Multiobjective Job-Shop Scheduling With Genetic Algorithms Using a New Representation and Standard Uniform Crossover

Size: px
Start display at page:

Download "Multiobjective Job-Shop Scheduling With Genetic Algorithms Using a New Representation and Standard Uniform Crossover"

Transcription

1 Multiobjective Job-Shop Scheduling With Genetic Algorithms Using a New Representation and Standard Uniform Crossover J. Garen 1 1. Department of Economics, University of Osnabrück, Katharinenstraße 3, Osnabrück - Germany Joost.Garen@Bertelsmann.de Abstract: This paper focuses on multi-objective job-shop scheduling using genetic algorithms. Although dealing with multiple objectives has received more and more attention over the last few years, scheduling is still dominated by unrealistic single-objective approaches. Representation of solutions is a key issue for implementing efficient multi-objective genetic algorithms, especially for the heavily constrained job-shop. We introduce a new kind of coding which allows the use of standard recombination operators without losing solution feasibility. The crossover chosen is Syswerda s uniform-crossover. First experiments with two problem instances taken from [Bag99] show the usefulness of the proposed method. Keywords: Multiple Objectives - Scheduling - Job-shop - Genetic Algorithms - Representation 1 Introduction The classical job-shop scheduling problem (JSP) is one of most difficult combinatorial optimization problems. During the last decades a great deal of attention has been paid to solving these problems with genetic algorithms (GAs). In a single-objective context some of the recent approaches have shown quite promising results [Mat96, OYK96]. But real world scheduling problems naturally involve multiple objectives. There are only few attempts to tackle the multiobjective JSP [Bag99]. The remainder of the paper is organized as follows. Section 2 describes the general JSP. Section 3 introduces the new representation. Section 4 shows some experimental results. Finally, section 5 presents the conclusion of this work. 2 Problem Statement The classical JSP consists of a set J of n jobs that must be processed in a set M of m machines. Each job j J consists of a chain of m operations describing the processing order. Each operation o ij, representing the i-th operation of job j, is characterized by the processing time t ij and the machine required. There are several constraints on jobs and machines, such as 1. a job does not visit the same machine twice 2. each machine can process only one operation at a time 3. operations cannot be interrupted 4. there are no precedence constraints among operations of different jobs 5. setup times for the operations are sequence-independent and included in the processing times 6. there is only one of each type of machine 7. machines are available at any time 1

2 A schedule is a description of when to process each of the operations satisfying the constraints. The goal of single-objective job-shop scheduling is to find the optimal schedule, which minimizes the predefined performance measure. In a multi-objective context we hope to find as much different schedules as possible, which are non-dominated with regard to two or more objectives. Some frequently used performance measures are makespan, mean flow-time and mean tardiness. Makespan is defined as the maximum completion time of all jobs, mean flow-time is the average of the flow-times of all jobs. Mean tardiness is defined as the average of tardiness of all jobs. 3 Representation of Solutions GAs require the parameter set of the underlying optimization problem to be coded as a socalled chromosome. While the evolution works on the chromosomes (genotype), evaluation is done with the decoded solution (phenotype). The way of encoding solutions to chromosomes is a key issue for GAs [CGT96]. Several different representations have been proposed for the JSP, such as: 1. operation-based representation 2. job-based representation 3. preference list-based representation 4. job pair relation-based representation 5. priority rule-based representation 6. disjunctive graph-based representation 7. completion time-based representation 8. machine-based representation 9. random keys representation Apart from random keys representation all of the above codings need non-standard crossover operators, which guaranties solution feasibility. We agree with Jain and Meeran that crossover operators for job-shop scheduling generally lose their efficiency by generating feasible schedules [JM98]. In a single-objective context the use of local search neighborhoods is one possible way out. These approaches are well known as genetic local search, population based local search or mementic search. It has been shown that the relevant neighborhood for the objective makespan is very small [JRM]. However, using genetic local search in multi-objective optimization is not straightforward because we could not restrict the neighborhood of a solution to some operations lying on the critical path. For this reason representation of solutions has to provide for an effective search. 3.1 Formal Description of the Proposed Representation A chromosome, consisting of n m genes represents a solution. Each gene symbolizes one operation. For each solution the order of genes within the chromosome is exactly the same. The first m genes symbolize all operations of the first job, the second m genes symbolize all operations of the second job and so forth. Thus a chromosome C is formally defined as C : [o 11, o 21,..., o m1,..., o 1n, o 2n,..., o mn ] (1) Obviously, that the gene at locus 3 m for example always corresponds to the last operation of job three. 1 Each operation holds a number which is used as a sort key to decode the solution. 1 Except in the phase of decoding. See section

3 The values of the numbers are restricted to the interval I = [1,..., m]. For a simple two-job two-operation problem a possible solution would be C : [o 11 = 2, o 21 = 1, o 12 = 1, o 22 = 2] (2) 3.2 Decoding of the Proposed Representation The way of decoding a solution is organized as follows. First the solution is sorted in ascending order using the numbers. If two operations have the same number, the operation with the shorter processing time (known as SPT priority rule) is preferred. Thus, the solution shown in formula 2 is modified to 2 C : [o 21 = 1, o 12 = 1, o 11 = 2, o 22 = 2] (3) Second, the dispatching sequence of operations is constructed in a simple step-by-step manner. The chromosome is scanned from left to right. If the predecessor of the currently viewed operation has already been considered in the dispatching sequence, the operation is scheduled. The procedure of scanning the chromosome is repeated until all operations are scheduled. Algorithm 1 clarifies the procedure. Algorithm 1: The simple schedule-builder Data : C = Array[1...n m] of sorted operations begin while not all operations scheduled do for (i = 0; i < n m; i + +) do if predecessor of C[i] is already scheduled then dispatch C[i] remove C[i] from the chromosome end The numbers consequently determine the relative position of the dispatching attempt(s). For the sorted solution shown in formula 3 the corresponding dispatching sequence would be C : [o 12, o 11, o 22, o 21 ] (4) Obviously the proposed representation which only decodes feasible solutions, is redundant. Thus one schedule (phenotype) can be represented in many different ways (genotype). But we expect the use of standard crossover operators independent of any constraints to over-compensate the disadvantage of redundancy. 4 Experiments 4.1 Single-objective Context To evaluate the proposed representation we perform some experiments in a single-objective context. The experiments are conducted using 100 chromosomes and run for 100 generations. The problem instances are Fisher & Thompson s ft10 and ft20 as well as Lawrence s la23, la27 and la32. Every solution of the current generation is selected for uniform-crossover together with another solution which is extract using roulette-wheel-selection. The probability of crossover is 0.9, while the rate of mutation is Every offspring replaces the worst solution of the current generation. Table 1 shows the results obtained. 2 Under the assumption that t 21 t 12 and t 11 t The used mutation operator just swaps two numbers of two operations randomly. 3

4 Instance Optimum Best Average ft ft la la la Table 1: Results for single-objective JSP 4.2 Multi-objective Context Multi-objective optimization differs from single-objective optimization in many ways [Deb01]. For two or more conflicting objectives, each objective corresponds to a different optimal solution, but none of these trade-off solutions is optimal with respect to all objectives. Thus, multi-objective optimization does not try to find one optimal solution but all trade-off solutions. Apart from having multiple objectives, the fundamental difference is that multi-objective optimization deals with two goals. The first goal is to find a set of solutions as close as possible to the Pareto-optimal front. The second goal is to find a set of solutions as diverse as possible. For multi-objective scheduling the proposed genetic algorithm is modified in the following way. We introduce an archive which contains non-dominated solutions. If an offspring dominates a member C of the archive the offspring will become a new member of the archive, while C will be removed. The fitness-value of a chromosome C is calculated by dividing one by the number of solution which dominates C. Two JSP given by Bagchi [Bag99, p. 265, Tab and 12.2] are the basis of the following experiments. The first problem, called JSP1, is a ten job five machine instance. The second problem, called JSP2, is a ten job ten machine instance. Figure 1 and Figure 2 show all non-dominated solutions of a random initial population as gray circles and all non-dominated solutions of generation 200 as transparent circles for JSP1 respectively JSP2. The diameter of the circle symbolizes the mean tardiness of the corresponding solution. Apparently, the GA minimizes all objectives simultaneously. Mean flow-time Mean flow-time Makespan Makespan Figure 1: JSP1: Non-dominated solutions Figure 2: JSP2: Non-dominated solutions To maintain sufficient diversity in later generations and to evaluate significance of populationsize, the number of chromosomes is now increased to 400. The algorithm loops for 150 generations. Figure 3 and Figure 4 show the number of Pareto-optimal solutions for the process of evolution. Table 2 and Table 3 show the values of objectives for ten Pareto-optimal solutions. 4

5 Unique Pareto-solutions Generations Figure 3: JSP1: Process in finding Paretooptimal solutions solution makespan flow-time tardiness Table 2: JSP1: Ten Pareto-optimal solutions Unique Pareto-solutions Generations Figure 4: JSP2: Process in finding Paretooptimal solutions solution makespan flow-time tardiness Table 3: JSP2: Ten Pareto-optimal solutions 5 Conclusion In this report we have presented a multi-objective GA for job-shop scheduling with a new kind of representation that allows the use of simple recombination operators. The new representation has initially been tested in a single-objective context to evaluate its effectiveness with quite promising results. Afterwards the algorithm has been applied to two JSP presented by Bagchi [Bag99]. The simulation results clearly show that the proposed approach is able to find a set of solutions close to the Pareto-optimal front as well as find a set of diverse solutions. References [Bag99] T. P. Bagchi. Multiobjective Scheduling By Genetic Algorithms. Kluwer Academic Publishers, [CGT96] R. Cheng, M. Gen, and Y. Tsujimura. A tutorial of job-shop scheduling problems using genetic algorithms - i. representation. Computers industrial Engineering, 30: , [Deb01] K. Deb. Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons,

6 [JM98] [JRM] A. Jain and S. Meeran. A state-of-the-art review of job-shop scheduling techniques. Technical report, University of Dundee, Department of Applied Physics, Electronic and Mechanical Engineering, A. Jain, B. Rangaswamy, and S. Meeran. Job-shop neighbourhoods and move evaluation strategies. [Mat96] D.C. Mattfeld. Evolutionary Search and the Job Shop. Physica-Verlag, [OYK96] I. Ono, M. Yamamura, and S. Kobayashi. A genetic algorithm for job-shop scheduling problems using job-based order crossover. In Proceedings of ICEC 96, pages ,

GT HEURISTIC FOR SOLVING MULTI OBJECTIVE JOB SHOP SCHEDULING PROBLEMS

GT HEURISTIC FOR SOLVING MULTI OBJECTIVE JOB SHOP SCHEDULING PROBLEMS GT HEURISTIC FOR SOLVING MULTI OBJECTIVE JOB SHOP SCHEDULING PROBLEMS M. Chandrasekaran 1, D. Lakshmipathy 1 and P. Sriramya 2 1 Department of Mechanical Engineering, Vels University, Chennai, India 2

More information

A LOCAL SEARCH GENETIC ALGORITHM FOR THE JOB SHOP SCHEDULING PROBLEM

A LOCAL SEARCH GENETIC ALGORITHM FOR THE JOB SHOP SCHEDULING PROBLEM A LOCAL SEARCH GENETIC ALGORITHM FOR THE JOB SHOP SCHEDULING PROBLEM Kebabla Mebarek, Mouss Leila Hayat and Mouss Nadia Laboratoire d'automatique et productique, Université Hadj Lakhdar -Batna kebabla@yahoo.fr,

More information

Job Shop Scheduling Problem (JSSP) Genetic Algorithms Critical Block and DG distance Neighbourhood Search

Job Shop Scheduling Problem (JSSP) Genetic Algorithms Critical Block and DG distance Neighbourhood Search A JOB-SHOP SCHEDULING PROBLEM (JSSP) USING GENETIC ALGORITHM (GA) Mahanim Omar, Adam Baharum, Yahya Abu Hasan School of Mathematical Sciences, Universiti Sains Malaysia 11800 Penang, Malaysia Tel: (+)

More information

A Taguchi Approach to Parameter Setting in a Genetic Algorithm for General Job Shop Scheduling Problem

A Taguchi Approach to Parameter Setting in a Genetic Algorithm for General Job Shop Scheduling Problem IEMS Vol. 6, No., pp. 9-4, December 007. A Taguchi Approach to Parameter Setting in a Genetic Algorithm for General Job Shop Scheduling Problem Ji Ung Sun School of Industrial & Managment Engineering Hankuk

More information

A Hybrid of Genetic Algorithm and Bottleneck Shifting for Flexible Job Shop Scheduling Problem

A Hybrid of Genetic Algorithm and Bottleneck Shifting for Flexible Job Shop Scheduling Problem A Hybrid of Genetic Algorithm and Bottleneck Shifting for Flexible Job Shop Scheduling Problem Jie Gao School of Management, Xi an Jiaotong University Xi an, 00, China +()- calebgao@yahoo.com Mitsuo Gen

More information

Multi-Objective Pipe Smoothing Genetic Algorithm For Water Distribution Network Design

Multi-Objective Pipe Smoothing Genetic Algorithm For Water Distribution Network Design City University of New York (CUNY) CUNY Academic Works International Conference on Hydroinformatics 8-1-2014 Multi-Objective Pipe Smoothing Genetic Algorithm For Water Distribution Network Design Matthew

More information

Extending MATLAB and GA to Solve Job Shop Manufacturing Scheduling Problems

Extending MATLAB and GA to Solve Job Shop Manufacturing Scheduling Problems Extending MATLAB and GA to Solve Job Shop Manufacturing Scheduling Problems Hamidullah Khan Niazi 1, Sun Hou-Fang 2, Zhang Fa-Ping 3, Riaz Ahmed 4 ( 1, 4 National University of Sciences and Technology

More information

Bi-objective Optimization for Reentrant Shop Scheduling Problem

Bi-objective Optimization for Reentrant Shop Scheduling Problem Doi: 10.12982/cmujns.2015.0098 CMUJ NS Special Issue on Logistics and Supply Chain Systems (2015) Vol.14(4) 447 Bi-objective Optimization for Reentrant Shop Scheduling Problem Chettha Chamnanlor 1 and

More information

An Evolutionary Algorithm for the Multi-objective Shortest Path Problem

An Evolutionary Algorithm for the Multi-objective Shortest Path Problem An Evolutionary Algorithm for the Multi-objective Shortest Path Problem Fangguo He Huan Qi Qiong Fan Institute of Systems Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China

More information

METAHEURISTICS Genetic Algorithm

METAHEURISTICS Genetic Algorithm METAHEURISTICS Genetic Algorithm Jacques A. Ferland Department of Informatique and Recherche Opérationnelle Université de Montréal ferland@iro.umontreal.ca Genetic Algorithm (GA) Population based algorithm

More information

Bi-Objective Optimization for Scheduling in Heterogeneous Computing Systems

Bi-Objective Optimization for Scheduling in Heterogeneous Computing Systems Bi-Objective Optimization for Scheduling in Heterogeneous Computing Systems Tony Maciejewski, Kyle Tarplee, Ryan Friese, and Howard Jay Siegel Department of Electrical and Computer Engineering Colorado

More information

Multi-objective Optimization

Multi-objective Optimization Some introductory figures from : Deb Kalyanmoy, Multi-Objective Optimization using Evolutionary Algorithms, Wiley 2001 Multi-objective Optimization Implementation of Constrained GA Based on NSGA-II Optimization

More information

Introduction to Evolutionary Computation

Introduction to Evolutionary Computation Introduction to Evolutionary Computation The Brought to you by (insert your name) The EvoNet Training Committee Some of the Slides for this lecture were taken from the Found at: www.cs.uh.edu/~ceick/ai/ec.ppt

More information

Grid Scheduling Strategy using GA (GSSGA)

Grid Scheduling Strategy using GA (GSSGA) F Kurus Malai Selvi et al,int.j.computer Technology & Applications,Vol 3 (5), 8-86 ISSN:2229-693 Grid Scheduling Strategy using GA () Dr.D.I.George Amalarethinam Director-MCA & Associate Professor of Computer

More information

CHAPTER 6 REAL-VALUED GENETIC ALGORITHMS

CHAPTER 6 REAL-VALUED GENETIC ALGORITHMS CHAPTER 6 REAL-VALUED GENETIC ALGORITHMS 6.1 Introduction Gradient-based algorithms have some weaknesses relative to engineering optimization. Specifically, it is difficult to use gradient-based algorithms

More information

A Generalized Permutation Approach to. Department of Economics, University of Bremen, Germany

A Generalized Permutation Approach to. Department of Economics, University of Bremen, Germany A Generalized Permutation Approach to Job Shop Scheduling with Genetic Algorithms? Christian Bierwirth Department of Economics, University of Bremen, Germany Abstract. In order to sequence the tasks of

More information

SOLVING THE JOB-SHOP SCHEDULING PROBLEM WITH A SIMPLE GENETIC ALGORITHM

SOLVING THE JOB-SHOP SCHEDULING PROBLEM WITH A SIMPLE GENETIC ALGORITHM ISSN 1726-4529 Int j simul model 8 (2009) 4, 197-205 Original scientific paper SOLVING THE JOB-SHOP SCHEDULING PROBLEM WITH A SIMPLE GENETIC ALGORITHM Lestan, Z.; Brezocnik, M.; Buchmeister, B.; Brezovnik,

More information

Evolutionary Algorithms: Lecture 4. Department of Cybernetics, CTU Prague.

Evolutionary Algorithms: Lecture 4. Department of Cybernetics, CTU Prague. Evolutionary Algorithms: Lecture 4 Jiří Kubaĺık Department of Cybernetics, CTU Prague http://labe.felk.cvut.cz/~posik/xe33scp/ pmulti-objective Optimization :: Many real-world problems involve multiple

More information

Forward-backward Improvement for Genetic Algorithm Based Optimization of Resource Constrained Scheduling Problem

Forward-backward Improvement for Genetic Algorithm Based Optimization of Resource Constrained Scheduling Problem 2017 2nd International Conference on Advances in Management Engineering and Information Technology (AMEIT 2017) ISBN: 978-1-60595-457-8 Forward-backward Improvement for Genetic Algorithm Based Optimization

More information

A Modified Genetic Algorithm for Task Scheduling in Multiprocessor Systems

A Modified Genetic Algorithm for Task Scheduling in Multiprocessor Systems A Modified Genetic Algorithm for Task Scheduling in Multiprocessor Systems Yi-Hsuan Lee and Cheng Chen Department of Computer Science and Information Engineering National Chiao Tung University, Hsinchu,

More information

Lamarckian Repair and Darwinian Repair in EMO Algorithms for Multiobjective 0/1 Knapsack Problems

Lamarckian Repair and Darwinian Repair in EMO Algorithms for Multiobjective 0/1 Knapsack Problems Repair and Repair in EMO Algorithms for Multiobjective 0/ Knapsack Problems Shiori Kaige, Kaname Narukawa, and Hisao Ishibuchi Department of Industrial Engineering, Osaka Prefecture University, - Gakuen-cho,

More information

NCGA : Neighborhood Cultivation Genetic Algorithm for Multi-Objective Optimization Problems

NCGA : Neighborhood Cultivation Genetic Algorithm for Multi-Objective Optimization Problems : Neighborhood Cultivation Genetic Algorithm for Multi-Objective Optimization Problems Shinya Watanabe Graduate School of Engineering, Doshisha University 1-3 Tatara Miyakodani,Kyo-tanabe, Kyoto, 10-031,

More information

Recombination of Similar Parents in EMO Algorithms

Recombination of Similar Parents in EMO Algorithms H. Ishibuchi and K. Narukawa, Recombination of parents in EMO algorithms, Lecture Notes in Computer Science 341: Evolutionary Multi-Criterion Optimization, pp. 265-279, Springer, Berlin, March 25. (Proc.

More information

A Survey of Solving Approaches for Multiple Objective Flexible Job Shop Scheduling Problems

A Survey of Solving Approaches for Multiple Objective Flexible Job Shop Scheduling Problems BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 15, No 2 Sofia 2015 Print ISSN: 1311-9702; Online ISSN: 1314-4081 DOI: 10.1515/cait-2015-0025 A Survey of Solving Approaches

More information

Evolutionary Algorithm for Embedded System Topology Optimization. Supervisor: Prof. Dr. Martin Radetzki Author: Haowei Wang

Evolutionary Algorithm for Embedded System Topology Optimization. Supervisor: Prof. Dr. Martin Radetzki Author: Haowei Wang Evolutionary Algorithm for Embedded System Topology Optimization Supervisor: Prof. Dr. Martin Radetzki Author: Haowei Wang Agenda Introduction to the problem Principle of evolutionary algorithm Model specification

More information

Optimizing Flow Shop Sequencing Through Simulation Optimization Using Evolutionary Methods

Optimizing Flow Shop Sequencing Through Simulation Optimization Using Evolutionary Methods Optimizing Flow Shop Sequencing Through Simulation Optimization Using Evolutionary Methods Sucharith Vanguri 1, Travis W. Hill 2, Allen G. Greenwood 1 1 Department of Industrial Engineering 260 McCain

More information

The Genetic Algorithm for finding the maxima of single-variable functions

The Genetic Algorithm for finding the maxima of single-variable functions Research Inventy: International Journal Of Engineering And Science Vol.4, Issue 3(March 2014), PP 46-54 Issn (e): 2278-4721, Issn (p):2319-6483, www.researchinventy.com The Genetic Algorithm for finding

More information

Multi-objective Optimization

Multi-objective Optimization Jugal K. Kalita Single vs. Single vs. Single Objective Optimization: When an optimization problem involves only one objective function, the task of finding the optimal solution is called single-objective

More information

ANTICIPATORY VERSUS TRADITIONAL GENETIC ALGORITHM

ANTICIPATORY VERSUS TRADITIONAL GENETIC ALGORITHM Anticipatory Versus Traditional Genetic Algorithm ANTICIPATORY VERSUS TRADITIONAL GENETIC ALGORITHM ABSTRACT Irina Mocanu 1 Eugenia Kalisz 2 This paper evaluates the performances of a new type of genetic

More information

Handling Constraints in Multi-Objective GA for Embedded System Design

Handling Constraints in Multi-Objective GA for Embedded System Design Handling Constraints in Multi-Objective GA for Embedded System Design Biman Chakraborty Ting Chen Tulika Mitra Abhik Roychoudhury National University of Singapore stabc@nus.edu.sg, {chent,tulika,abhik}@comp.nus.edu.sg

More information

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL., NO., MONTH YEAR 1

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL., NO., MONTH YEAR 1 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL., NO., MONTH YEAR 1 An Efficient Approach to Non-dominated Sorting for Evolutionary Multi-objective Optimization Xingyi Zhang, Ye Tian, Ran Cheng, and

More information

Solving A Nonlinear Side Constrained Transportation Problem. by Using Spanning Tree-based Genetic Algorithm. with Fuzzy Logic Controller

Solving A Nonlinear Side Constrained Transportation Problem. by Using Spanning Tree-based Genetic Algorithm. with Fuzzy Logic Controller Solving A Nonlinear Side Constrained Transportation Problem by Using Spanning Tree-based Genetic Algorithm with Fuzzy Logic Controller Yasuhiro Tsujimura *, Mitsuo Gen ** and Admi Syarif **,*** * Department

More information

A hybrid particle swarm optimization for job shop scheduling problem

A hybrid particle swarm optimization for job shop scheduling problem Computers & Industrial Engineering 51 (2006) 791 808 www.elsevier.com/locate/dsw A hybrid particle swarm optimization for job shop scheduling problem D.Y. Sha a,b, *, Cheng-Yu Hsu b a Department of Business

More information

Genetic Algorithms. Kang Zheng Karl Schober

Genetic Algorithms. Kang Zheng Karl Schober Genetic Algorithms Kang Zheng Karl Schober Genetic algorithm What is Genetic algorithm? A genetic algorithm (or GA) is a search technique used in computing to find true or approximate solutions to optimization

More information

THIS PAPER proposes a hybrid decoding to apply with

THIS PAPER proposes a hybrid decoding to apply with Proceedings of the 01 Federated Conference on Computer Science and Information Systems pp. 9 0 Biased Random Key Genetic Algorithm with Hybrid Decoding for Multi-objective Optimization Panwadee Tangpattanakul

More information

Models and Algorithms for Shortest Paths in a Time Dependent Network

Models and Algorithms for Shortest Paths in a Time Dependent Network Models and Algorithms for Shortest Paths in a Time Dependent Network Yinzhen Li 1,2, Ruichun He 1 Zhongfu Zhang 1 Yaohuang Guo 2 1 Lanzhou Jiaotong University, Lanzhou 730070, P. R. China 2 Southwest Jiaotong

More information

AN EVOLUTIONARY APPROACH TO DISTANCE VECTOR ROUTING

AN EVOLUTIONARY APPROACH TO DISTANCE VECTOR ROUTING International Journal of Latest Research in Science and Technology Volume 3, Issue 3: Page No. 201-205, May-June 2014 http://www.mnkjournals.com/ijlrst.htm ISSN (Online):2278-5299 AN EVOLUTIONARY APPROACH

More information

Offspring Generation Method using Delaunay Triangulation for Real-Coded Genetic Algorithms

Offspring Generation Method using Delaunay Triangulation for Real-Coded Genetic Algorithms Offspring Generation Method using Delaunay Triangulation for Real-Coded Genetic Algorithms Hisashi Shimosaka 1, Tomoyuki Hiroyasu 2, and Mitsunori Miki 2 1 Graduate School of Engineering, Doshisha University,

More information

Using ɛ-dominance for Hidden and Degenerated Pareto-Fronts

Using ɛ-dominance for Hidden and Degenerated Pareto-Fronts IEEE Symposium Series on Computational Intelligence Using ɛ-dominance for Hidden and Degenerated Pareto-Fronts Heiner Zille Institute of Knowledge and Language Engineering University of Magdeburg, Germany

More information

A Steady-State Genetic Algorithm for Traveling Salesman Problem with Pickup and Delivery

A Steady-State Genetic Algorithm for Traveling Salesman Problem with Pickup and Delivery A Steady-State Genetic Algorithm for Traveling Salesman Problem with Pickup and Delivery Monika Sharma 1, Deepak Sharma 2 1 Research Scholar Department of Computer Science and Engineering, NNSS SGI Samalkha,

More information

Using Genetic Algorithms in Integer Programming for Decision Support

Using Genetic Algorithms in Integer Programming for Decision Support Doi:10.5901/ajis.2014.v3n6p11 Abstract Using Genetic Algorithms in Integer Programming for Decision Support Dr. Youcef Souar Omar Mouffok Taher Moulay University Saida, Algeria Email:Syoucef12@yahoo.fr

More information

Job Shop Scheduling Using Genetic Algorithim Er. Shobhit Gupta 1 Ruchi Gaba 2

Job Shop Scheduling Using Genetic Algorithim Er. Shobhit Gupta 1 Ruchi Gaba 2 International Journal for Research in Technological Studies Vol. 1, Issue 7, June 2014 ISSN (online): 2348-1439 Er. Shobhit Gupta 1 Ruchi Gaba 2 1 Assistant Professor, Department of CSE & IT, 2 PG Scholar

More information

An effective architecture for learning and evolving flexible job-shop schedules

An effective architecture for learning and evolving flexible job-shop schedules European Journal of Operational Research 179 (2007) 316 333 Discrete Optimization An effective architecture for learning and evolving flexible job-shop schedules Nhu Binh Ho, Joc Cing Tay *, Edmund M.-K.

More information

Multi-Objective Optimization Using Genetic Algorithms

Multi-Objective Optimization Using Genetic Algorithms Multi-Objective Optimization Using Genetic Algorithms Mikhail Gaerlan Computational Physics PH 4433 December 8, 2015 1 Optimization Optimization is a general term for a type of numerical problem that involves

More information

HYBRID GENETIC ALGORITHM WITH GREAT DELUGE TO SOLVE CONSTRAINED OPTIMIZATION PROBLEMS

HYBRID GENETIC ALGORITHM WITH GREAT DELUGE TO SOLVE CONSTRAINED OPTIMIZATION PROBLEMS HYBRID GENETIC ALGORITHM WITH GREAT DELUGE TO SOLVE CONSTRAINED OPTIMIZATION PROBLEMS NABEEL AL-MILLI Financial and Business Administration and Computer Science Department Zarqa University College Al-Balqa'

More information

BI-OBJECTIVE EVOLUTIONARY ALGORITHM FOR FLEXIBLE JOB-SHOP SCHEDULING PROBLEM. Minimizing Make Span and the Total Workload of Machines

BI-OBJECTIVE EVOLUTIONARY ALGORITHM FOR FLEXIBLE JOB-SHOP SCHEDULING PROBLEM. Minimizing Make Span and the Total Workload of Machines International Journal of Mathematics and Computer Applications Research (IJMCAR) ISSN 2249-6955 Vol. 2 Issue 4 Dec - 2012 25-32 TJPRC Pvt. Ltd., BI-OBJECTIVE EVOLUTIONARY ALGORITHM FOR FLEXIBLE JOB-SHOP

More information

JOB SHOP RE- SCHEDULING USING GENETIC ALGORITHM A CASE STUDY

JOB SHOP RE- SCHEDULING USING GENETIC ALGORITHM A CASE STUDY JOB SHOP RE- SCHEDULING USING GENETIC ALGORITHM A CASE STUDY P.ChithtraiSelvam, S.Vignesh, K.Mandharasalam, Sathiesh kumar, C.Sowmya Danalakshmi 5,,, Department of Mechanical Engineering, P.A.College of

More information

Evolutionary multi-objective algorithm design issues

Evolutionary multi-objective algorithm design issues Evolutionary multi-objective algorithm design issues Karthik Sindhya, PhD Postdoctoral Researcher Industrial Optimization Group Department of Mathematical Information Technology Karthik.sindhya@jyu.fi

More information

Particle Swarm Optimization Approach for Scheduling of Flexible Job Shops

Particle Swarm Optimization Approach for Scheduling of Flexible Job Shops Particle Swarm Optimization Approach for Scheduling of Flexible Job Shops 1 Srinivas P. S., 2 Ramachandra Raju V., 3 C.S.P Rao. 1 Associate Professor, V. R. Sdhartha Engineering College, Vijayawada 2 Professor,

More information

Optimal Facility Layout Problem Solution Using Genetic Algorithm

Optimal Facility Layout Problem Solution Using Genetic Algorithm Optimal Facility Layout Problem Solution Using Genetic Algorithm Maricar G. Misola and Bryan B. Navarro Abstract Facility Layout Problem (FLP) is one of the essential problems of several types of manufacturing

More information

A Fusion of Crossover and Local Search

A Fusion of Crossover and Local Search IEEE International Conference on Industrial Technology (ICIT 96) Shanghai, China DECEMBER 2-6, 1996 pp. 426 430 A Fusion of Crossover and Local Search Takeshi Yamada and Ryohei Nakano NTT Communication

More information

Genetic Algorithms for Solving. Open Shop Scheduling Problems. Sami Khuri and Sowmya Rao Miryala. San Jose State University.

Genetic Algorithms for Solving. Open Shop Scheduling Problems. Sami Khuri and Sowmya Rao Miryala. San Jose State University. Genetic Algorithms for Solving Open Shop Scheduling Problems Sami Khuri and Sowmya Rao Miryala Department of Mathematics and Computer Science San Jose State University San Jose, California 95192, USA khuri@cs.sjsu.edu

More information

QUT Digital Repository:

QUT Digital Repository: QUT Digital Repository: http://eprints.qut.edu.au/ This is the accepted version of this conference paper. To be published as: Ai, Lifeng and Tang, Maolin and Fidge, Colin J. (2010) QoS-oriented sesource

More information

The study of comparisons of three crossover operators in genetic algorithm for solving single machine scheduling problem. Quan OuYang, Hongyun XU a*

The study of comparisons of three crossover operators in genetic algorithm for solving single machine scheduling problem. Quan OuYang, Hongyun XU a* International Conference on Manufacturing Science and Engineering (ICMSE 2015) The study of comparisons of three crossover operators in genetic algorithm for solving single machine scheduling problem Quan

More information

Literature Review On Implementing Binary Knapsack problem

Literature Review On Implementing Binary Knapsack problem Literature Review On Implementing Binary Knapsack problem Ms. Niyati Raj, Prof. Jahnavi Vitthalpura PG student Department of Information Technology, L.D. College of Engineering, Ahmedabad, India Assistant

More information

Introduction to Genetic Algorithms. Genetic Algorithms

Introduction to Genetic Algorithms. Genetic Algorithms Introduction to Genetic Algorithms Genetic Algorithms We ve covered enough material that we can write programs that use genetic algorithms! More advanced example of using arrays Could be better written

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization Approximation Algorithms and Heuristics November 21, 2016 École Centrale Paris, Châtenay-Malabry, France Dimo Brockhoff Inria Saclay Ile-de-France 2 Exercise: The Knapsack

More information

Genetic Algorithms Variations and Implementation Issues

Genetic Algorithms Variations and Implementation Issues Genetic Algorithms Variations and Implementation Issues CS 431 Advanced Topics in AI Classic Genetic Algorithms GAs as proposed by Holland had the following properties: Randomly generated population Binary

More information

HYBRID EVOLUTIONARY APPROACH FOR MULTI-OBJECTIVE JOB-SHOP SCHEDULING PROBLEM

HYBRID EVOLUTIONARY APPROACH FOR MULTI-OBJECTIVE JOB-SHOP SCHEDULING PROBLEM HYBRID EVOLUTIONARY APPROACH FOR MULTI-OBJECTIVE JOB-SHOP SCHEDULING PROBLEM Kazi Shah Nawaz Ripon Computer Science and Engineering Discipline, Khulna University, Khulna 9208, Bangladesh. Email: ripon@cseku.ac.bd

More information

Introduction to Genetic Algorithms. Based on Chapter 10 of Marsland Chapter 9 of Mitchell

Introduction to Genetic Algorithms. Based on Chapter 10 of Marsland Chapter 9 of Mitchell Introduction to Genetic Algorithms Based on Chapter 10 of Marsland Chapter 9 of Mitchell Genetic Algorithms - History Pioneered by John Holland in the 1970s Became popular in the late 1980s Based on ideas

More information

Towards Understanding Evolutionary Bilevel Multi-Objective Optimization Algorithm

Towards Understanding Evolutionary Bilevel Multi-Objective Optimization Algorithm Towards Understanding Evolutionary Bilevel Multi-Objective Optimization Algorithm Ankur Sinha and Kalyanmoy Deb Helsinki School of Economics, PO Box, FIN-, Helsinki, Finland (e-mail: ankur.sinha@hse.fi,

More information

Representations in Genetic Algorithm for the Job Shop Scheduling Problem: A Computational Study

Representations in Genetic Algorithm for the Job Shop Scheduling Problem: A Computational Study J. Software Engineering & Applications, 2010, 3, 1155-1162 doi:10.4236/jsea.2010.312135 Published Online December 2010 (http://www.scirp.org/journal/jsea) Representations in Genetic Algorithm for the Job

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization Approximation Algorithms and Heuristics November 6, 2015 École Centrale Paris, Châtenay-Malabry, France Dimo Brockhoff INRIA Lille Nord Europe 2 Exercise: The Knapsack Problem

More information

A Genetic Algorithm for Graph Matching using Graph Node Characteristics 1 2

A Genetic Algorithm for Graph Matching using Graph Node Characteristics 1 2 Chapter 5 A Genetic Algorithm for Graph Matching using Graph Node Characteristics 1 2 Graph Matching has attracted the exploration of applying new computing paradigms because of the large number of applications

More information

A GENETIC ALGORITHM FOR CLUSTERING ON VERY LARGE DATA SETS

A GENETIC ALGORITHM FOR CLUSTERING ON VERY LARGE DATA SETS A GENETIC ALGORITHM FOR CLUSTERING ON VERY LARGE DATA SETS Jim Gasvoda and Qin Ding Department of Computer Science, Pennsylvania State University at Harrisburg, Middletown, PA 17057, USA {jmg289, qding}@psu.edu

More information

Suppose you have a problem You don t know how to solve it What can you do? Can you use a computer to somehow find a solution for you?

Suppose you have a problem You don t know how to solve it What can you do? Can you use a computer to somehow find a solution for you? Gurjit Randhawa Suppose you have a problem You don t know how to solve it What can you do? Can you use a computer to somehow find a solution for you? This would be nice! Can it be done? A blind generate

More information

Comparison of Evolutionary Multiobjective Optimization with Reference Solution-Based Single-Objective Approach

Comparison of Evolutionary Multiobjective Optimization with Reference Solution-Based Single-Objective Approach Comparison of Evolutionary Multiobjective Optimization with Reference Solution-Based Single-Objective Approach Hisao Ishibuchi Graduate School of Engineering Osaka Prefecture University Sakai, Osaka 599-853,

More information

GENETIC ALGORITHM with Hands-On exercise

GENETIC ALGORITHM with Hands-On exercise GENETIC ALGORITHM with Hands-On exercise Adopted From Lecture by Michael Negnevitsky, Electrical Engineering & Computer Science University of Tasmania 1 Objective To understand the processes ie. GAs Basic

More information

Genetic Algorithm Performance with Different Selection Methods in Solving Multi-Objective Network Design Problem

Genetic Algorithm Performance with Different Selection Methods in Solving Multi-Objective Network Design Problem etic Algorithm Performance with Different Selection Methods in Solving Multi-Objective Network Design Problem R. O. Oladele Department of Computer Science University of Ilorin P.M.B. 1515, Ilorin, NIGERIA

More information

Genetic algorithms for job shop scheduling problems with alternative routings

Genetic algorithms for job shop scheduling problems with alternative routings Downloaded By: [Pusan National University Library] At: 07:0 8 March 008 International Journal of Production Research, Vol., No. 0, May 008, 9 70 Genetic algorithms for job shop scheduling problems with

More information

A Combined Meta-Heuristic with Hyper-Heuristic Approach to Single Machine Production Scheduling Problem

A Combined Meta-Heuristic with Hyper-Heuristic Approach to Single Machine Production Scheduling Problem A Combined Meta-Heuristic with Hyper-Heuristic Approach to Single Machine Production Scheduling Problem C. E. Nugraheni, L. Abednego Abstract This paper is concerned with minimization of mean tardiness

More information

Genetic Algorithms. Chapter 3

Genetic Algorithms. Chapter 3 Chapter 3 1 Contents of this Chapter 2 Introductory example. Representation of individuals: Binary, integer, real-valued, and permutation. Mutation operator. Mutation for binary, integer, real-valued,

More information

Design of a Route Guidance System with Shortest Driving Time Based on Genetic Algorithm

Design of a Route Guidance System with Shortest Driving Time Based on Genetic Algorithm Design of a Route Guidance System with Shortest Driving Time Based on Genetic Algorithm UMIT ATILA 1, ISMAIL RAKIP KARAS 2, CEVDET GOLOGLU 3, BEYZA YAMAN 2, ILHAMI MUHARREM ORAK 2 1 Directorate of Computer

More information

A Genetic Approach for Solving Minimum Routing Cost Spanning Tree Problem

A Genetic Approach for Solving Minimum Routing Cost Spanning Tree Problem A Genetic Approach for Solving Minimum Routing Cost Spanning Tree Problem Quoc Phan Tan Abstract Minimum Routing Cost Spanning Tree (MRCT) is one of spanning tree optimization problems having several applications

More information

Solving Fuzzy Job-Shop Scheduling Problems with a Multiobjective Optimizer

Solving Fuzzy Job-Shop Scheduling Problems with a Multiobjective Optimizer Solving Fuzzy Job-Shop Scheduling Problems with a Multiobjective Optimizer Thanh-Do Tran, Ramiro Varela, Inés González-Rodríguez, El-Ghazali Talbi To cite this version: Thanh-Do Tran, Ramiro Varela, Inés

More information

Lecture Set 1B. S.D. Sudhoff Spring 2010

Lecture Set 1B. S.D. Sudhoff Spring 2010 Lecture Set 1B More Basic Tools S.D. Sudhoff Spring 2010 1 Outline Time Domain Simulation (ECE546, MA514) Basic Methods for Time Domain Simulation MATLAB ACSL Single and Multi-Objective Optimization (ECE580)

More information

A Genetic Algorithm for Multiprocessor Task Scheduling

A Genetic Algorithm for Multiprocessor Task Scheduling A Genetic Algorithm for Multiprocessor Task Scheduling Tashniba Kaiser, Olawale Jegede, Ken Ferens, Douglas Buchanan Dept. of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB,

More information

GA s Parameter Selection for JSP Using Orthogonal Design

GA s Parameter Selection for JSP Using Orthogonal Design GA s Parameter Selection for JSP Using Orthogonal Design Lei WANG, Jingcao CAI, Ming LI School of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, China Abstract

More information

Evolutionary Computation for Combinatorial Optimization

Evolutionary Computation for Combinatorial Optimization Evolutionary Computation for Combinatorial Optimization Günther Raidl Vienna University of Technology, Vienna, Austria raidl@ads.tuwien.ac.at EvoNet Summer School 2003, Parma, Italy August 25, 2003 Evolutionary

More information

Pseudo-code for typical EA

Pseudo-code for typical EA Extra Slides for lectures 1-3: Introduction to Evolutionary algorithms etc. The things in slides were more or less presented during the lectures, combined by TM from: A.E. Eiben and J.E. Smith, Introduction

More information

REAL-CODED GENETIC ALGORITHMS CONSTRAINED OPTIMIZATION. Nedim TUTKUN

REAL-CODED GENETIC ALGORITHMS CONSTRAINED OPTIMIZATION. Nedim TUTKUN REAL-CODED GENETIC ALGORITHMS CONSTRAINED OPTIMIZATION Nedim TUTKUN nedimtutkun@gmail.com Outlines Unconstrained Optimization Ackley s Function GA Approach for Ackley s Function Nonlinear Programming Penalty

More information

Revision of a Floating-Point Genetic Algorithm GENOCOP V for Nonlinear Programming Problems

Revision of a Floating-Point Genetic Algorithm GENOCOP V for Nonlinear Programming Problems 4 The Open Cybernetics and Systemics Journal, 008,, 4-9 Revision of a Floating-Point Genetic Algorithm GENOCOP V for Nonlinear Programming Problems K. Kato *, M. Sakawa and H. Katagiri Department of Artificial

More information

A PRIORITY BASED HYBRID EVOLUTIONARY ALGORITHM APPROACH TO MULTI-OBJECTIVE FLEXIBLE JOB SHOP PROBLEM

A PRIORITY BASED HYBRID EVOLUTIONARY ALGORITHM APPROACH TO MULTI-OBJECTIVE FLEXIBLE JOB SHOP PROBLEM Advances and Applications in Mathematical Sciences Volume 17, Issue 1, November 2017, Pages 231-249 2017 Mili Publications A PRIORITY BASED HYBRID EVOLUTIONARY ALGORITHM APPROACH TO MULTI-OBJECTIVE FLEXIBLE

More information

A Genetic Algorithm for the Multiple Knapsack Problem in Dynamic Environment

A Genetic Algorithm for the Multiple Knapsack Problem in Dynamic Environment , 23-25 October, 2013, San Francisco, USA A Genetic Algorithm for the Multiple Knapsack Problem in Dynamic Environment Ali Nadi Ünal Abstract The 0/1 Multiple Knapsack Problem is an important class of

More information

Research Article Path Planning Using a Hybrid Evolutionary Algorithm Based on Tree Structure Encoding

Research Article Path Planning Using a Hybrid Evolutionary Algorithm Based on Tree Structure Encoding e Scientific World Journal, Article ID 746260, 8 pages http://dx.doi.org/10.1155/2014/746260 Research Article Path Planning Using a Hybrid Evolutionary Algorithm Based on Tree Structure Encoding Ming-Yi

More information

METAHEURISTIC. Jacques A. Ferland Department of Informatique and Recherche Opérationnelle Université de Montréal.

METAHEURISTIC. Jacques A. Ferland Department of Informatique and Recherche Opérationnelle Université de Montréal. METAHEURISTIC Jacques A. Ferland Department of Informatique and Recherche Opérationnelle Université de Montréal ferland@iro.umontreal.ca March 2015 Overview Heuristic Constructive Techniques: Generate

More information

Research Article Cultural-Based Genetic Tabu Algorithm for Multiobjective Job Shop Scheduling

Research Article Cultural-Based Genetic Tabu Algorithm for Multiobjective Job Shop Scheduling Mathematical Problems in Engineering, Article ID 230719, 14 pages http://dx.doi.org/10.1155/2014/230719 Research Article Cultural-Based Genetic Tabu Algorithm for Multiobjective Job Shop Scheduling Yuzhen

More information

Using Genetic Algorithms to Solve the Box Stacking Problem

Using Genetic Algorithms to Solve the Box Stacking Problem Using Genetic Algorithms to Solve the Box Stacking Problem Jenniffer Estrada, Kris Lee, Ryan Edgar October 7th, 2010 Abstract The box stacking or strip stacking problem is exceedingly difficult to solve

More information

Mechanical Component Design for Multiple Objectives Using Elitist Non-Dominated Sorting GA

Mechanical Component Design for Multiple Objectives Using Elitist Non-Dominated Sorting GA Mechanical Component Design for Multiple Objectives Using Elitist Non-Dominated Sorting GA Kalyanmoy Deb, Amrit Pratap, and Subrajyoti Moitra Kanpur Genetic Algorithms Laboratory (KanGAL) Indian Institute

More information

GENETIC ALGORITHM METHOD FOR COMPUTER AIDED QUALITY CONTROL

GENETIC ALGORITHM METHOD FOR COMPUTER AIDED QUALITY CONTROL 3 rd Research/Expert Conference with International Participations QUALITY 2003, Zenica, B&H, 13 and 14 November, 2003 GENETIC ALGORITHM METHOD FOR COMPUTER AIDED QUALITY CONTROL Miha Kovacic, Miran Brezocnik

More information

Unsupervised Feature Selection Using Multi-Objective Genetic Algorithms for Handwritten Word Recognition

Unsupervised Feature Selection Using Multi-Objective Genetic Algorithms for Handwritten Word Recognition Unsupervised Feature Selection Using Multi-Objective Genetic Algorithms for Handwritten Word Recognition M. Morita,2, R. Sabourin 3, F. Bortolozzi 3 and C. Y. Suen 2 École de Technologie Supérieure, Montreal,

More information

Genetic algorithm based on number of children and height task for multiprocessor task Scheduling

Genetic algorithm based on number of children and height task for multiprocessor task Scheduling Genetic algorithm based on number of children and height task for multiprocessor task Scheduling Marjan Abdeyazdan 1,Vahid Arjmand 2,Amir masoud Rahmani 3, Hamid Raeis ghanavati 4 1 Department of Computer

More information

Computational Intelligence

Computational Intelligence Computational Intelligence Module 6 Evolutionary Computation Ajith Abraham Ph.D. Q What is the most powerful problem solver in the Universe? ΑThe (human) brain that created the wheel, New York, wars and

More information

Genetic Programming. Charles Chilaka. Department of Computational Science Memorial University of Newfoundland

Genetic Programming. Charles Chilaka. Department of Computational Science Memorial University of Newfoundland Genetic Programming Charles Chilaka Department of Computational Science Memorial University of Newfoundland Class Project for Bio 4241 March 27, 2014 Charles Chilaka (MUN) Genetic algorithms and programming

More information

Applications of scenarios in early embedded system design space exploration van Stralen, P.

Applications of scenarios in early embedded system design space exploration van Stralen, P. UvA-DARE (Digital Academic Repository) Applications of scenarios in early embedded system design space exploration van Stralen, P. Link to publication Citation for published version (APA): van Stralen,

More information

Incorporation of Scalarizing Fitness Functions into Evolutionary Multiobjective Optimization Algorithms

Incorporation of Scalarizing Fitness Functions into Evolutionary Multiobjective Optimization Algorithms H. Ishibuchi, T. Doi, and Y. Nojima, Incorporation of scalarizing fitness functions into evolutionary multiobjective optimization algorithms, Lecture Notes in Computer Science 4193: Parallel Problem Solving

More information

Artificial Intelligence Application (Genetic Algorithm)

Artificial Intelligence Application (Genetic Algorithm) Babylon University College of Information Technology Software Department Artificial Intelligence Application (Genetic Algorithm) By Dr. Asaad Sabah Hadi 2014-2015 EVOLUTIONARY ALGORITHM The main idea about

More information

Multi-Objective Optimization using Evolutionary Algorithms

Multi-Objective Optimization using Evolutionary Algorithms Multi-Objective Optimization using Evolutionary Algorithms Kalyanmoy Deb Department of Mechanical Engineering, Indian Institute of Technology, Kanpur, India JOHN WILEY & SONS, LTD Chichester New York Weinheim

More information

Preliminary Background Tabu Search Genetic Algorithm

Preliminary Background Tabu Search Genetic Algorithm Preliminary Background Tabu Search Genetic Algorithm Faculty of Information Technology University of Science Vietnam National University of Ho Chi Minh City March 2010 Problem used to illustrate General

More information

DETERMINING MAXIMUM/MINIMUM VALUES FOR TWO- DIMENTIONAL MATHMATICLE FUNCTIONS USING RANDOM CREOSSOVER TECHNIQUES

DETERMINING MAXIMUM/MINIMUM VALUES FOR TWO- DIMENTIONAL MATHMATICLE FUNCTIONS USING RANDOM CREOSSOVER TECHNIQUES DETERMINING MAXIMUM/MINIMUM VALUES FOR TWO- DIMENTIONAL MATHMATICLE FUNCTIONS USING RANDOM CREOSSOVER TECHNIQUES SHIHADEH ALQRAINY. Department of Software Engineering, Albalqa Applied University. E-mail:

More information