Clash of the Titans: MapReduce vs. Spark for Large Scale Data Analytics

Size: px
Start display at page:

Download "Clash of the Titans: MapReduce vs. Spark for Large Scale Data Analytics"

Transcription

1 Clash of the Titans: MapReduce vs. Spark for Large Scale Data Analytics Presented by: Dishant Mittal Authors: Juwei Shi, Yunjie Qiu, Umar Firooq Minhas, Lemei Jiao, Chen Wang, Berthold Reinwald and Fatma Ozcan

2 Authors Juwei Shi - Director of Product Development, K2D Data Technology. Bachelors and Masters from Renmin University in China (Big data management and cluster computing system performance). Researchers, IBM Research, China Yunjie Qiu PhD, Beijing University of Posts and Telecommunications Limei Jiao PhD, Beijing University of Posts and Telecommunications Chen Wang PhD, Tsinghua University Researchers, IBM Almaden Research Center, USA Umar Farooq Minhas PhD, University of Waterloo Berthold Reinwald - PhD, University of Erlangen Nuernberg, Germany Fatma Ozcan - PhD, University of Maryland PAGE 2

3 Outline Introduction Cluster Computing Architectures Key Architectural Components 5 different workloads Workload Characteristics Experimental Setup 5 different Experiments Summary Discussion PAGE 3

4 WHAT IS THE PAPER ABOUT? Evaluate the performance of major components involved in Map-Reduce (Hadoop) and Spark PAGE 4

5 Introduction Example - Quick Sort vs Merge Sort? -> Easy PAGE 5

6 Introduction Example - Quick Sort vs Merge Sort? -> Easy Quick sort loses on partitioning step, when keys are sorted PAGE 6

7 Introduction Example - Quick Sort vs Merge Sort? -> Easy Quick sort loses on partitioning step, when keys are sorted Map-Reduce vs Spark -> Not Easy PAGE 7

8 Introduction Example - Quick Sort vs Merge Sort? -> Easy Quick sort loses on partitioning step, when keys are sorted Map-Reduce vs Spark -> Not Easy Provide simple APIs, But hide the complexity of parallel task execution and fault-tolerance from the user. Restricts clients to figure out which one is better! PAGE 8

9 Introduction Example - Quick Sort vs Merge Sort? -> Easy Quick sort loses on partitioning step, when keys are sorted Map-Reduce vs Spark -> Not Easy Provide simple APIs, But hide the complexity of parallel task execution and fault-tolerance from the user. Restricts clients to figure out which one is better! Compare them due to their wide spread adoption in big data analytics. PAGE 9

10 Cluster Computing Architectures Map-Reduce PAGE 10

11 Cluster Computing Architectures Map-Reduce Machine Learning and Graph processing need iteration Repeat the READ -> PROCESS -> WRITE cycle Overhead! PAGE 11

12 Cluster Computing Architectures Map-Reduce Machine Learning and Graph processing need iteration Repeat the READ -> PROCESS -> WRITE cycle Overhead! Apache Spark Resilient Distributed Datasets (RDDs) In memory computations Efficient PAGE 12

13 Cluster Computing Architectures Spark PAGE 13

14 Key Architectural Components Shuffle Execution Model Caching PAGE 14

15 Workloads Focus on batch and iterative jobs: Word Count Sort K-Means Linear Regression Page Rank PAGE 15

16 Characteristics of Workloads Shuffle selectivity (map output size/job input size) Job selectivity (reducer output size/the job input size) Iteration selectivity (output size/input size, for each iteration) PAGE 16

17 Experimental Setup Hardware configuration A total of 4 servers each with GHz CPU cores 9 disks at 7.2 RPM with 1TB each 190 GB RAM 64-bit RHEL Connected with 1Gbps Ethernet switch Equivalent to a cluster of 100 VMs (m3.medium on AWS) Software configuration Hadoop with YARN Input format Block size, replica factor, JVM heap size, container Disabled overlap between Map and Reduce stages (except Sort) Spark on HDFS Workers, JVM heap size PAGE 17

18 Experimental Setup Profiling Tools Logging with RRDTool and Ganglia Correlating resource utilization with the task execution plan in a timeline view PAGE 18

19 Experimental Setup Execution Plan Visualization Example PAGE 19

20 Experimental Setup Fine-grained time break-down Hadoop : Extracting details from log data Spark: Inserting timers in the source code after each sub stage. Aggregate in the end PAGE 20

21 Experiment 1: Word Count Implementation: Word Count program Spark 2.1x, 2.6x, 2.7x faster for increasing data sizes PAGE 21

22 Experiment 1: Word Count Map - stage: Spark is 3x faster Spark is about 6.2x faster than MapReduce in the combine stage. Hash-based combine better than sort-based combine. Reduce - stage: Similar Results (Network Bound) PAGE 22

23 Experiment 1: Word Count Map - stage: Spark is 3x faster Spark is about 6.2x faster than MapReduce in the combine stage. Hash-based combine better than sort-based combine. Reduce - stage: Similar Results (Network Bound) PAGE 23

24 Experiment 1: Word Count Inference: For low shuffle selectivity workloads, hash-based aggregation in Spark is more efficient than sort-based aggregation in MapReduce due to the complexity differences in its in-memory collection and combine components. PAGE 24

25 Experiment 2: Sort Implementation: TeraSort for Hadoop, SortByKey() for Spark Map-Reduce: 1.1x, 1.5x, 1.8x faster for increasing data sizes. PAGE 25

26 Experiment 2: Sort Data-Read Stage : Lightweight in Hadoop, Disk bound for Spark (scans complete file) Map-stage: Spark 2.5 x faster, CPU-bound for both Reduce - stage: Hadoop 3.3x faster (overlapping), network bound for both PAGE 26

27 Experiment 2: Sort Data-Read Stage : Lightweight in Hadoop, Disk bound for Spark (scans complete file) Map-stage: Spark 2.5 x faster, CPU-bound for both Reduce - stage: Hadoop 3.3x faster (overlapping), network bound for both PAGE 27

28 Experiment 2: Sort Spark reads from OS buffer cache Map-Reduce OS buffer cache is not that effective Spark s hash based shuffle writer writes directly to the disk which reduces latency PAGE 28

29 Experiment 2: Sort Inferences In MapReduce, the reduce stage is faster than Spark because MapReduce can overlap the shuffle stage with the map stage, which effectively hides the network overhead. In Spark, the execution time of the map stage increases as the number of reduce tasks increase. This overhead is caused by and is proportional to the number of files opened simultaneously. Map-Reduce performs better than Spark for increasing data sizes. PAGE 29

30 Experiment 3: Iterative Algorithms Implementation: Mahout s K-Means for Hadoop, Example program for Spark For each iteration, it reads the training data to compute the updated weights commonly seen in SVM/linear/logistic regression. PAGE 30

31 Experiment 3: Iterative Algorithms Map-Stage: CPU bound Reduce Stage: low shuffle selectivity (not a bottleneck) Spark wins, reason is RDD caching PAGE 31

32 Experiment 3: Iterative Algorithms PAGE 32

33 Experiment 3: Iterative Algorithms The storage levels do not impact the execution time of subsequent iterations. For DISK ONLY, there are almost no disk reads in subsequent iterations since the bandwidth of 8 disks for caching RDDs is more than enough to sustain the IO rate for k-means, with or without OS buffer cache.

34 Experiment 3: Iterative Algorithms When there is no RDD caching, disk reads decrease from one iteration to the next iteration, but this does not lead to execution time improvements. Why? MICRO BENCHMARK EXPERIMENT: For k-means without RDD caching, the reduction of disk I/O due to OS buffer cache does not result in execution time improvements for subsequent iterations, since the CPU overhead of transforming the text to Point object is a bottleneck. PAGE PAGE 34 34

35 Experiment 3: Iterative Algorithms Inferences: For iterative algorithms, if an iteration is CPU-bound, caching the raw file (to reduce disk I/O) may not help reduce the execution time since the disk I/O is hidden by the CPU overhead. But on the contrary, if an iteration is disk-bound, caching the raw file can significantly reduce the execution time. RDD caching can reduce not only disk I/O, but also the CPU overhead since it can cache any intermediate data during the analytic pipeline. For example, the main contribution of RDD caching for k-means is to cache the Point object to save the transformation cost from a text line, which is the bottleneck for each iteration. PAGE 35

36 Experiment 4: PageRank Implementation: X-RIME PR for Hadoop, example and GraphX version for Spark over Facebook and Twitter datasets. Pattern: For each iteration in MapReduce, in the map stage, each vertex loads its graph data structure (i.e., adjacency list) from HDFS, and sends its rank to its neighbors through a shuffle. During the reduce stage, each vertex receives the ranks of its neighbors to update its own rank, and stores both the adjacency list and ranks on HDFS for the next iteration. Much higher shuffle selectivity (to exchange ranks) and iteration selectivity (to exchange graph structures) of PageRank than k-means. PAGE 36

37 Experiment 4: PageRank Spark - GraphX is 4x faster than Spark-Naive, Spark-Naive faster than Hadoop. PAGE 37

38 Experiment 4: PageRank CPU-bound for both. Heavier shuffle and disk I/O overheads for Hadoop. PAGE 38

39 Experiment 4: PageRank Inference: For graph analytic algorithms such as BFS and Community Detection that read the graph structure and iteratively exchange states through a shuffle, compared to MapReduce, Spark can avoid materializing graph data structures on HDFS across iterations, which reduces overheads for serialization/de-serialization, disk I/O, and network I/O. PAGE 39

40 Impact of Other Factors Varying numbers of disks: Not substantial for typical clusters Memory limits: Not substantial so long as JVM heap size above a certain level Built-in fault tolerance: Hadoop is more reasonable in re-executing a failed reducer PAGE 40

41 Summary Developers/ System Admins/ Users/ Researchers: Can improve both the architecture and implementation through our observations. Once tuned properly, the majority of workloads are CPU-bound for both MapReduce and Spark, and hence are scalable to the number of CPU cores. For MapReduce, the network overhead during a shuffle can be hidden by overlapping the map and reduce stages. For iterative algorithms in Spark, counter-intuitively, DISK ONLY configuration might be better than MEMORY ONLY. PAGE 41

42 References Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Czajkowski. Pregel: a system for large-scale graph processing. In SIGMOD, pages , M. L. Massie, B. N. Chun, and D. E. Culler. The ganglia distributed monitoring system: design, implementation, and experience. Parallel Computing, 30(7): , A. Mislove, M. Marcon, K. Gummadi, P. Druschel, and B. Bhattacharjee. Measurement and analysis of online social networks. In IMC, pages 29 42, J. Shi, J. Zou, J. Lu, Z. Cao, S. Li, and C. Wang. MRTuner: A toolkit to enable holistic optimization for mapreduce jobs. VLDB, 7(13): , PAGE 42

43 Discussion Strengths and Weaknesses Strengths Extensive experimental study with in-depth profiling. Presented micro benchmarks to further study the impact of RDD and other factors. Covered major categories of computational workloads from sorting to graph analytics. Provided guidance big data stacks/tools. Weaknesses Missed some major computational workloads: e.g., streaming. Spark is in standalone mode, hence the lack of comparison of Spark and Hadoop with HDFS and YARN. Missed scalability tests given the limited number of nodes in the cluster. Some technical details can be hidden or put into Appendix for clarity and coherence. PAGE 43

44 Discussion Related Papers Zaharia, Matei, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica. "Spark: cluster computing with working sets." HotCloud 10 (2010): Marcu, Ovidiu-Cristian, Alexandru Costan, Gabriel Antoniu, and María S. Pérez. "Spark versus flink: Understanding performance in big data analytics frameworks." In IEEE 2016 International Conference on Cluster Computing.(2016). G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Czajkowski. Pregel: a system for large-scale graph processing. In SIGMOD, pages , Li, Haoyuan, et al. "Tachyon: Reliable, memory speed storage for cluster computing frameworks." Proceedings of the ACM Symposium on Cloud Computing. ACM, PAGE 44

45 Discussion Future Work Including stream processing experiments: Spark-Streaming vs. Hadoop-based streaming. Including comparison of Spark and Hadoop with HDFS and YARN (in fully distributed mode). Including scalability tests given the limited number of nodes in the cluster. More in-depth experimental study of different categories of workloads: e.g., graph algorithms over Hadoop vs. Spark. PAGE 45

46 Discussion Questions What is one possible reason for Spark to insist on stage barriers instead of overlapping map and reduce? If we replace the disks with SSDs, would the experimental results change? If so, which parts? If we replace the 1 Gbps Ethernet with InfiniBand, would the experimental results change? If so, which parts? Would Hadoop and Spark exhibit substantially different scalability curves? PAGE 46

47 Thank You PAGE 47

Apache Flink: Distributed Stream Data Processing

Apache Flink: Distributed Stream Data Processing Apache Flink: Distributed Stream Data Processing K.M.J. Jacobs CERN, Geneva, Switzerland 1 Introduction The amount of data is growing significantly over the past few years. Therefore, the need for distributed

More information

Analytic Cloud with. Shelly Garion. IBM Research -- Haifa IBM Corporation

Analytic Cloud with. Shelly Garion. IBM Research -- Haifa IBM Corporation Analytic Cloud with Shelly Garion IBM Research -- Haifa 2014 IBM Corporation Why Spark? Apache Spark is a fast and general open-source cluster computing engine for big data processing Speed: Spark is capable

More information

Apache Spark is a fast and general-purpose engine for large-scale data processing Spark aims at achieving the following goals in the Big data context

Apache Spark is a fast and general-purpose engine for large-scale data processing Spark aims at achieving the following goals in the Big data context 1 Apache Spark is a fast and general-purpose engine for large-scale data processing Spark aims at achieving the following goals in the Big data context Generality: diverse workloads, operators, job sizes

More information

Resilient Distributed Datasets

Resilient Distributed Datasets Resilient Distributed Datasets A Fault- Tolerant Abstraction for In- Memory Cluster Computing Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael Franklin,

More information

I ++ Mapreduce: Incremental Mapreduce for Mining the Big Data

I ++ Mapreduce: Incremental Mapreduce for Mining the Big Data IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661,p-ISSN: 2278-8727, Volume 18, Issue 3, Ver. IV (May-Jun. 2016), PP 125-129 www.iosrjournals.org I ++ Mapreduce: Incremental Mapreduce for

More information

2/4/2019 Week 3- A Sangmi Lee Pallickara

2/4/2019 Week 3- A Sangmi Lee Pallickara Week 3-A-0 2/4/2019 Colorado State University, Spring 2019 Week 3-A-1 CS535 BIG DATA FAQs PART A. BIG DATA TECHNOLOGY 3. DISTRIBUTED COMPUTING MODELS FOR SCALABLE BATCH COMPUTING SECTION 1: MAPREDUCE PA1

More information

Shark. Hive on Spark. Cliff Engle, Antonio Lupher, Reynold Xin, Matei Zaharia, Michael Franklin, Ion Stoica, Scott Shenker

Shark. Hive on Spark. Cliff Engle, Antonio Lupher, Reynold Xin, Matei Zaharia, Michael Franklin, Ion Stoica, Scott Shenker Shark Hive on Spark Cliff Engle, Antonio Lupher, Reynold Xin, Matei Zaharia, Michael Franklin, Ion Stoica, Scott Shenker Agenda Intro to Spark Apache Hive Shark Shark s Improvements over Hive Demo Alpha

More information

Research Works to Cope with Big Data Volume and Variety. Jiaheng Lu University of Helsinki, Finland

Research Works to Cope with Big Data Volume and Variety. Jiaheng Lu University of Helsinki, Finland Research Works to Cope with Big Data Volume and Variety Jiaheng Lu University of Helsinki, Finland Big Data: 4Vs Photo downloaded from: https://blog.infodiagram.com/2014/04/visualizing-big-data-concepts-strong.html

More information

Twitter data Analytics using Distributed Computing

Twitter data Analytics using Distributed Computing Twitter data Analytics using Distributed Computing Uma Narayanan Athrira Unnikrishnan Dr. Varghese Paul Dr. Shelbi Joseph Research Scholar M.tech Student Professor Assistant Professor Dept. of IT, SOE

More information

RESILIENT DISTRIBUTED DATASETS: A FAULT-TOLERANT ABSTRACTION FOR IN-MEMORY CLUSTER COMPUTING

RESILIENT DISTRIBUTED DATASETS: A FAULT-TOLERANT ABSTRACTION FOR IN-MEMORY CLUSTER COMPUTING RESILIENT DISTRIBUTED DATASETS: A FAULT-TOLERANT ABSTRACTION FOR IN-MEMORY CLUSTER COMPUTING Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael J. Franklin,

More information

Big Graph Processing. Fenggang Wu Nov. 6, 2016

Big Graph Processing. Fenggang Wu Nov. 6, 2016 Big Graph Processing Fenggang Wu Nov. 6, 2016 Agenda Project Publication Organization Pregel SIGMOD 10 Google PowerGraph OSDI 12 CMU GraphX OSDI 14 UC Berkeley AMPLab PowerLyra EuroSys 15 Shanghai Jiao

More information

2/26/2017. Originally developed at the University of California - Berkeley's AMPLab

2/26/2017. Originally developed at the University of California - Berkeley's AMPLab Apache is a fast and general engine for large-scale data processing aims at achieving the following goals in the Big data context Generality: diverse workloads, operators, job sizes Low latency: sub-second

More information

PREGEL: A SYSTEM FOR LARGE- SCALE GRAPH PROCESSING

PREGEL: A SYSTEM FOR LARGE- SCALE GRAPH PROCESSING PREGEL: A SYSTEM FOR LARGE- SCALE GRAPH PROCESSING G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. Horn, N. Leiser, G. Czajkowski Google, Inc. SIGMOD 2010 Presented by Ke Hong (some figures borrowed from

More information

SparkBench: A Comprehensive Spark Benchmarking Suite Characterizing In-memory Data Analytics

SparkBench: A Comprehensive Spark Benchmarking Suite Characterizing In-memory Data Analytics SparkBench: A Comprehensive Spark Benchmarking Suite Characterizing In-memory Data Analytics Min LI,, Jian Tan, Yandong Wang, Li Zhang, Valentina Salapura, Alan Bivens IBM TJ Watson Research Center * A

More information

Spark. Cluster Computing with Working Sets. Matei Zaharia, Mosharaf Chowdhury, Michael Franklin, Scott Shenker, Ion Stoica.

Spark. Cluster Computing with Working Sets. Matei Zaharia, Mosharaf Chowdhury, Michael Franklin, Scott Shenker, Ion Stoica. Spark Cluster Computing with Working Sets Matei Zaharia, Mosharaf Chowdhury, Michael Franklin, Scott Shenker, Ion Stoica UC Berkeley Background MapReduce and Dryad raised level of abstraction in cluster

More information

Chapter 4: Apache Spark

Chapter 4: Apache Spark Chapter 4: Apache Spark Lecture Notes Winter semester 2016 / 2017 Ludwig-Maximilians-University Munich PD Dr. Matthias Renz 2015, Based on lectures by Donald Kossmann (ETH Zürich), as well as Jure Leskovec,

More information

MapReduce & Resilient Distributed Datasets. Yiqing Hua, Mengqi(Mandy) Xia

MapReduce & Resilient Distributed Datasets. Yiqing Hua, Mengqi(Mandy) Xia MapReduce & Resilient Distributed Datasets Yiqing Hua, Mengqi(Mandy) Xia Outline - MapReduce: - - Resilient Distributed Datasets (RDD) - - Motivation Examples The Design and How it Works Performance Motivation

More information

CSE 444: Database Internals. Lecture 23 Spark

CSE 444: Database Internals. Lecture 23 Spark CSE 444: Database Internals Lecture 23 Spark References Spark is an open source system from Berkeley Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. Matei

More information

Fast, Interactive, Language-Integrated Cluster Computing

Fast, Interactive, Language-Integrated Cluster Computing Spark Fast, Interactive, Language-Integrated Cluster Computing Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael Franklin, Scott Shenker, Ion Stoica www.spark-project.org

More information

Spark: A Brief History. https://stanford.edu/~rezab/sparkclass/slides/itas_workshop.pdf

Spark: A Brief History. https://stanford.edu/~rezab/sparkclass/slides/itas_workshop.pdf Spark: A Brief History https://stanford.edu/~rezab/sparkclass/slides/itas_workshop.pdf A Brief History: 2004 MapReduce paper 2010 Spark paper 2002 2004 2006 2008 2010 2012 2014 2002 MapReduce @ Google

More information

Evolution From Shark To Spark SQL:

Evolution From Shark To Spark SQL: Evolution From Shark To Spark SQL: Preliminary Analysis and Qualitative Evaluation Xinhui Tian and Xiexuan Zhou Institute of Computing Technology, Chinese Academy of Sciences and University of Chinese

More information

Stream Processing on IoT Devices using Calvin Framework

Stream Processing on IoT Devices using Calvin Framework Stream Processing on IoT Devices using Calvin Framework by Ameya Nayak A Project Report Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Computer Science Supervised

More information

Processing of big data with Apache Spark

Processing of big data with Apache Spark Processing of big data with Apache Spark JavaSkop 18 Aleksandar Donevski AGENDA What is Apache Spark? Spark vs Hadoop MapReduce Application Requirements Example Architecture Application Challenges 2 WHAT

More information

Batch Processing Basic architecture

Batch Processing Basic architecture Batch Processing Basic architecture in big data systems COS 518: Distributed Systems Lecture 10 Andrew Or, Mike Freedman 2 1 2 64GB RAM 32 cores 64GB RAM 32 cores 64GB RAM 32 cores 64GB RAM 32 cores 3

More information

Hadoop 2.x Core: YARN, Tez, and Spark. Hortonworks Inc All Rights Reserved

Hadoop 2.x Core: YARN, Tez, and Spark. Hortonworks Inc All Rights Reserved Hadoop 2.x Core: YARN, Tez, and Spark YARN Hadoop Machine Types top-of-rack switches core switch client machines have client-side software used to access a cluster to process data master nodes run Hadoop

More information

MapReduce Spark. Some slides are adapted from those of Jeff Dean and Matei Zaharia

MapReduce Spark. Some slides are adapted from those of Jeff Dean and Matei Zaharia MapReduce Spark Some slides are adapted from those of Jeff Dean and Matei Zaharia What have we learnt so far? Distributed storage systems consistency semantics protocols for fault tolerance Paxos, Raft,

More information

Spark Overview. Professor Sasu Tarkoma.

Spark Overview. Professor Sasu Tarkoma. Spark Overview 2015 Professor Sasu Tarkoma www.cs.helsinki.fi Apache Spark Spark is a general-purpose computing framework for iterative tasks API is provided for Java, Scala and Python The model is based

More information

Integration of Machine Learning Library in Apache Apex

Integration of Machine Learning Library in Apache Apex Integration of Machine Learning Library in Apache Apex Anurag Wagh, Krushika Tapedia, Harsh Pathak Vishwakarma Institute of Information Technology, Pune, India Abstract- Machine Learning is a type of artificial

More information

Spark. In- Memory Cluster Computing for Iterative and Interactive Applications

Spark. In- Memory Cluster Computing for Iterative and Interactive Applications Spark In- Memory Cluster Computing for Iterative and Interactive Applications Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael Franklin, Scott Shenker,

More information

Performance Evaluation of Big Data Frameworks for Large-Scale Data Analytics

Performance Evaluation of Big Data Frameworks for Large-Scale Data Analytics Performance Evaluation of Big Data Frameworks for Large-Scale Data Analytics Jorge Veiga, Roberto R. Expósito, Xoán C. Pardo, Guillermo L. Taboada, Juan Touriño Computer Architecture Group, Universidade

More information

An Introduction to Apache Spark

An Introduction to Apache Spark An Introduction to Apache Spark 1 History Developed in 2009 at UC Berkeley AMPLab. Open sourced in 2010. Spark becomes one of the largest big-data projects with more 400 contributors in 50+ organizations

More information

PREGEL AND GIRAPH. Why Pregel? Processing large graph problems is challenging Options

PREGEL AND GIRAPH. Why Pregel? Processing large graph problems is challenging Options Data Management in the Cloud PREGEL AND GIRAPH Thanks to Kristin Tufte 1 Why Pregel? Processing large graph problems is challenging Options Custom distributed infrastructure Existing distributed computing

More information

A Balanced Parallel Distributed Sorting Implemented with PGX.D

A Balanced Parallel Distributed Sorting Implemented with PGX.D A Balanced Parallel Distributed Sorting Implemented with PGX.D Zahra Khatami 1,2, Sungpack Hong 1, Jinsu Lee 1, Siegfried Depner 1 and Hassan Chafi 1 1 Oracle Labs, USA 2 Center for Computation and Technology,

More information

Cloud, Big Data & Linear Algebra

Cloud, Big Data & Linear Algebra Cloud, Big Data & Linear Algebra Shelly Garion IBM Research -- Haifa 2014 IBM Corporation What is Big Data? 2 Global Data Volume in Exabytes What is Big Data? 2005 2012 2017 3 Global Data Volume in Exabytes

More information

Summary of Big Data Frameworks Course 2015 Professor Sasu Tarkoma

Summary of Big Data Frameworks Course 2015 Professor Sasu Tarkoma Summary of Big Data Frameworks Course 2015 Professor Sasu Tarkoma www.cs.helsinki.fi Course Schedule Tuesday 10.3. Introduction and the Big Data Challenge Tuesday 17.3. MapReduce and Spark: Overview Tuesday

More information

L3: Spark & RDD. CDS Department of Computational and Data Sciences. Department of Computational and Data Sciences

L3: Spark & RDD. CDS Department of Computational and Data Sciences. Department of Computational and Data Sciences Indian Institute of Science Bangalore, India भ रत य व ज ञ न स स थ न ब गल र, भ रत Department of Computational and Data Sciences L3: Spark & RDD Department of Computational and Data Science, IISc, 2016 This

More information

a Spark in the cloud iterative and interactive cluster computing

a Spark in the cloud iterative and interactive cluster computing a Spark in the cloud iterative and interactive cluster computing Matei Zaharia, Mosharaf Chowdhury, Michael Franklin, Scott Shenker, Ion Stoica UC Berkeley Background MapReduce and Dryad raised level of

More information

Spark. In- Memory Cluster Computing for Iterative and Interactive Applications

Spark. In- Memory Cluster Computing for Iterative and Interactive Applications Spark In- Memory Cluster Computing for Iterative and Interactive Applications Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael Franklin, Scott Shenker,

More information

Authors: Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C., Horn, L., Leiser, N., Czjkowski, G.

Authors: Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C., Horn, L., Leiser, N., Czjkowski, G. Authors: Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C., Horn, L., Leiser, N., Czjkowski, G. Speaker: Chong Li Department: Applied Health Science Program: Master of Health Informatics 1 Term

More information

Today s content. Resilient Distributed Datasets(RDDs) Spark and its data model

Today s content. Resilient Distributed Datasets(RDDs) Spark and its data model Today s content Resilient Distributed Datasets(RDDs) ------ Spark and its data model Resilient Distributed Datasets: A Fault- Tolerant Abstraction for In-Memory Cluster Computing -- Spark By Matei Zaharia,

More information

Parallel HITS Algorithm Implemented Using HADOOP GIRAPH Framework to resolve Big Data Problem

Parallel HITS Algorithm Implemented Using HADOOP GIRAPH Framework to resolve Big Data Problem I J C T A, 9(41) 2016, pp. 1235-1239 International Science Press Parallel HITS Algorithm Implemented Using HADOOP GIRAPH Framework to resolve Big Data Problem Hema Dubey *, Nilay Khare *, Alind Khare **

More information

Research challenges in data-intensive computing The Stratosphere Project Apache Flink

Research challenges in data-intensive computing The Stratosphere Project Apache Flink Research challenges in data-intensive computing The Stratosphere Project Apache Flink Seif Haridi KTH/SICS haridi@kth.se e2e-clouds.org Presented by: Seif Haridi May 2014 Research Areas Data-intensive

More information

Lecture 11 Hadoop & Spark

Lecture 11 Hadoop & Spark Lecture 11 Hadoop & Spark Dr. Wilson Rivera ICOM 6025: High Performance Computing Electrical and Computer Engineering Department University of Puerto Rico Outline Distributed File Systems Hadoop Ecosystem

More information

MapReduce: Simplified Data Processing on Large Clusters 유연일민철기

MapReduce: Simplified Data Processing on Large Clusters 유연일민철기 MapReduce: Simplified Data Processing on Large Clusters 유연일민철기 Introduction MapReduce is a programming model and an associated implementation for processing and generating large data set with parallel,

More information

Shark: Hive on Spark

Shark: Hive on Spark Optional Reading (additional material) Shark: Hive on Spark Prajakta Kalmegh Duke University 1 What is Shark? Port of Apache Hive to run on Spark Compatible with existing Hive data, metastores, and queries

More information

Overview. Prerequisites. Course Outline. Course Outline :: Apache Spark Development::

Overview. Prerequisites. Course Outline. Course Outline :: Apache Spark Development:: Title Duration : Apache Spark Development : 4 days Overview Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, Python, and R, and an optimized

More information

Delft University of Technology Parallel and Distributed Systems Report Series

Delft University of Technology Parallel and Distributed Systems Report Series Delft University of Technology Parallel and Distributed Systems Report Series An Empirical Performance Evaluation of Distributed SQL Query Engines: Extended Report Stefan van Wouw, José Viña, Alexandru

More information

HiTune. Dataflow-Based Performance Analysis for Big Data Cloud

HiTune. Dataflow-Based Performance Analysis for Big Data Cloud HiTune Dataflow-Based Performance Analysis for Big Data Cloud Jinquan (Jason) Dai, Jie Huang, Shengsheng Huang, Bo Huang, Yan Liu Intel Asia-Pacific Research and Development Ltd Shanghai, China, 200241

More information

Big data systems 12/8/17

Big data systems 12/8/17 Big data systems 12/8/17 Today Basic architecture Two levels of scheduling Spark overview Basic architecture Cluster Manager Cluster Cluster Manager 64GB RAM 32 cores 64GB RAM 32 cores 64GB RAM 32 cores

More information

A Platform for Fine-Grained Resource Sharing in the Data Center

A Platform for Fine-Grained Resource Sharing in the Data Center Mesos A Platform for Fine-Grained Resource Sharing in the Data Center Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony Joseph, Randy Katz, Scott Shenker, Ion Stoica University of California,

More information

Scalable Tools - Part I Introduction to Scalable Tools

Scalable Tools - Part I Introduction to Scalable Tools Scalable Tools - Part I Introduction to Scalable Tools Adisak Sukul, Ph.D., Lecturer, Department of Computer Science, adisak@iastate.edu http://web.cs.iastate.edu/~adisak/mbds2018/ Scalable Tools session

More information

Pregel: A System for Large-Scale Graph Proces sing

Pregel: A System for Large-Scale Graph Proces sing Pregel: A System for Large-Scale Graph Proces sing Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkwoski Google, Inc. SIGMOD July 20 Taewhi

More information

Data Clustering on the Parallel Hadoop MapReduce Model. Dimitrios Verraros

Data Clustering on the Parallel Hadoop MapReduce Model. Dimitrios Verraros Data Clustering on the Parallel Hadoop MapReduce Model Dimitrios Verraros Overview The purpose of this thesis is to implement and benchmark the performance of a parallel K- means clustering algorithm on

More information

Spark Over RDMA: Accelerate Big Data SC Asia 2018 Ido Shamay Mellanox Technologies

Spark Over RDMA: Accelerate Big Data SC Asia 2018 Ido Shamay Mellanox Technologies Spark Over RDMA: Accelerate Big Data SC Asia 2018 Ido Shamay 1 Apache Spark - Intro Spark within the Big Data ecosystem Data Sources Data Acquisition / ETL Data Storage Data Analysis / ML Serving 3 Apache

More information

Data Analytics on RAMCloud

Data Analytics on RAMCloud Data Analytics on RAMCloud Jonathan Ellithorpe jdellit@stanford.edu Abstract MapReduce [1] has already become the canonical method for doing large scale data processing. However, for many algorithms including

More information

Camdoop Exploiting In-network Aggregation for Big Data Applications Paolo Costa

Camdoop Exploiting In-network Aggregation for Big Data Applications Paolo Costa Camdoop Exploiting In-network Aggregation for Big Data Applications costa@imperial.ac.uk joint work with Austin Donnelly, Antony Rowstron, and Greg O Shea (MSR Cambridge) MapReduce Overview Input file

More information

PREGEL: A SYSTEM FOR LARGE-SCALE GRAPH PROCESSING

PREGEL: A SYSTEM FOR LARGE-SCALE GRAPH PROCESSING PREGEL: A SYSTEM FOR LARGE-SCALE GRAPH PROCESSING Grzegorz Malewicz, Matthew Austern, Aart Bik, James Dehnert, Ilan Horn, Naty Leiser, Grzegorz Czajkowski (Google, Inc.) SIGMOD 2010 Presented by : Xiu

More information

CS435 Introduction to Big Data FALL 2018 Colorado State University. 10/22/2018 Week 10-A Sangmi Lee Pallickara. FAQs.

CS435 Introduction to Big Data FALL 2018 Colorado State University. 10/22/2018 Week 10-A Sangmi Lee Pallickara. FAQs. 10/22/2018 - FALL 2018 W10.A.0.0 10/22/2018 - FALL 2018 W10.A.1 FAQs Term project: Proposal 5:00PM October 23, 2018 PART 1. LARGE SCALE DATA ANALYTICS IN-MEMORY CLUSTER COMPUTING Computer Science, Colorado

More information

CompSci 516: Database Systems

CompSci 516: Database Systems CompSci 516 Database Systems Lecture 12 Map-Reduce and Spark Instructor: Sudeepa Roy Duke CS, Fall 2017 CompSci 516: Database Systems 1 Announcements Practice midterm posted on sakai First prepare and

More information

Cloud Computing and Hadoop Distributed File System. UCSB CS170, Spring 2018

Cloud Computing and Hadoop Distributed File System. UCSB CS170, Spring 2018 Cloud Computing and Hadoop Distributed File System UCSB CS70, Spring 08 Cluster Computing Motivations Large-scale data processing on clusters Scan 000 TB on node @ 00 MB/s = days Scan on 000-node cluster

More information

Putting it together. Data-Parallel Computation. Ex: Word count using partial aggregation. Big Data Processing. COS 418: Distributed Systems Lecture 21

Putting it together. Data-Parallel Computation. Ex: Word count using partial aggregation. Big Data Processing. COS 418: Distributed Systems Lecture 21 Big Processing -Parallel Computation COS 418: Distributed Systems Lecture 21 Michael Freedman 2 Ex: Word count using partial aggregation Putting it together 1. Compute word counts from individual files

More information

Gearing Hadoop towards HPC sytems

Gearing Hadoop towards HPC sytems Gearing Hadoop towards HPC sytems Xuanhua Shi http://grid.hust.edu.cn/xhshi Huazhong University of Science and Technology HPC Advisory Council China Workshop 2014, Guangzhou 2014/11/5 2 Internet Internet

More information

Dell In-Memory Appliance for Cloudera Enterprise

Dell In-Memory Appliance for Cloudera Enterprise Dell In-Memory Appliance for Cloudera Enterprise Spark Technology Overview and Streaming Workload Use Cases Author: Armando Acosta Hadoop Product Manager/Subject Matter Expert Armando_Acosta@Dell.com/

More information

BIG DATA AND HADOOP ON THE ZFS STORAGE APPLIANCE

BIG DATA AND HADOOP ON THE ZFS STORAGE APPLIANCE BIG DATA AND HADOOP ON THE ZFS STORAGE APPLIANCE BRETT WENINGER, MANAGING DIRECTOR 10/21/2014 ADURANT APPROACH TO BIG DATA Align to Un/Semi-structured Data Instead of Big Scale out will become Big Greatest

More information

Accelerating Spark RDD Operations with Local and Remote GPU Devices

Accelerating Spark RDD Operations with Local and Remote GPU Devices Accelerating Spark RDD Operations with Local and Remote GPU Devices Yasuhiro Ohno, Shin Morishima, and Hiroki Matsutani Dept.ofICS,KeioUniversity, 3-14-1 Hiyoshi, Kohoku, Yokohama, Japan 223-8522 Email:

More information

Apache Spark Internals

Apache Spark Internals Apache Spark Internals Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Apache Spark Internals 1 / 80 Acknowledgments & Sources Sources Research papers: https://spark.apache.org/research.html Presentations:

More information

Coflow. Recent Advances and What s Next? Mosharaf Chowdhury. University of Michigan

Coflow. Recent Advances and What s Next? Mosharaf Chowdhury. University of Michigan Coflow Recent Advances and What s Next? Mosharaf Chowdhury University of Michigan Rack-Scale Computing Datacenter-Scale Computing Geo-Distributed Computing Coflow Networking Open Source Apache Spark Open

More information

Introduction to MapReduce (cont.)

Introduction to MapReduce (cont.) Introduction to MapReduce (cont.) Rafael Ferreira da Silva rafsilva@isi.edu http://rafaelsilva.com USC INF 553 Foundations and Applications of Data Mining (Fall 2018) 2 MapReduce: Summary USC INF 553 Foundations

More information

Harp-DAAL for High Performance Big Data Computing

Harp-DAAL for High Performance Big Data Computing Harp-DAAL for High Performance Big Data Computing Large-scale data analytics is revolutionizing many business and scientific domains. Easy-touse scalable parallel techniques are necessary to process big

More information

A Parallel R Framework

A Parallel R Framework A Parallel R Framework for Processing Large Dataset on Distributed Systems Nov. 17, 2013 This work is initiated and supported by Huawei Technologies Rise of Data-Intensive Analytics Data Sources Personal

More information

Machine learning library for Apache Flink

Machine learning library for Apache Flink Machine learning library for Apache Flink MTP Mid Term Report submitted to Indian Institute of Technology Mandi for partial fulfillment of the degree of B. Tech. by Devang Bacharwar (B2059) under the guidance

More information

Page 1. Goals for Today" Background of Cloud Computing" Sources Driving Big Data" CS162 Operating Systems and Systems Programming Lecture 24

Page 1. Goals for Today Background of Cloud Computing Sources Driving Big Data CS162 Operating Systems and Systems Programming Lecture 24 Goals for Today" CS162 Operating Systems and Systems Programming Lecture 24 Capstone: Cloud Computing" Distributed systems Cloud Computing programming paradigms Cloud Computing OS December 2, 2013 Anthony

More information

CDS. André Schaaff1, François-Xavier Pineau1, Gilles Landais1, Laurent Michel2 de Données astronomiques de Strasbourg, 2SSC-XMM-Newton

CDS. André Schaaff1, François-Xavier Pineau1, Gilles Landais1, Laurent Michel2 de Données astronomiques de Strasbourg, 2SSC-XMM-Newton Docker @ CDS André Schaaff1, François-Xavier Pineau1, Gilles Landais1, Laurent Michel2 1Centre de Données astronomiques de Strasbourg, 2SSC-XMM-Newton Paul Trehiou Université de technologie de Belfort-Montbéliard

More information

Introduction to MapReduce Algorithms and Analysis

Introduction to MapReduce Algorithms and Analysis Introduction to MapReduce Algorithms and Analysis Jeff M. Phillips October 25, 2013 Trade-Offs Massive parallelism that is very easy to program. Cheaper than HPC style (uses top of the line everything)

More information

PSON: A Parallelized SON Algorithm with MapReduce for Mining Frequent Sets

PSON: A Parallelized SON Algorithm with MapReduce for Mining Frequent Sets 2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming PSON: A Parallelized SON Algorithm with MapReduce for Mining Frequent Sets Tao Xiao Chunfeng Yuan Yihua Huang Department

More information

Spark Parameter Tuning via Trial-and-Error

Spark Parameter Tuning via Trial-and-Error Spark Parameter Tuning via Trial-and-Error Panagiotis Petridis 1, Anastasios Gounaris 1, and Jordi Torres 2 1 Dept. of Informatics, Aristotle University of Thessaloniki, Greece {ppetridis,gounaria}@csd.auth.gr

More information

Announcements. Reading Material. Map Reduce. The Map-Reduce Framework 10/3/17. Big Data. CompSci 516: Database Systems

Announcements. Reading Material. Map Reduce. The Map-Reduce Framework 10/3/17. Big Data. CompSci 516: Database Systems Announcements CompSci 516 Database Systems Lecture 12 - and Spark Practice midterm posted on sakai First prepare and then attempt! Midterm next Wednesday 10/11 in class Closed book/notes, no electronic

More information

FPGP: Graph Processing Framework on FPGA

FPGP: Graph Processing Framework on FPGA FPGP: Graph Processing Framework on FPGA Guohao DAI, Yuze CHI, Yu WANG, Huazhong YANG E.E. Dept., TNLIST, Tsinghua University dgh14@mails.tsinghua.edu.cn 1 Big graph is widely used Big graph is widely

More information

FuxiSort. Jiamang Wang, Yongjun Wu, Hua Cai, Zhipeng Tang, Zhiqiang Lv, Bin Lu, Yangyu Tao, Chao Li, Jingren Zhou, Hong Tang Alibaba Group Inc

FuxiSort. Jiamang Wang, Yongjun Wu, Hua Cai, Zhipeng Tang, Zhiqiang Lv, Bin Lu, Yangyu Tao, Chao Li, Jingren Zhou, Hong Tang Alibaba Group Inc Fuxi Jiamang Wang, Yongjun Wu, Hua Cai, Zhipeng Tang, Zhiqiang Lv, Bin Lu, Yangyu Tao, Chao Li, Jingren Zhou, Hong Tang Alibaba Group Inc {jiamang.wang, yongjun.wyj, hua.caihua, zhipeng.tzp, zhiqiang.lv,

More information

MapReduce, Hadoop and Spark. Bompotas Agorakis

MapReduce, Hadoop and Spark. Bompotas Agorakis MapReduce, Hadoop and Spark Bompotas Agorakis Big Data Processing Most of the computations are conceptually straightforward on a single machine but the volume of data is HUGE Need to use many (1.000s)

More information

Accelerate Big Data Insights

Accelerate Big Data Insights Accelerate Big Data Insights Executive Summary An abundance of information isn t always helpful when time is of the essence. In the world of big data, the ability to accelerate time-to-insight can not

More information

Survey on Incremental MapReduce for Data Mining

Survey on Incremental MapReduce for Data Mining Survey on Incremental MapReduce for Data Mining Trupti M. Shinde 1, Prof.S.V.Chobe 2 1 Research Scholar, Computer Engineering Dept., Dr. D. Y. Patil Institute of Engineering &Technology, 2 Associate Professor,

More information

Backtesting with Spark

Backtesting with Spark Backtesting with Spark Patrick Angeles, Cloudera Sandy Ryza, Cloudera Rick Carlin, Intel Sheetal Parade, Intel 1 Traditional Grid Shared storage Storage and compute scale independently Bottleneck on I/O

More information

An Introduction to Big Data Analysis using Spark

An Introduction to Big Data Analysis using Spark An Introduction to Big Data Analysis using Spark Mohamad Jaber American University of Beirut - Faculty of Arts & Sciences - Department of Computer Science May 17, 2017 Mohamad Jaber (AUB) Spark May 17,

More information

Hadoop/MapReduce Computing Paradigm

Hadoop/MapReduce Computing Paradigm Hadoop/Reduce Computing Paradigm 1 Large-Scale Data Analytics Reduce computing paradigm (E.g., Hadoop) vs. Traditional database systems vs. Database Many enterprises are turning to Hadoop Especially applications

More information

Big Data Infrastructures & Technologies

Big Data Infrastructures & Technologies Big Data Infrastructures & Technologies Spark and MLLIB OVERVIEW OF SPARK What is Spark? Fast and expressive cluster computing system interoperable with Apache Hadoop Improves efficiency through: In-memory

More information

Apache Flink- A System for Batch and Realtime Stream Processing

Apache Flink- A System for Batch and Realtime Stream Processing Apache Flink- A System for Batch and Realtime Stream Processing Lecture Notes Winter semester 2016 / 2017 Ludwig-Maximilians-University Munich Prof Dr. Matthias Schubert 2016 Introduction to Apache Flink

More information

Accelerating Hadoop Applications with the MapR Distribution Using Flash Storage and High-Speed Ethernet

Accelerating Hadoop Applications with the MapR Distribution Using Flash Storage and High-Speed Ethernet WHITE PAPER Accelerating Hadoop Applications with the MapR Distribution Using Flash Storage and High-Speed Ethernet Contents Background... 2 The MapR Distribution... 2 Mellanox Ethernet Solution... 3 Test

More information

Workload Characterization and Optimization of TPC-H Queries on Apache Spark

Workload Characterization and Optimization of TPC-H Queries on Apache Spark Workload Characterization and Optimization of TPC-H Queries on Apache Spark Tatsuhiro Chiba and Tamiya Onodera IBM Research - Tokyo April. 17-19, 216 IEEE ISPASS 216 @ Uppsala, Sweden Overview IBM Research

More information

Experiences Running and Optimizing the Berkeley Data Analytics Stack on Cray Platforms

Experiences Running and Optimizing the Berkeley Data Analytics Stack on Cray Platforms Experiences Running and Optimizing the Berkeley Data Analytics Stack on Cray Platforms Kristyn J. Maschhoff and Michael F. Ringenburg Cray Inc. CUG 2015 Copyright 2015 Cray Inc Legal Disclaimer Information

More information

Improving Hadoop MapReduce Performance on Supercomputers with JVM Reuse

Improving Hadoop MapReduce Performance on Supercomputers with JVM Reuse Thanh-Chung Dao 1 Improving Hadoop MapReduce Performance on Supercomputers with JVM Reuse Thanh-Chung Dao and Shigeru Chiba The University of Tokyo Thanh-Chung Dao 2 Supercomputers Expensive clusters Multi-core

More information

PROFILING BASED REDUCE MEMORY PROVISIONING FOR IMPROVING THE PERFORMANCE IN HADOOP

PROFILING BASED REDUCE MEMORY PROVISIONING FOR IMPROVING THE PERFORMANCE IN HADOOP ISSN: 0976-2876 (Print) ISSN: 2250-0138 (Online) PROFILING BASED REDUCE MEMORY PROVISIONING FOR IMPROVING THE PERFORMANCE IN HADOOP T. S. NISHA a1 AND K. SATYANARAYAN REDDY b a Department of CSE, Cambridge

More information

The Datacenter Needs an Operating System

The Datacenter Needs an Operating System UC BERKELEY The Datacenter Needs an Operating System Anthony D. Joseph LASER Summer School September 2013 My Talks at LASER 2013 1. AMP Lab introduction 2. The Datacenter Needs an Operating System 3. Mesos,

More information

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 01, 2016 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 01, 2016 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 01, 2016 ISSN (online): 2321-0613 Incremental Map Reduce Framework for Efficient Mining Evolving in Big Data Environment

More information

Similarities and Differences Between Parallel Systems and Distributed Systems

Similarities and Differences Between Parallel Systems and Distributed Systems Similarities and Differences Between Parallel Systems and Distributed Systems Pulasthi Wickramasinghe, Geoffrey Fox School of Informatics and Computing,Indiana University, Bloomington, IN 47408, USA In

More information

Distributed Computing with Spark

Distributed Computing with Spark Distributed Computing with Spark Reza Zadeh Thanks to Matei Zaharia Outline Data flow vs. traditional network programming Limitations of MapReduce Spark computing engine Numerical computing on Spark Ongoing

More information

Discretized Streams. An Efficient and Fault-Tolerant Model for Stream Processing on Large Clusters

Discretized Streams. An Efficient and Fault-Tolerant Model for Stream Processing on Large Clusters Discretized Streams An Efficient and Fault-Tolerant Model for Stream Processing on Large Clusters Matei Zaharia, Tathagata Das, Haoyuan Li, Scott Shenker, Ion Stoica UC BERKELEY Motivation Many important

More information

Map Reduce Group Meeting

Map Reduce Group Meeting Map Reduce Group Meeting Yasmine Badr 10/07/2014 A lot of material in this presenta0on has been adopted from the original MapReduce paper in OSDI 2004 What is Map Reduce? Programming paradigm/model for

More information

Cloud Computing & Visualization

Cloud Computing & Visualization Cloud Computing & Visualization Workflows Distributed Computation with Spark Data Warehousing with Redshift Visualization with Tableau #FIUSCIS School of Computing & Information Sciences, Florida International

More information

FLAT DATACENTER STORAGE. Paper-3 Presenter-Pratik Bhatt fx6568

FLAT DATACENTER STORAGE. Paper-3 Presenter-Pratik Bhatt fx6568 FLAT DATACENTER STORAGE Paper-3 Presenter-Pratik Bhatt fx6568 FDS Main discussion points A cluster storage system Stores giant "blobs" - 128-bit ID, multi-megabyte content Clients and servers connected

More information