

More information

AN551. Serial EEPROM Solutions vs. Parallel Solutions. Serial EEPROM Solutions vs. Parallel Solutions PARALLEL NON-VOLATILE MEMORIES SERIAL EEPROMS

AN551. Serial EEPROM Solutions vs. Parallel Solutions. Serial EEPROM Solutions vs. Parallel Solutions PARALLEL NON-VOLATILE MEMORIES SERIAL EEPROMS AN551 Serial EEPROM Solutions vs. Parallel Solutions In searching for solutions to their system non-volatile memory requirements, equipment, systems and product designers are faced with a plethora of design

More information

M Floating Point to ASCII Conversion

M Floating Point to ASCII Conversion M Floating Point to ASCII Conversion AN670 Authors: INTRODUCTION It is often necessary to output a floating point number to a display. For example, to check calculations, one might want to output floating

More information

TB011. Using SRAM With A PIC16CXXX IMPLEMENTATION INTRODUCTION BLOCK DIAGRAM OF MULTIPLEXED ADDRESS/DATA BUS ON A PIC16C74

TB011. Using SRAM With A PIC16CXXX IMPLEMENTATION INTRODUCTION BLOCK DIAGRAM OF MULTIPLEXED ADDRESS/DATA BUS ON A PIC16C74 Using SRAM With A PIC16CXXX TB011 Author: Rick Evans INTRODUCTION There are applications where a significant amount of data memory is required beyond what is in the microcontroller. For example, buffering

More information

TC64X/TC64XB Fan Control Demo Board User s Guide

TC64X/TC64XB Fan Control Demo Board User s Guide M TC64X/TC64XB Fan Control Demo Board User s Guide 2003 Microchip Technology Inc. DS21401C Note the following details of the code protection feature on Microchip devices: Microchip products meet the specification

More information

AN713. Controller Area Network (CAN) Basics INTRODUCTION CAN PROTOCOL BASICS CAN OVERVIEW

AN713. Controller Area Network (CAN) Basics INTRODUCTION CAN PROTOCOL BASICS CAN OVERVIEW Controller Area Network (CAN) Basics AN713 Author: INTRODUCTION Controller Area Network (CAN) was initially created by German automotive system supplier Robert Bosch in the mid-1980s for automotive applications

More information

Improving the Susceptibility of an Application to ESD HIGH VOLTAGE POWER SUPPLY 5V POWER SUPPLY PIN VSS

Improving the Susceptibility of an Application to ESD HIGH VOLTAGE POWER SUPPLY 5V POWER SUPPLY PIN VSS Thi d t t d ith F M k 4 4 Improving the Susceptibility of an Application to ESD Author: David Wilkie Reliability Engineering INDUCED LATCH-UP All semiconductor devices are sensitive to electrostatic discharge

More information

Section 35. Glossary

Section 35. Glossary M Section 35. A A/D See Analog to Digital. Acquisition Time (TACQ) This is related to Analog to Digital (A/D) converters. This is the time that the A/D s holding capacitor acquires the analog input voltage

More information

MPLAB. Processor Module and Device Adapter Specification. Host-to-Pod Processor Module. Logic Probe Connector Indicator Lights

MPLAB. Processor Module and Device Adapter Specification. Host-to-Pod Processor Module. Logic Probe Connector Indicator Lights CONTENTS 1.0 Introduction... 1 2.0 MPLAB ICE 4000 System... 1 3.0 Processor Modules... 2 4.0 Device Adapters... 4 5.0 Emulator-Related Issues... 4 1.0 INTRODUCTION The components of an MPLAB ICE 4000 in-circuit

More information

FLASH Memory Programming Specification

FLASH Memory Programming Specification FLASH Memory Programming Specification This document includes the programming specifications for the following devices: PIC16F73 PIC16F74 PIC16F76 PIC16F77 1.0 PROGRAMMING THE The is programmed using a

More information

M Using Timer1 in Asynchronous Clock Mode

M Using Timer1 in Asynchronous Clock Mode M Using Timer1 in Asynchronous Clock Mode AN580 Author INTRODUCTION This application note discusses the use of the PIC16CXXX Timer1 module as an asynchronous clock. The Timer1 module has it own oscillator

More information

Simplifying External Memory Connections of PIC17CXXX PICmicro Microcontrollers. FIGURE 1: EXTERNAL MEMORY INTERFACE BLOCK DIAGRAM (x16 DEVICES)

Simplifying External Memory Connections of PIC17CXXX PICmicro Microcontrollers. FIGURE 1: EXTERNAL MEMORY INTERFACE BLOCK DIAGRAM (x16 DEVICES) Simplifying External Memory Connections of PIC17CXXX PICmicro Microcontrollers TB027 Author: Rodger Richey INTRODUCTION The PIC17CXXX family of PICmicro microcontrollers has an external program memory

More information

Electromechanical Switch Replacement Smart Switch for Automotive Applications and More

Electromechanical Switch Replacement Smart Switch for Automotive Applications and More Electromechanical Switch Replacement Smart Switch for Automotive Applications and More Author: Marc Hoffknecht Aachen, Germany email: hoffknecht@online.de INTELLIGENT PUSH BUTTON FOR AIR CONTROL AND MORE

More information

TB004. Automatic Calibration of the WDT Time-out Period CONCLUSION INTRODUCTION IMPLEMENTATION FIGURE 1: PROGRAM FLOWCHART

TB004. Automatic Calibration of the WDT Time-out Period CONCLUSION INTRODUCTION IMPLEMENTATION FIGURE 1: PROGRAM FLOWCHART This document was created with FrameMaker 404 TB004 Automatic Calibration of the WDT Time-out Period Author: INTRODUCTION Stan D Souza Advanced Microcontroller Technology Division The WDT timer is a simple

More information

TB033. Using the PIC16F877 To Develop Code For PIC16CXXX Devices INTRODUCTION. Stan D Souza, Rodger Richey Microchip Technology Inc.

TB033. Using the PIC16F877 To Develop Code For PIC16CXXX Devices INTRODUCTION. Stan D Souza, Rodger Richey Microchip Technology Inc. Using the PIC16F877 To Develop Code For PIC16CXXX Devices TB033 Authors: INTRODUCTION Stan D Souza, Rodger Richey With the release of the FLASH-based PIC16F87X family, Microchip Technology has completed

More information

TB026. Calculating Program Memory Checksums Using a PIC16F87X ACCESSING MEMORY INTRODUCTION. PIC16C7X vs. PIC16F87X. Microchip Technology Inc.

TB026. Calculating Program Memory Checksums Using a PIC16F87X ACCESSING MEMORY INTRODUCTION. PIC16C7X vs. PIC16F87X. Microchip Technology Inc. M TB026 Calculating Program Memory Checksums Using a PIC16F87X Author: INTRODUCTION Many applications require the microcontroller to calculate a checksum on the program memory to determine if the contents

More information

AN537. Serial EEPROM Endurance. Everything a System Engineer Needs to Know About Serial EEPROM Endurance

AN537. Serial EEPROM Endurance. Everything a System Engineer Needs to Know About Serial EEPROM Endurance AN537 Everything a System Engineer Needs to Know About Serial EEPROM Endurance The term endurance has become a confusing parameter for both users and manufacturers of EEPROM products. This is largely because

More information

16K (2K x 8) CMOS EEPROM I/O0 I/O1 I/O2. Vcc NC NC A7 A6 A5 A4 A3 A Microchip Technology Inc. DS11125G-page 1

16K (2K x 8) CMOS EEPROM I/O0 I/O1 I/O2. Vcc NC NC A7 A6 A5 A4 A3 A Microchip Technology Inc. DS11125G-page 1 This document was created with FrameMaker 404 16K (2K x 8) CMOS EEPROM 28C16A FEATURES Fast Read Access Time 150 ns CMOS Technology for Low Power Dissipation - 30 ma Active - 100 µa Standby Fast Byte Write

More information

93C66A/B. 4K 5.0V Automotive Temperature Microwire Serial EEPROM FEATURES PACKAGE TYPE BLOCK DIAGRAM DESCRIPTION

93C66A/B. 4K 5.0V Automotive Temperature Microwire Serial EEPROM FEATURES PACKAGE TYPE BLOCK DIAGRAM DESCRIPTION 查询 93C66A 供应商 捷多邦, 专业 PCB 打样工厂,24 小时加急出货 M 4K 5.0V Automotive Temperature Microwire Serial EEPROM FEATURES Single supply 5.0V operation Low power CMOS technology - 1 ma active current (typical) - 1 µa

More information

TB056. Demonstrating the Set_Report Request With a PS/2 to USB Keyboard Translator Example INTRODUCTION THE SET_REPORT REQUEST DESCRIPTORS

TB056. Demonstrating the Set_Report Request With a PS/2 to USB Keyboard Translator Example INTRODUCTION THE SET_REPORT REQUEST DESCRIPTORS Demonstrating the Set_Report Request With a PS/2 to USB Keyboard Translator Example TB056 Author: Reston Condit Company: Microchip Technology Inc. INTRODUCTION This Technical Brief details the translation

More information

59C11. 1K 5.0V Microwire Serial EEPROM PACKAGE TYPES FEATURES DESCRIPTION BLOCK DIAGRAM. This document was created with FrameMaker 404

59C11. 1K 5.0V Microwire Serial EEPROM PACKAGE TYPES FEATURES DESCRIPTION BLOCK DIAGRAM. This document was created with FrameMaker 404 This document was created with FrameMaker 404 1K 5.0V Microwire Serial EEPROM 59C11 FEATURES Low power CMOS technology Pin selectable memory organization - 128 x 8 or 64 x 16 bit organization Single 5V

More information

PIC16C5X Disassembler

PIC16C5X Disassembler PIC16C5X Disassembler Electromechanical Timer Replacements Author: PROGRAM DEFINITION DIS16 is an intelligent and easy-to-use disassembler for PIC16C5X microcontrollers. It produces a compact assembler

More information

28C17A. 16K (2K x 8) CMOS EEPROM PACKAGE TYPES FEATURES DESCRIPTION BLOCK DIAGRAM. This document was created with FrameMaker 404

28C17A. 16K (2K x 8) CMOS EEPROM PACKAGE TYPES FEATURES DESCRIPTION BLOCK DIAGRAM. This document was created with FrameMaker 404 This document was created with FrameMaker 404 16K (2K x 8) CMOS EEPROM 28C17A FEATURES Fast Read Access Time 150 ns CMOS Technology for Low Power Dissipation - 30 ma Active - 100 µa Standby Fast Byte Write

More information

In-Circuit Serial Programming (ICSP ) for PIC16C715 OTP MCUs

In-Circuit Serial Programming (ICSP ) for PIC16C715 OTP MCUs PIC16C715 In-Circuit Serial Programming (ICSP ) for PIC16C715 OTP MCUs This document includes the programming specifications for the following devices: PIC16C715 Pin Diagrams PDIP, SOIC, Windowed CERDIP

More information

28C64A. 64K (8K x 8) CMOS EEPROM PACKAGE TYPE FEATURES DESCRIPTION BLOCK DIAGRAM

28C64A. 64K (8K x 8) CMOS EEPROM PACKAGE TYPE FEATURES DESCRIPTION BLOCK DIAGRAM 64K (8K x 8) CMOS EEPROM 28C64A FEATURES Fast Read Access Time 150 ns CMOS Technology for Low Power Dissipation - 30 ma Active - 100 µa Standby Fast Byte Write Time 200 µs or 1 ms Data Retention >200 years

More information

EPROM Memory Programming Specification TABLE 1-1: PIN DESCRIPTIONS (DURING PROGRAMMING): PIC16C64X/66X

EPROM Memory Programming Specification TABLE 1-1: PIN DESCRIPTIONS (DURING PROGRAMMING): PIC16C64X/66X M PIC16C64X/66X EPROM Memory Programming Specification This document includes the programming specifications for the following devices: PIC16C642 PIC16C662 1. PROGRAMMING THE PIC16C64X/66X The PIC16C64X/66X

More information

TC74. General Description. Features. Applications. Functional Block Diagram. Package Types

TC74. General Description. Features. Applications. Functional Block Diagram. Package Types M TC74 Tiny Serial Digital Thermal Sensor Features Digital Temperature Sensing in SOT-23-5 or TO-220 Packages Outputs Temperature as an 8-Bit Digital Word Simple SMBus/I 2 C Serial Port Interface Solid-State

More information

TC670. Tiny Predictive Fan Failure Detector. Features. General Description. Applications. Package Type. Typical Application Circuit

TC670. Tiny Predictive Fan Failure Detector. Features. General Description. Applications. Package Type. Typical Application Circuit M Tiny Predictive Fan Failure Detector TC67 Features Fan Wear-Out Detection for 2-Wire Linear-Controlled Fans Replacement System for 3-Wire Fans Fan Alert Signal when Fan Speed is below Programmed Threshold

More information

PICMASTER PICMASTER CE

PICMASTER PICMASTER CE PICMASTER PICMASTER CE Emulator Probe Specification INTRODUCTION The probes for PICMASTER (PM) and PICMASTER CE (PMCE) are interchangeable personality modules that allow the emulator to be reconfigured

More information

PIC18C601/801. PIC18C601/801 Rev. C0 Silicon/Data Sheet Errata. 3. Module: Interrupts. 1. Module: WDT. 2. Module: I/O

PIC18C601/801. PIC18C601/801 Rev. C0 Silicon/Data Sheet Errata. 3. Module: Interrupts. 1. Module: WDT. 2. Module: I/O M PIC18C601/801 PIC18C601/801 Rev. C0 Silicon/Data Sheet Errata The PIC18C601/801 parts you have received conform functionally to the Device Data Sheet (DS39541A), except for the anomalies described below.

More information

AN759. Interface Control Document for the MHz Anti-Collision Interrogator EXTERNAL INTERFACES SCOPE. Electrical Interfaces.

AN759. Interface Control Document for the MHz Anti-Collision Interrogator EXTERNAL INTERFACES SCOPE. Electrical Interfaces. M AN759 Interface Control Document for the 13.56 MHz Anti-Collision Interrogator SCOPE Author: Youbok Lee, Ph.D. This document specifies the external interface requirements for the MCRF4XX and MCRF355/360

More information

Electromechanical Switch Replacement Smart Switch for Car Windscreen Wiper Control

Electromechanical Switch Replacement Smart Switch for Car Windscreen Wiper Control Electromechanical Switch Replacement Smart Switch for Car Windscreen Wiper Control Author: Marc Hoffknecht Aachen, Germany email: hofknecht@online.de OPERATION FLOWCHART dry wet windscreen unit on PIC12C508

More information

AN915. 1K, 2K and 4K Microwire EEPROM Migration WRITE CYCLE TIME INTRODUCTION INITIATING WRITE CYCLES BUS SPEED COMPATIBILITY DIFFERENCES

AN915. 1K, 2K and 4K Microwire EEPROM Migration WRITE CYCLE TIME INTRODUCTION INITIATING WRITE CYCLES BUS SPEED COMPATIBILITY DIFFERENCES 1K, 2K and 4K Microwire EEPROM Migration Author: INTRODUCTION Microchip Technology recently introduced a new family of Microwire serial EEPROMs with smaller packaging, faster write times, and faster bus

More information

TCN75. 2-Wire Serial Temperature Sensor and Thermal Monitor. Package Type. Features. General Description. Applications SOIC TCN75MOA MSOP TCN75MUA

TCN75. 2-Wire Serial Temperature Sensor and Thermal Monitor. Package Type. Features. General Description. Applications SOIC TCN75MOA MSOP TCN75MUA 2-Wire Serial Temperature Sensor and Thermal Monitor Features Solid-State Temperature Sensing; 0.5 C Accuracy (Typ.) Operates from -55 C to +25 C Operating Supply Range: 2.7V to 5.5V Programmable Trip

More information

TB079. Programming Baseline Flash Devices with PICkit 1 PIC12F508/509 AND PIC16F505 PROGRAMMING INTRODUCTION. PICkit 1 FIRMWARE VERSION 2.0.

TB079. Programming Baseline Flash Devices with PICkit 1 PIC12F508/509 AND PIC16F505 PROGRAMMING INTRODUCTION. PICkit 1 FIRMWARE VERSION 2.0. TB079 Baseline Flash Devices with PICkit 1 Author: INTRODUCTION The PICkit 1 Baseline Flash Programmer PC application together with the PICkit 1 Flash Starter Kit firmware version 2.0.0 or later can program

More information

PIC14C000. EPROM Memory Programming Specification PIN DIAGRAM 1.0 PROGRAMMING THE PIC14C000

PIC14C000. EPROM Memory Programming Specification PIN DIAGRAM 1.0 PROGRAMMING THE PIC14C000 EPROM Memory Programming Specification This document includes the programming specifications for the following devices: PIC14C PIN DIAGRAM PDIP, SOIC, SSOP, Windowed CERDIP 1. PROGRAMMING THE PIC14C The

More information

TB066. Temperature Sensor Backgrounder INTRODUCTION ENTER THE TEMPERATURE SENSOR THEN AND NOW. Microchip Technology Inc.

TB066. Temperature Sensor Backgrounder INTRODUCTION ENTER THE TEMPERATURE SENSOR THEN AND NOW. Microchip Technology Inc. Temperature Sensor Backgrounder TB066 Author: INTRODUCTION History has shown that consumers have an almost insatiable appetite for even greater computing horsepower. If you're old enough to remember, the

More information

AN570. Calibrating the MTA11200 System. Calibrating the MTA11200 System INTRODUCTION THE CALIBRATION SOFTWARE. Notes and Precautions:

AN570. Calibrating the MTA11200 System. Calibrating the MTA11200 System INTRODUCTION THE CALIBRATION SOFTWARE. Notes and Precautions: TM Calibrating the MTA11200 System AN570 INTRODUCTION This application note analyzes the calibration algorithm from theoretical and numerical approaches. It includes two calibration procedures, including

More information

AN586. Macros for Page and Bank Switching INTRODUCTION

AN586. Macros for Page and Bank Switching INTRODUCTION Macros for Page and Bank Switching Author: Mark Palmer Microchip Technology Inc. Contributions: Mike Morse Sr. Field Applications Engineer (Dallas) INTRODUCTION This application note discusses the use

More information

MPLAB ICE Processor Module and Device Adapter Specification. Host-to-Pod Processor Module. Logic Probe Connector.

MPLAB ICE Processor Module and Device Adapter Specification. Host-to-Pod Processor Module. Logic Probe Connector. CONTENTS 1.0 Introduction... 1 2.0 MPLAB ICE 4000 System... 1 3.0 Processor Modules... 2 4.0 Device Adapters... 4 5.0 Emulator-Related Issues... 4 1.0 INTRODUCTION The components of an MPLAB ICE 4000 in-circuit

More information

S5U1C88000P Manual (S1C88 Family Peripheral Circuit Board)

S5U1C88000P Manual (S1C88 Family Peripheral Circuit Board) MF1434-01 CMOS 8-BIT SINGLE CHIP MICROCOMPUTER S5U1C88000P Manual (S1C88 Family Peripheral Circuit Board) NOTICE No part of this material may be reproduced or duplicated in any form or by any means without

More information

TB082. Understanding Reset Events On The PIC10F20X INTRODUCTION WATCHDOG TIMER OR WDT POWER-ON RESET (POR)

TB082. Understanding Reset Events On The PIC10F20X INTRODUCTION WATCHDOG TIMER OR WDT POWER-ON RESET (POR) Understanding Reset Events On The PIC10F20X Author: INTRODUCTION The PIC10F20X family of microcontrollers utilizes the baseline 12-bit microcontroller core from Microchip. Because this core does not support

More information

TC1047A Temperature-to-Voltage Converter PICtail Demo Board User s Guide

TC1047A Temperature-to-Voltage Converter PICtail Demo Board User s Guide TC1047A Temperature-to-Voltage Converter PICtail Demo Board User s Guide 2004 Microchip Technology Inc. DS51483A Note the following details of the code protection feature on Microchip devices: Microchip

More information

Electromechanical Timer Replacement

Electromechanical Timer Replacement Electromechanical Timer Replacement Reminder Timer for Changing Chemicals in a Water Softener (IRON) Author: Michael MacDonald Mikaurie Prescott, WI USA email: mikemd@pressenter.com APPLICATION OPERATION:

More information

PS5162. PS501 Two-Cell Battery Manager Module with LED SOC Display for Lithium Chemistries. Features. Ordering Information

PS5162. PS501 Two-Cell Battery Manager Module with LED SOC Display for Lithium Chemistries. Features. Ordering Information PS56 PS50 Two-Cell Battery Manager Module with LED SOC Display for Lithium Chemistries Features PS50 tested, fully populated modules for evaluation Designed to work with series cell Lithium chemistry configurations

More information

TC72 Digital Temperature Sensor PICtail Demo Board User s Guide

TC72 Digital Temperature Sensor PICtail Demo Board User s Guide TC72 Digital Temperature Sensor PICtail Demo Board User s Guide 2004 Microchip Technology Inc. DS51482A Note the following details of the code protection feature on Microchip devices: Microchip products

More information

MCP250XX DEVELOPMENT KIT USER S GUIDE

MCP250XX DEVELOPMENT KIT USER S GUIDE M MCP250XX DEVELOPMENT KIT USER S GUIDE 2002 Microchip Technology Inc. DS51266B Information contained in this publication regarding device applications and the like is intended through suggestion only

More information

AN519. Implementing a Simple Serial Mouse Controller INTRODUCTION THEORY OF OPERATION FUNCTIONAL BLOCKS OF A SERIAL MOUSE

AN519. Implementing a Simple Serial Mouse Controller INTRODUCTION THEORY OF OPERATION FUNCTIONAL BLOCKS OF A SERIAL MOUSE Implementing a Simple Serial Mouse Controller INTRODUCTION The mouse is becoming increasingly popular as a standard pointing data entry device. There is no doubt that the demand for the mouse is increasing.

More information

AN536. Basic Serial EEPROM Operation. Basic Serial EEPROM Operation BASIC SERIAL EEPROM OPERATION CONTENTS SERIAL EEPROM APPLICATIONS

AN536. Basic Serial EEPROM Operation. Basic Serial EEPROM Operation BASIC SERIAL EEPROM OPERATION CONTENTS SERIAL EEPROM APPLICATIONS Basic Serial EEPROM Operation AN536 BASIC SERIAL EEPROM OPERATION Looking for the optimum non-volatile memory product for your system that requires a small footprint, byte level flexibility, low power,

More information

SG-8506CA-EVB Preliminary

SG-8506CA-EVB Preliminary SG-8506CA Evaluation Board Manual SG-8506CA-EVB Preliminary Evaluation board/kit and Development tool important notice 1. This evaluation board/kit or development tool is designed for use for engineering

More information

EVAL6235PD. L6235 three-phase brushless DC motor driver demonstration board. Features. Description

EVAL6235PD. L6235 three-phase brushless DC motor driver demonstration board. Features. Description L6235 three-phase brushless DC motor driver demonstration board Features Operating supply voltage from 8 V to 52 V 5.6 A output peak current (2.8 A RMS ) Operating frequency up to 100 khz Non-dissipative

More information

EEPROM Memory Programming Specification

EEPROM Memory Programming Specification EEPROM Memory Programming Specification This document includes the programming specifications for the following devices: PIC16F627 PIC16F628 PIC16LF627 PIC16LF628 1.0 PROGRAMMING THE PIC16F62X The PIC16F62X

More information

Software Tools.

Software Tools. Software Tools www.microchip.com/hi-tech Microchip's Omniscient Code Generation A world class provider of development tools for embedded systems, best known for its high-performance ANSI C compilers featuring

More information

AN536. Basic Serial EEPROM Operation. Basic Serial EEPROM Operation BASIC SERIAL EEPROM OPERATION CONTENTS SERIAL EEPROM APPLICATIONS

AN536. Basic Serial EEPROM Operation. Basic Serial EEPROM Operation BASIC SERIAL EEPROM OPERATION CONTENTS SERIAL EEPROM APPLICATIONS Basic Serial EEPROM Operation AN536 BASIC SERIAL EEPROM OPERATION Looking for the optimum non-volatile memory product for your system that requires a small footprint, byte level flexibility, low power,

More information

Amplifier for versatile fiber-optic links

Amplifier for versatile fiber-optic links Amplifier for Versatile Fiber-Optic Links Application Specification Author Document Number Revision 1 A.1 Amplifier for versatile fiber-optic links Suitable for extending the optical transmission distance

More information

MIC502 Evaluation Board

MIC502 Evaluation Board Fan Management IC General Description The combination evaluation/demonstration board for the MIC502 Fan Management IC is depicted in a typical hookup in Figure 1. This dual-purpose board can be used (1)

More information

M 25AA640/25LC640/25C640

M 25AA640/25LC640/25C640 M 25AA640/25LC640/25C640 64K SPI Bus Serial EEPROM DEVICE SELECTION TABLE Part Number FEATURES Low power CMOS technology - Write current: 3 ma typical - Read current: 500 µa typical - Standby current:

More information

ICS548A-03 LOW SKEW CLOCK INVERTER AND DIVIDER. Description. Features. Block Diagram DATASHEET

ICS548A-03 LOW SKEW CLOCK INVERTER AND DIVIDER. Description. Features. Block Diagram DATASHEET DATASHEET ICS548A-03 Description The ICS548A-03 is a low cost, low skew, high-performance general purpose clock designed to produce a set of one output clock, one inverted output clock, and one clock divided-by-two.

More information

Silicon Epitaxial Planar Zener Diode for Stabilized Power Supply. Type No. Mark Package Code HZS Series Type No. MHD B 7

Silicon Epitaxial Planar Zener Diode for Stabilized Power Supply. Type No. Mark Package Code HZS Series Type No. MHD B 7 Silicon Epitaxial Planar Zener Diode for Stabilized Power Supply Features REJ3G184-3Z (Previous: ADE-28-12B) Rev.3. Mar.11.24 Low leakage, low zener impedance and maximum power dissipation of 4 mw are

More information

32-bit Microcontrollers. PIC32 Microcontroller Family with USB On-The-Go.

32-bit Microcontrollers. PIC32 Microcontroller Family with USB On-The-Go. 32-bit Microcontrollers PIC32 Microcontroller Family with USB On-The-Go Building on the heritage of Microchip Technology s world-leading 8- and 16-bit PIC microcontrollers, the PIC 32 family delivers 32-bit

More information

OPERATING AND SERVICE MANUAL SPECIAL SUPPLEMENT

OPERATING AND SERVICE MANUAL SPECIAL SUPPLEMENT OPERATING AND SERVICE MANUAL SPECIAL SUPPLEMENT 11683A OPTION H01 POWER METER RANGE CALIBRATOR 11683-90010 Model Number: 11683A Option H01 Part Number: 11683-90010 Date Printed: June 5, 2012 2 11683A Option

More information

Data Sheet HDR ECUE FireFly Loopback Cable Assembly

Data Sheet HDR ECUE FireFly Loopback Cable Assembly Data Sheet HDR-190945-01-ECUE FireFly Loopback Cable Assembly Working Draft 00 October 12, 2016 1 COPYRIGHTS, TRADEMARKS AND PATENTS Product names used herein are trademarks of their respective owners.

More information

PIC12F752/HV752 Family Silicon Errata and Data Sheet Clarification. DEV<8:0> (1) REV<4:0> Silicon Revision (2)

PIC12F752/HV752 Family Silicon Errata and Data Sheet Clarification. DEV<8:0> (1) REV<4:0> Silicon Revision (2) Family Silicon Errata and Data Sheet Clarification The family devices that you have received conform functionally to the current Device Data Sheet (DS41576B), except for the anomalies described in this

More information

Section 40. Introduction (Part IV)

Section 40. Introduction (Part IV) Section 40. Introduction (Part IV) HIGHLIGHTS This section of the manual contains the following major topics: 40.1 Introduction... 40-2 40.2 Revision History...40-3 40 Introduction (Part IV) 2007-2012

More information

1S2075(K) Silicon Epitaxial Planar Diode for High Speed Switching. ADE A (Z) Rev. 1 Aug Features. Ordering Information.

1S2075(K) Silicon Epitaxial Planar Diode for High Speed Switching. ADE A (Z) Rev. 1 Aug Features. Ordering Information. Silicon Epitaxial Planar Diode for High Speed Switching Features Low capacitance. (C = 3.5pF max) Short reverse recovery time. (t rr = 8.0ns max) High reliability with glass seal. ADE-208-144A (Z) Rev.

More information

AN2408 Application note

AN2408 Application note Application note 900mA standalone linear Li-Ion battery charger with thermal regulation Introduction One way to minimize the size and complexity of a battery charger is to use a linear-type charger. The

More information

S1V3G340 External SPI-Flash Select Guide

S1V3G340 External SPI-Flash Select Guide S1V3G340 External SPI-Flash Select Guide Rev.1.00 NOTICE No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson

More information

G12 -p 3.3 V, 4 ma, 5-Volt Tolerant, Fail-Safe, General Purpose I/O Buffers Datasheet

G12 -p 3.3 V, 4 ma, 5-Volt Tolerant, Fail-Safe, General Purpose I/O Buffers Datasheet G12 -p 3.3 V, 4 ma, 5-Volt Tolerant, Fail-Safe, General Purpose I/O Buffers Datasheet LSI Logic Corporation provides the following driver/receiver input/output (I/O) cells for use as general purpose I/O

More information

KIT33887EKEVB Evaluation Board

KIT33887EKEVB Evaluation Board Freescale Semiconductor, Inc User s Guide Document Number: KT33887UG Rev 20, 4/2013 KIT33887EKEVB Evaluation Board Featuring the MC33887EK 50 A H-Bridge IC Contents Figure 1 KIT33887EKEVB Evaluation Board

More information

S5U1C31D50T1 Manual (S1C31D50 Evaluation Board)

S5U1C31D50T1 Manual (S1C31D50 Evaluation Board) CMOS 32-BIT SINGLE CHIP MICROCONTROLLER S5U1C31D50T1 Manual (S1C31D50 Evaluation Board) Rev.1.0 Evaluation board/kit and Development tool important notice 1. This evaluation board/kit or development tool

More information

FM1233A 3-Pin µc Supervisor Circuit

FM1233A 3-Pin µc Supervisor Circuit FM133A 3-Pin µc Supervisor Circuit General Description The FM133A is a supervisor circuit that monitors a microprocessor power supply or other system voltage and issues a reset pulse when a fault condition

More information

MCP2140. MCP2140 Rev. A Silicon/Data Sheet Errata. Clarifications/Corrections to the Data Sheet: INTEGRATED OPTICAL TRANSCEIVER

MCP2140. MCP2140 Rev. A Silicon/Data Sheet Errata. Clarifications/Corrections to the Data Sheet: INTEGRATED OPTICAL TRANSCEIVER MCP2140 Rev. A Silicon/Data Sheet Errata The MCP2140 Rev. A parts you have received conform functionally to the MCP2140 device data sheets (DS21790A), with the exception of the anomaly described below.

More information

AN2470 Application note TS4871 low voltage audio power amplifier Evaluation board user guidelines Features Description

AN2470 Application note TS4871 low voltage audio power amplifier Evaluation board user guidelines Features Description Application note TS4871 low voltage audio power amplifier Evaluation board user guidelines Features TS4871 low voltage audio power amplifier with active low standby mode Operating range from V CC =2.2V

More information

Regarding the change of names mentioned in the document, such as Hitachi Electric and Hitachi XX, to Renesas Technology Corp.

Regarding the change of names mentioned in the document, such as Hitachi Electric and Hitachi XX, to Renesas Technology Corp. To all our customers Regarding the change of names mentioned in the document, such as Hitachi Electric and Hitachi XX, to Renesas Technology Corp. The semiconductor operations of Mitsubishi Electric and

More information

AN2474 Application note

AN2474 Application note AN474 Application note TS4995.W fully differential audio power amplifier with selectable standby and 6db fixed gain - Evaluation board user guidelines Introduction This application note describes the DEMO

More information

Battery-Voltage. 16K (2K x 8) Parallel EEPROMs AT28BV16. Features. Description. Pin Configurations

Battery-Voltage. 16K (2K x 8) Parallel EEPROMs AT28BV16. Features. Description. Pin Configurations Features 2.7 to 3.6V Supply Full Read and Write Operation Low Power Dissipation 8 ma Active Current 50 µa CMOS Standby Current Read Access Time - 250 ns Byte Write - 3 ms Direct Microprocessor Control

More information