Divide-and-Conquer Algorithms

Size: px
Start display at page:

Download "Divide-and-Conquer Algorithms"

Transcription

1 Divide-and-Conquer Algorithms Divide and Conquer Three main steps Break input into several parts, Solve the problem in each part recursively, and Combine the solutions for the parts Contribution Applicable for those problems that may be split into several parts, and there is an efficient way to combine solutions The original brute-force method is often a polynomial algorithm (e.g., O(n 2 )) A divide-and-conquer method aims to reduce the time complexity (e.g., from O(n 2 ) to O(nlog 2 n)) Also helpful when combined with other algorithmic strategies Computer Algorithms: Lecture 5 1

2 Contents Recurrence analysis for Divide-and-Conquer algorithms Dividing the problem into 2 parts Example: The mergesort algorithm Other variants of problem splitting Example problems that may be solved by Divideand-Conquer Counting inversions Finding the closest pair Integer multiplication More problems to think about Computer Algorithms: Lecture 5 2

3 Recurrence analysis An example: the mergesort algorithm Dividing the original problem into two parts Split: O(1) Combination: O(n) Overall time complexity: O(nlog 2 n) Computer Algorithms: Lecture 5 3

4 Time required for split and Combine: O(n) How many times of split? Log 2 n. [modified from Kleinberg & Tardos, 2006] Computer Algorithms: Lecture 5 4

5 Number of parts: 1; size: n/2; merge: O(n) Time complexity = O(n) Total time required = O(n*[((1/2) log2n -1))/(1/2-1)]) = O(n) [modified from Kleinberg & Tardos, 2006] Computer Algorithms: Lecture 5 5

6 Number of parts: q (q > 2); size: n/2; merge: O(n) Time complexity = O(q log 2n ) = O(n log 2q ) Example: when q=3, O(n log 23 ) = O(n 1.59 ) Total time required = O(n*[((q/2) log2n -1))/(q/2-1)]) = O(q log2n ) = O(n log2q ) We still have Log 2 n times of split! [modified from Kleinberg & Tardos, 2006] Computer Algorithms: Lecture 5 6

7 In summary, when merging requires O(n) time # parts q=1 q=2 q>2 size n/2 O(n) O(nlog 2 n) O(n log 2q ) n/q Infinitive loop O(nlog 2 n) O(nlog q n) When merging requires O(n 2 ) time # parts q=1 q=2 q>2 size n/2 O(n 2 ) O(2n 2 ) O(n log2q ) if q>4 O(4n 2 ) if q<4 n/q Infinitive loop O(2n 2 ) O(qn 2 ) Computer Algorithms: Lecture 5 7

8 Counting inversions The problem Given a sequence of distinct numbers, determine the number of inversions An inversion is a pair of numbers that are out-of-order [modified from Kleinberg & Tardos, 2006] Computer Algorithms: Lecture 5 8

9 The number of inversions smoothly reflect how the given sequence is out of order No inversions, if it is in ascending order (complete agreement) C(n,2) inversions, if it is in descending order (complete disagreement) Application Collaborative filtering Finding which person s preference is similar to yours by comparing his ranking and your ranking Computer Algorithms: Lecture 5 9

10 The algorithm Split Recursive call Merge [modified from Kleinberg & Tardos, 2006] Computer Algorithms: Lecture 5 10

11 [from Kleinberg & Tardos, 2006] O(n) [modified from Kleinberg & Tardos, 2006] Computer Algorithms: Lecture 5 11

12 Finding the closest pair The problem Given n points in the plane, find the pair that is closest together Applications Computer graphics, computer vision, geographic information systems, and even molecular modeling At most, we need to spend O(n 2 ) time There are C(n,2) possible pairs Computer Algorithms: Lecture 5 12

13 The algorithm At most one point in the area O(15n) O(n) [modified from Kleinberg & Tardos, 2006] [modified from Kleinberg & Tardos, 2006] Computer Algorithms: Lecture 5 13

14 Sorting according to the x- and y-coordinates, respectively Trivial case Recursive call Split: Q is the left part, R is the right part (Both have a similar size) At most n points O(1) S includes points from both Q and R We simply consider next 15 points No need to search for neighbors Merge O(nlog 2 n) [modified from Kleinberg & Tardos, 2006] Computer Algorithms: Lecture 5 14

15 Integer multiplication The problem Given two n-digit numbers, find their multiplication O(n 2 ) [from Kleinberg & Tardos, 2006] Computer Algorithms: Lecture 5 15

16 The algorithm (O(n log 23 ) = O(n 1.59 ), because T(n) = 3T(n/2) + cn Split: x 1 (x 0 ) is the higher-order (lower-order) part in base-2 representation of x Recursive call Merge [modified from Kleinberg & Tardos, 2006] Computer Algorithms: Lecture 5 16

17 More problems for you to practice Counting the number of significant inversions As mentioned above, an inversion is a pair i<j such that a i >a j But such kind of inversions may be too sensitive Definition: significant inversion is a pair i<j such that a i >2a j Can you find an O(nlog 2 n) algorithm to count significant inversions? In merging, using an additional pointer to scan for significant inversions? Computer Algorithms: Lecture 5 17

18 Finding the median (i.e. n th smallest value) among 2n numbers There are two databases: one contains n numbers, while the other contains the other n numbers You can only specify a parameter k to query the two databases The database returns the k th number in its database Can you query the databases at most O(log 2 n) times? How to use two queries to reduce the search space from 2n to n? Computer Algorithms: Lecture 5 18

19 Checking equivalent objects Given n bank cards and an equivalence tester, you are asked to check whether there are more than n/2 cards equivalent to each other The equivalence tester accepts two cards, and returns whether they are equivalent to each other Two equivalent cards indicate possible fraud Can you answer the question by performing at most O(nlog 2 n) invocations to the tester? How to merge in O(n)? Can the equivalence class grow when one of the splits has less than one half of equivalent cards? How much time will it need? Computer Algorithms: Lecture 5 19

20 Finding all visible lines from n lines A line is visible if you may see some portion of it from the perspective of y= (i.e. look down) Can you have an O(nlog 2 n) algorithm to do so? For some x 0, a 5 x 0 +b 5 > a j x 0 +b j, for all j 5 L5 is visible. When looking down from the upper view, no portion of L2 may be seen L2 is not visible! [modified from Kleinberg & Tardos, 2006] How to split (by lines or by area)? How to merge in O(n) as in merge sort (keeping only one visible segment for each line, sorted by x-coordinates)? Computer Algorithms: Lecture 5 20

21 Exercise 1 Finding the n th smallest value among 2n numbers The problem is as described in the class Setting n to Randomly generate the numbers Implement two approach Brute-force querying Divide-and-Conquer querying Computer Algorithms: Lecture 5 21

22 Exercise 2 Integer multiplication Randomly generate two integers A and B There are digits (0 ~ 9) in A and B Arrays may be used to store A and B Compute C = A B Using a straightforward brute-force approach Using a divide-and-conquer approach Write a brief report to compare the results from the two approaches Computer Algorithms: Lecture 5 22

Divide and Conquer Algorithms

Divide and Conquer Algorithms Divide and Conquer Algorithms T. M. Murali February 19, 2009 Divide and Conquer Break up a problem into several parts. Solve each part recursively. Solve base cases by brute force. Efficiently combine

More information

Divide and Conquer 1

Divide and Conquer 1 Divide and Conquer A Useful Recurrence Relation Def. T(n) = number of comparisons to mergesort an input of size n. Mergesort recurrence. T(n) if n T n/2 T n/2 solve left half solve right half merging n

More information

Closest Pair of Points. Cormen et.al 33.4

Closest Pair of Points. Cormen et.al 33.4 Closest Pair of Points Cormen et.al 33.4 Closest Pair of Points Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them. Fundamental geometric problem. Graphics,

More information

Chapter 1 Divide and Conquer Algorithm Theory WS 2014/15 Fabian Kuhn

Chapter 1 Divide and Conquer Algorithm Theory WS 2014/15 Fabian Kuhn Chapter 1 Divide and Conquer Algorithm Theory WS 2014/15 Fabian Kuhn Divide And Conquer Principle Important algorithm design method Examples from Informatik 2: Sorting: Mergesort, Quicksort Binary search

More information

Ch5. Divide-and-Conquer

Ch5. Divide-and-Conquer Ch5. Divide-and-Conquer 1 5.1 Mergesort Sorting Sorting. Given n elements, rearrange in ascending order. Applications. Sort a list of names. Organize an MP3 library. obvious applications Display Google

More information

CSE 421 Closest Pair of Points, Master Theorem, Integer Multiplication

CSE 421 Closest Pair of Points, Master Theorem, Integer Multiplication CSE 421 Closest Pair of Points, Master Theorem, Integer Multiplication Shayan Oveis Gharan 1 Finding the Closest Pair of Points Closest Pair of Points (non geometric) Given n points and arbitrary distances

More information

Plan for Today. Finish recurrences. Inversion Counting. Closest Pair of Points

Plan for Today. Finish recurrences. Inversion Counting. Closest Pair of Points Plan for Today Finish recurrences Inversion Counting Closest Pair of Points Divide and Conquer Divide-and-conquer. Divide problem into several parts. Solve each part recursively. Combine solutions to sub-problems

More information

Parallel Algorithms for (PRAM) Computers & Some Parallel Algorithms. Reference : Horowitz, Sahni and Rajasekaran, Computer Algorithms

Parallel Algorithms for (PRAM) Computers & Some Parallel Algorithms. Reference : Horowitz, Sahni and Rajasekaran, Computer Algorithms Parallel Algorithms for (PRAM) Computers & Some Parallel Algorithms Reference : Horowitz, Sahni and Rajasekaran, Computer Algorithms Part 2 1 3 Maximum Selection Problem : Given n numbers, x 1, x 2,, x

More information

5. DIVIDE AND CONQUER I

5. DIVIDE AND CONQUER I 5. DIVIDE AND CONQUER I mergesort counting inversions closest pair of points randomized quicksort median and selection Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley Copyright 2013

More information

Chapter 1 Divide and Conquer Algorithm Theory WS 2013/14 Fabian Kuhn

Chapter 1 Divide and Conquer Algorithm Theory WS 2013/14 Fabian Kuhn Chapter 1 Divide and Conquer Algorithm Theory WS 2013/14 Fabian Kuhn Divide And Conquer Principle Important algorithm design method Examples from Informatik 2: Sorting: Mergesort, Quicksort Binary search

More information

We can use a max-heap to sort data.

We can use a max-heap to sort data. Sorting 7B N log N Sorts 1 Heap Sort We can use a max-heap to sort data. Convert an array to a max-heap. Remove the root from the heap and store it in its proper position in the same array. Repeat until

More information

Chapter 1 Divide and Conquer Algorithm Theory WS 2015/16 Fabian Kuhn

Chapter 1 Divide and Conquer Algorithm Theory WS 2015/16 Fabian Kuhn Chapter 1 Divide and Conquer Algorithm Theory WS 2015/16 Fabian Kuhn Divide And Conquer Principle Important algorithm design method Examples from Informatik 2: Sorting: Mergesort, Quicksort Binary search

More information

5.4 Closest Pair of Points

5.4 Closest Pair of Points 5.4 Closest Pair of Points Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them. Fundamental geometric primitive. Graphics, computer vision, geographic information

More information

CSC Design and Analysis of Algorithms

CSC Design and Analysis of Algorithms CSC 8301- Design and Analysis of Algorithms Lecture 6 Divide and Conquer Algorithm Design Technique Divide-and-Conquer The most-well known algorithm design strategy: 1. Divide a problem instance into two

More information

CSC Design and Analysis of Algorithms. Lecture 6. Divide and Conquer Algorithm Design Technique. Divide-and-Conquer

CSC Design and Analysis of Algorithms. Lecture 6. Divide and Conquer Algorithm Design Technique. Divide-and-Conquer CSC 8301- Design and Analysis of Algorithms Lecture 6 Divide and Conquer Algorithm Design Technique Divide-and-Conquer The most-well known algorithm design strategy: 1. Divide a problem instance into two

More information

Chapter 5. Divide and Conquer. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved.

Chapter 5. Divide and Conquer. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. Chapter 5 Divide and Conquer Slides by Kevin Wayne. Copyright 25 Pearson-Addison Wesley. All rights reserved. Divide-and-Conquer Divide-and-conquer. Break up problem into several parts. Solve each part

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 13 Divide and Conquer Closest Pair of Points Convex Hull Strassen Matrix Mult. Adam Smith 9/24/2008 A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova,

More information

Divide-Conquer-Glue Algorithms

Divide-Conquer-Glue Algorithms Divide-Conquer-Glue Algorithms Closest Pair Tyler Moore CSE 3353, SMU, Dallas, TX Lecture 12 5. DIVIDE AND CONQUER mergesort counting inversions closest pair of points randomized quicksort median and selection

More information

CSE 202 Divide-and-conquer algorithms. Fan Chung Graham UC San Diego

CSE 202 Divide-and-conquer algorithms. Fan Chung Graham UC San Diego CSE 22 Divide-and-conquer algorithms Fan Chung Graham UC San Diego A useful fact about trees Any tree on n vertices contains a vertex v whose removal separates the remaining graph into two parts, one of

More information

CSE 202 Divide-and-conquer algorithms. Fan Chung Graham UC San Diego

CSE 202 Divide-and-conquer algorithms. Fan Chung Graham UC San Diego CSE 22 Divide-and-conquer algorithms Fan Chung Graham UC San Diego Announcements Homework due today before the class. About homework, write your own homework, allowing oral discussion with one fixed partner.

More information

Divide and Conquer. Design and Analysis of Algorithms Andrei Bulatov

Divide and Conquer. Design and Analysis of Algorithms Andrei Bulatov Divide and Conquer Design and Analysis of Algorithms Andrei Bulatov Algorithms Divide and Conquer 4-2 Divide and Conquer, MergeSort Recursive algorithms: Call themselves on subproblem Divide and Conquer

More information

Test 1 Review Questions with Solutions

Test 1 Review Questions with Solutions CS3510 Design & Analysis of Algorithms Section A Test 1 Review Questions with Solutions Instructor: Richard Peng Test 1 in class, Wednesday, Sep 13, 2017 Main Topics Asymptotic complexity: O, Ω, and Θ.

More information

Algorithms: Lecture 7. Chalmers University of Technology

Algorithms: Lecture 7. Chalmers University of Technology Algorithms: Lecture 7 Chalmers University of Technology Today s Lecture Divide & Conquer Counting Inversions Closest Pair of Points Multiplication of large integers Intro to the forthcoming problems Graphs:

More information

Quicksort. Repeat the process recursively for the left- and rightsub-blocks.

Quicksort. Repeat the process recursively for the left- and rightsub-blocks. Quicksort As the name implies, this is the fastest known sorting algorithm in practice. It is excellent for average input but bad for the worst-case input. (you will see later). Basic idea: (another divide-and-conquer

More information

LECTURE NOTES OF ALGORITHMS: DESIGN TECHNIQUES AND ANALYSIS

LECTURE NOTES OF ALGORITHMS: DESIGN TECHNIQUES AND ANALYSIS Department of Computer Science University of Babylon LECTURE NOTES OF ALGORITHMS: DESIGN TECHNIQUES AND ANALYSIS By Faculty of Science for Women( SCIW), University of Babylon, Iraq Samaher@uobabylon.edu.iq

More information

Union Find. Data Structures and Algorithms Andrei Bulatov

Union Find. Data Structures and Algorithms Andrei Bulatov Union Find Data Structures and Algorithms Andrei Bulatov Algorithms Union Find 6-2 Union Find In a nutshell, Kruskal s algorithm starts with a completely disjoint graph, and adds edges creating a graph

More information

Analysis of Algorithms. Unit 4 - Analysis of well known Algorithms

Analysis of Algorithms. Unit 4 - Analysis of well known Algorithms Analysis of Algorithms Unit 4 - Analysis of well known Algorithms 1 Analysis of well known Algorithms Brute Force Algorithms Greedy Algorithms Divide and Conquer Algorithms Decrease and Conquer Algorithms

More information

Review implementation of Stable Matching Survey of common running times. Turn in completed problem sets. Jan 18, 2019 Sprenkle - CSCI211

Review implementation of Stable Matching Survey of common running times. Turn in completed problem sets. Jan 18, 2019 Sprenkle - CSCI211 Objectives Review implementation of Stable Matching Survey of common running times Turn in completed problem sets Jan 18, 2019 Sprenkle - CSCI211 1 Review: Asymptotic Analysis of Gale-Shapley Alg Not explicitly

More information

Design and Analysis of Algorithms Prof. Madhavan Mukund Chennai Mathematical Institute

Design and Analysis of Algorithms Prof. Madhavan Mukund Chennai Mathematical Institute Design and Analysis of Algorithms Prof. Madhavan Mukund Chennai Mathematical Institute Module 07 Lecture - 38 Divide and Conquer: Closest Pair of Points We now look at another divide and conquer algorithm,

More information

Divide-and-Conquer. Combine solutions to sub-problems into overall solution. Break up problem of size n into two equal parts of size!n.

Divide-and-Conquer. Combine solutions to sub-problems into overall solution. Break up problem of size n into two equal parts of size!n. Chapter 5 Divide and Conquer Slides by Kevin Wayne. Copyright 25 Pearson-Addon Wesley. All rights reserved. Divide-and-Conquer Divide-and-conquer. Break up problem into several parts. Solve each part recursively.

More information

Chapter 1 Divide and Conquer Algorithm Theory WS 2013/14 Fabian Kuhn

Chapter 1 Divide and Conquer Algorithm Theory WS 2013/14 Fabian Kuhn Chapter 1 Divide and Conquer Algorithm Theory WS 2013/14 Fabian Kuhn Number of Inversions Formal problem: Given: array,,,, of distinct elements Objective: Compute number of inversions 0 Example: 4, 1,

More information

Divide and Conquer. Algorithm Fall Semester

Divide and Conquer. Algorithm Fall Semester Divide and Conquer Algorithm 2014 Fall Semester Divide-and-Conquer The most-well known algorithm design strategy: 1. Divide instance of problem into two or more smaller instances 2. Solve smaller instances

More information

Union Find 11/2/2009. Union Find. Union Find via Linked Lists. Union Find via Linked Lists (cntd) Weighted-Union Heuristic. Weighted-Union Heuristic

Union Find 11/2/2009. Union Find. Union Find via Linked Lists. Union Find via Linked Lists (cntd) Weighted-Union Heuristic. Weighted-Union Heuristic Algorithms Union Find 16- Union Find Union Find Data Structures and Algorithms Andrei Bulatov In a nutshell, Kruskal s algorithm starts with a completely disjoint graph, and adds edges creating a graph

More information

CSE 421 Algorithms: Divide and Conquer

CSE 421 Algorithms: Divide and Conquer CSE 42 Algorithms: Divide and Conquer Larry Ruzzo Thanks to Paul Beame, Kevin Wayne for some slides Outline: General Idea algorithm design paradigms: divide and conquer Review of Merge Sort Why does it

More information

Pseudo code of algorithms are to be read by.

Pseudo code of algorithms are to be read by. Cs502 Quiz No1 Complete Solved File Pseudo code of algorithms are to be read by. People RAM Computer Compiler Approach of solving geometric problems by sweeping a line across the plane is called sweep.

More information

Closest Pair of Points in the Plane. Closest pair of points. Closest Pair of Points. Closest Pair of Points

Closest Pair of Points in the Plane. Closest pair of points. Closest Pair of Points. Closest Pair of Points Closest Pair of Points Closest pair of points. Given n points in the plane, find a pair with smallest euclidean distance between them. Closest Pair of Points in the Plane Inge i Gørtz The slides on the

More information

Lecture 4 CS781 February 3, 2011

Lecture 4 CS781 February 3, 2011 Lecture 4 CS78 February 3, 2 Topics: Data Compression-Huffman Trees Divide-and-Conquer Solving Recurrence Relations Counting Inversions Closest Pair Integer Multiplication Matrix Multiplication Data Compression

More information

Problem. Input: An array A = (A[1],..., A[n]) with length n. Output: a permutation A of A, that is sorted: A [i] A [j] for all. 1 i j n.

Problem. Input: An array A = (A[1],..., A[n]) with length n. Output: a permutation A of A, that is sorted: A [i] A [j] for all. 1 i j n. Problem 5. Sorting Simple Sorting, Quicksort, Mergesort Input: An array A = (A[1],..., A[n]) with length n. Output: a permutation A of A, that is sorted: A [i] A [j] for all 1 i j n. 98 99 Selection Sort

More information

Merge Sort. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong

Merge Sort. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong Department of Computer Science and Engineering Chinese University of Hong Kong In this lecture, we will design the merge sort which sorts n elements in O(n log n) time. The algorithm illustrates a technique

More information

CSC Design and Analysis of Algorithms. Lecture 6. Divide and Conquer Algorithm Design Technique. Divide-and-Conquer

CSC Design and Analysis of Algorithms. Lecture 6. Divide and Conquer Algorithm Design Technique. Divide-and-Conquer CSC 8301- Design and Analysis of Algorithms Lecture 6 Divide and Conuer Algorithm Design Techniue Divide-and-Conuer The most-well known algorithm design strategy: 1. Divide a problem instance into two

More information

Unit-2 Divide and conquer 2016

Unit-2 Divide and conquer 2016 2 Divide and conquer Overview, Structure of divide-and-conquer algorithms, binary search, quick sort, Strassen multiplication. 13% 05 Divide-and- conquer The Divide and Conquer Paradigm, is a method of

More information

Divide-and-Conquer. The most-well known algorithm design strategy: smaller instances. combining these solutions

Divide-and-Conquer. The most-well known algorithm design strategy: smaller instances. combining these solutions Divide-and-Conquer The most-well known algorithm design strategy: 1. Divide instance of problem into two or more smaller instances 2. Solve smaller instances recursively 3. Obtain solution to original

More information

CMSC 451: Divide and Conquer

CMSC 451: Divide and Conquer CMSC 451: Divide and Conquer Slides By: Carl Kingsford Department of Computer Science University of Maryland, College Park Based on Sections 5.1 5.3 of Algorithm Design by Kleinberg & Tardos. Greedy Recap

More information

CSE 421 Greedy Alg: Union Find/Dijkstra s Alg

CSE 421 Greedy Alg: Union Find/Dijkstra s Alg CSE 1 Greedy Alg: Union Find/Dijkstra s Alg Shayan Oveis Gharan 1 Dijkstra s Algorithm Dijkstra(G, c, s) { d s 0 foreach (v V) d[v] //This is the key of node v foreach (v V) insert v onto a priority queue

More information

Parallel Models RAM. Parallel RAM aka PRAM. Variants of CRCW PRAM. Advanced Algorithms

Parallel Models RAM. Parallel RAM aka PRAM. Variants of CRCW PRAM. Advanced Algorithms Parallel Models Advanced Algorithms Piyush Kumar (Lecture 10: Parallel Algorithms) An abstract description of a real world parallel machine. Attempts to capture essential features (and suppress details?)

More information

Divide-and-Conquer. Dr. Yingwu Zhu

Divide-and-Conquer. Dr. Yingwu Zhu Divide-and-Conquer Dr. Yingwu Zhu Divide-and-Conquer The most-well known algorithm design technique: 1. Divide instance of problem into two or more smaller instances 2. Solve smaller instances independently

More information

Programming II (CS300)

Programming II (CS300) 1 Programming II (CS300) Chapter 12: Sorting Algorithms MOUNA KACEM mouna@cs.wisc.edu Spring 2018 Outline 2 Last week Implementation of the three tree depth-traversal algorithms Implementation of the BinarySearchTree

More information

Searching, Sorting. part 1

Searching, Sorting. part 1 Searching, Sorting part 1 Week 3 Objectives Searching: binary search Comparison-based search: running time bound Sorting: bubble, selection, insertion, merge Sorting: Heapsort Comparison-based sorting

More information

Sorting. Sorting. Stable Sorting. In-place Sort. Bubble Sort. Bubble Sort. Selection (Tournament) Heapsort (Smoothsort) Mergesort Quicksort Bogosort

Sorting. Sorting. Stable Sorting. In-place Sort. Bubble Sort. Bubble Sort. Selection (Tournament) Heapsort (Smoothsort) Mergesort Quicksort Bogosort Principles of Imperative Computation V. Adamchik CS 15-1 Lecture Carnegie Mellon University Sorting Sorting Sorting is ordering a list of objects. comparison non-comparison Hoare Knuth Bubble (Shell, Gnome)

More information

Scribe: Sam Keller (2015), Seth Hildick-Smith (2016), G. Valiant (2017) Date: January 25, 2017

Scribe: Sam Keller (2015), Seth Hildick-Smith (2016), G. Valiant (2017) Date: January 25, 2017 CS 6, Lecture 5 Quicksort Scribe: Sam Keller (05), Seth Hildick-Smith (06), G. Valiant (07) Date: January 5, 07 Introduction Today we ll study another sorting algorithm. Quicksort was invented in 959 by

More information

Divide and Conquer. Divide and Conquer

Divide and Conquer. Divide and Conquer October 6, 2017 Divide and Conquer Chapter 2 of Dasgupta et al. 1 Divide and Conquer Divide: If the input size is too large to deal with in a straightforward manner, divide the data into two or more disjoint

More information

Introduction to Computers and Programming. Today

Introduction to Computers and Programming. Today Introduction to Computers and Programming Prof. I. K. Lundqvist Lecture 10 April 8 2004 Today How to determine Big-O Compare data structures and algorithms Sorting algorithms 2 How to determine Big-O Partition

More information

Randomized algorithms. Inge Li Gørtz

Randomized algorithms. Inge Li Gørtz Randomized algorithms Inge Li Gørtz 1 Randomized algorithms Today What are randomized algorithms? Properties of randomized algorithms Three examples: Median/Select. Quick-sort Closest pair of points 2

More information

CS 171: Introduction to Computer Science II. Quicksort

CS 171: Introduction to Computer Science II. Quicksort CS 171: Introduction to Computer Science II Quicksort Roadmap MergeSort Recursive Algorithm (top-down) Practical Improvements Non-recursive algorithm (bottom-up) Analysis QuickSort Algorithm Analysis Practical

More information

Lecture 19 Sorting Goodrich, Tamassia

Lecture 19 Sorting Goodrich, Tamassia Lecture 19 Sorting 7 2 9 4 2 4 7 9 7 2 2 7 9 4 4 9 7 7 2 2 9 9 4 4 2004 Goodrich, Tamassia Outline Review 3 simple sorting algorithms: 1. selection Sort (in previous course) 2. insertion Sort (in previous

More information

Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, Merge Sort & Quick Sort

Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, Merge Sort & Quick Sort Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015 Merge Sort & Quick Sort 1 Divide-and-Conquer Divide-and conquer is a general algorithm

More information

Algorithms and Data Structures (INF1) Lecture 7/15 Hua Lu

Algorithms and Data Structures (INF1) Lecture 7/15 Hua Lu Algorithms and Data Structures (INF1) Lecture 7/15 Hua Lu Department of Computer Science Aalborg University Fall 2007 This Lecture Merge sort Quick sort Radix sort Summary We will see more complex techniques

More information

Cpt S 122 Data Structures. Sorting

Cpt S 122 Data Structures. Sorting Cpt S 122 Data Structures Sorting Nirmalya Roy School of Electrical Engineering and Computer Science Washington State University Sorting Process of re-arranging data in ascending or descending order Given

More information

Sorting Pearson Education, Inc. All rights reserved.

Sorting Pearson Education, Inc. All rights reserved. 1 19 Sorting 2 19.1 Introduction (Cont.) Sorting data Place data in order Typically ascending or descending Based on one or more sort keys Algorithms Insertion sort Selection sort Merge sort More efficient,

More information

Programming II (CS300)

Programming II (CS300) 1 Programming II (CS300) Chapter 12: Sorting Algorithms MOUNA KACEM mouna@cs.wisc.edu Spring 2018 Outline 2 Last week Implementation of the three tree depth-traversal algorithms Implementation of the BinarySearchTree

More information

Merge Sort

Merge Sort Merge Sort 7 2 9 4 2 4 7 9 7 2 2 7 9 4 4 9 7 7 2 2 9 9 4 4 Divide-and-Conuer Divide-and conuer is a general algorithm design paradigm: n Divide: divide the input data S in two disjoint subsets S 1 and

More information

7. Sorting I. 7.1 Simple Sorting. Problem. Algorithm: IsSorted(A) 1 i j n. Simple Sorting

7. Sorting I. 7.1 Simple Sorting. Problem. Algorithm: IsSorted(A) 1 i j n. Simple Sorting Simple Sorting 7. Sorting I 7.1 Simple Sorting Selection Sort, Insertion Sort, Bubblesort [Ottman/Widmayer, Kap. 2.1, Cormen et al, Kap. 2.1, 2.2, Exercise 2.2-2, Problem 2-2 19 197 Problem Algorithm:

More information

k-selection Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong

k-selection Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong Department of Computer Science and Engineering Chinese University of Hong Kong In this lecture, we will put randomization to some real use, by using it to solve a non-trivial problem called k-selection

More information

Chapter 4. Divide-and-Conquer. Copyright 2007 Pearson Addison-Wesley. All rights reserved.

Chapter 4. Divide-and-Conquer. Copyright 2007 Pearson Addison-Wesley. All rights reserved. Chapter 4 Divide-and-Conquer Copyright 2007 Pearson Addison-Wesley. All rights reserved. Divide-and-Conquer The most-well known algorithm design strategy: 2. Divide instance of problem into two or more

More information

Sorting. Sorting in Arrays. SelectionSort. SelectionSort. Binary search works great, but how do we create a sorted array in the first place?

Sorting. Sorting in Arrays. SelectionSort. SelectionSort. Binary search works great, but how do we create a sorted array in the first place? Sorting Binary search works great, but how do we create a sorted array in the first place? Sorting in Arrays Sorting algorithms: Selection sort: O(n 2 ) time Merge sort: O(nlog 2 (n)) time Quicksort: O(n

More information

Parallel Sorting Algorithms

Parallel Sorting Algorithms CSC 391/691: GPU Programming Fall 015 Parallel Sorting Algorithms Copyright 015 Samuel S. Cho Sorting Algorithms Review Bubble Sort: O(n ) Insertion Sort: O(n ) Quick Sort: O(n log n) Heap Sort: O(n log

More information

CSC Design and Analysis of Algorithms. Lecture 5. Decrease and Conquer Algorithm Design Technique. Decrease-and-Conquer

CSC Design and Analysis of Algorithms. Lecture 5. Decrease and Conquer Algorithm Design Technique. Decrease-and-Conquer CSC 8301- Design and Analysis of Algorithms Lecture 5 Decrease and Conquer Algorithm Design Technique Decrease-and-Conquer This algorithm design technique is based on exploiting a relationship between

More information

Fundamental problem in computing science. putting a collection of items in order. Often used as part of another algorithm

Fundamental problem in computing science. putting a collection of items in order. Often used as part of another algorithm cmpt-225 Sorting Sorting Fundamental problem in computing science putting a collection of items in order Often used as part of another algorithm e.g. sort a list, then do many binary searches e.g. looking

More information

Computer Science 385 Analysis of Algorithms Siena College Spring Topic Notes: Divide and Conquer

Computer Science 385 Analysis of Algorithms Siena College Spring Topic Notes: Divide and Conquer Computer Science 385 Analysis of Algorithms Siena College Spring 2011 Topic Notes: Divide and Conquer Divide and-conquer is a very common and very powerful algorithm design technique. The general idea:

More information

08 A: Sorting III. CS1102S: Data Structures and Algorithms. Martin Henz. March 10, Generated on Tuesday 9 th March, 2010, 09:58

08 A: Sorting III. CS1102S: Data Structures and Algorithms. Martin Henz. March 10, Generated on Tuesday 9 th March, 2010, 09:58 08 A: Sorting III CS1102S: Data Structures and Algorithms Martin Henz March 10, 2010 Generated on Tuesday 9 th March, 2010, 09:58 CS1102S: Data Structures and Algorithms 08 A: Sorting III 1 1 Recap: Sorting

More information

Divide and conquer algorithms. March 12, 2018 CSCI211 - Sprenkle. What is a recurrence rela&on? How can you compute D&C running &mes?

Divide and conquer algorithms. March 12, 2018 CSCI211 - Sprenkle. What is a recurrence rela&on? How can you compute D&C running &mes? Objec&ves Divide and conquer algorithms Ø Coun&ng inversions Ø Closest pairs of points March 1, 018 CSCI11 - Sprenkle 1 Review What is a recurrence rela&on? How can you compute D&C running &mes? March

More information

Design and Analysis of Algorithms - - Assessment

Design and Analysis of Algorithms - - Assessment X Courses» Design and Analysis of Algorithms Week 1 Quiz 1) In the code fragment below, start and end are integer values and prime(x) is a function that returns true if x is a prime number and false otherwise.

More information

Computer Science Approach to problem solving

Computer Science Approach to problem solving Computer Science Approach to problem solving If my boss / supervisor / teacher formulates a problem to be solved urgently, can I write a program to efficiently solve this problem??? Polynomial-Time Brute

More information

Java How to Program, 9/e. Copyright by Pearson Education, Inc. All Rights Reserved.

Java How to Program, 9/e. Copyright by Pearson Education, Inc. All Rights Reserved. Java How to Program, 9/e Copyright 1992-2012 by Pearson Education, Inc. All Rights Reserved. Searching data involves determining whether a value (referred to as the search key) is present in the data

More information

100 points total. CSE 3353 Homework 2 Spring 2013

100 points total. CSE 3353 Homework 2 Spring 2013 Name: 100 points total CSE 3353 Homework 2 Spring 2013 Assignment is due at 9:30am on February 28. Submit a hard copy of the assignment, including a copy of your code and outputs as requested in the assignment.

More information

Divide and Conquer 4-0

Divide and Conquer 4-0 Divide and Conquer 4-0 Divide-and-Conquer The most-well known algorithm design strategy: 1. Divide instance of problem into two or more smaller instances 2. Solve smaller instances recursively 3. Obtain

More information

(Refer Slide Time: 00:50)

(Refer Slide Time: 00:50) Programming, Data Structures and Algorithms Prof. N.S. Narayanaswamy Department of Computer Science and Engineering Indian Institute of Technology Madras Module - 03 Lecture 30 Searching Unordered linear

More information

Selection (deterministic & randomized): finding the median in linear time

Selection (deterministic & randomized): finding the median in linear time Lecture 4 Selection (deterministic & randomized): finding the median in linear time 4.1 Overview Given an unsorted array, how quickly can one find the median element? Can one do it more quickly than bysorting?

More information

Copyright 2009, Artur Czumaj 1

Copyright 2009, Artur Czumaj 1 CS 244 Algorithm Design Instructor: Artur Czumaj Lecture 2 Sorting You already know sorting algorithms Now you will see more We will want to understand generic techniques used for sorting! Lectures: Monday

More information

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Dynamic Programming I Date: 10/6/16

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Dynamic Programming I Date: 10/6/16 600.463 Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Dynamic Programming I Date: 10/6/16 11.1 Introduction Dynamic programming can be very confusing until you ve used it a

More information

CSE 101. Algorithm Design and Analysis Miles Jones Office 4208 CSE Building Lecture 17: Divide and Conquer Design examples.

CSE 101. Algorithm Design and Analysis Miles Jones Office 4208 CSE Building Lecture 17: Divide and Conquer Design examples. CSE 101 Algorithm Design and Analysis Miles Jones mej016@eng.ucsd.edu Office 4208 CSE Building Lecture 17: Divide and Conquer Design examples. DIVIDE AND CONQUER EXAMPLES (GREATEST OVERLAP.) Given a list

More information

Lecture #2. 1 Overview. 2 Worst-Case Analysis vs. Average Case Analysis. 3 Divide-and-Conquer Design Paradigm. 4 Quicksort. 4.

Lecture #2. 1 Overview. 2 Worst-Case Analysis vs. Average Case Analysis. 3 Divide-and-Conquer Design Paradigm. 4 Quicksort. 4. COMPSCI 330: Design and Analysis of Algorithms 8/28/2014 Lecturer: Debmalya Panigrahi Lecture #2 Scribe: Yilun Zhou 1 Overview This lecture presents two sorting algorithms, quicksort and mergesort, that

More information

Randomized Algorithms, Quicksort and Randomized Selection

Randomized Algorithms, Quicksort and Randomized Selection CMPS 2200 Fall 2017 Randomized Algorithms, Quicksort and Randomized Selection Carola Wenk Slides by Carola Wenk and Charles Leiserson CMPS 2200 Intro. to Algorithms 1 Deterministic Algorithms Runtime for

More information

Quick Sort. CSE Data Structures May 15, 2002

Quick Sort. CSE Data Structures May 15, 2002 Quick Sort CSE 373 - Data Structures May 15, 2002 Readings and References Reading Section 7.7, Data Structures and Algorithm Analysis in C, Weiss Other References C LR 15-May-02 CSE 373 - Data Structures

More information

Introduction to Algorithms

Introduction to Algorithms Lecture 1 Introduction to Algorithms 1.1 Overview The purpose of this lecture is to give a brief overview of the topic of Algorithms and the kind of thinking it involves: why we focus on the subjects that

More information

Chapter 10. Sorting and Searching Algorithms. Fall 2017 CISC2200 Yanjun Li 1. Sorting. Given a set (container) of n elements

Chapter 10. Sorting and Searching Algorithms. Fall 2017 CISC2200 Yanjun Li 1. Sorting. Given a set (container) of n elements Chapter Sorting and Searching Algorithms Fall 2017 CISC2200 Yanjun Li 1 Sorting Given a set (container) of n elements Eg array, set of words, etc Suppose there is an order relation that can be set across

More information

UNIT-2. Problem of size n. Sub-problem 1 size n/2. Sub-problem 2 size n/2. Solution to the original problem

UNIT-2. Problem of size n. Sub-problem 1 size n/2. Sub-problem 2 size n/2. Solution to the original problem Divide-and-conquer method: Divide-and-conquer is probably the best known general algorithm design technique. The principle behind the Divide-and-conquer algorithm design technique is that it is easier

More information

Rank. Selection Problem

Rank. Selection Problem Rank Rank of an element is its position in ascending key order. rank(2) = 0 rank(15) = 5 rank(20) = 7 [2,6,7,8,10,15,18,20,25,30,35,40] Selection Problem Given n unsorted elements, determine the k th smallest

More information

Selection Problem. Rank. Divide-And-Conquer Selection. Selection By Sorting

Selection Problem. Rank. Divide-And-Conquer Selection. Selection By Sorting Rank Rank of an element is its position in ascending key order. rank(2) = 0 rank(15) = 5 rank(20) = 7 [2,6,7,8,10,15,18,20,25,30,35,40] Selection Problem Given n unsorted elements, determine the k th smallest

More information

Scientific Computing. Algorithm Analysis

Scientific Computing. Algorithm Analysis ECE257 Numerical Methods and Scientific Computing Algorithm Analysis Today s s class: Introduction to algorithm analysis Growth of functions Introduction What is an algorithm? A sequence of computation

More information

CS2223: Algorithms Sorting Algorithms, Heap Sort, Linear-time sort, Median and Order Statistics

CS2223: Algorithms Sorting Algorithms, Heap Sort, Linear-time sort, Median and Order Statistics CS2223: Algorithms Sorting Algorithms, Heap Sort, Linear-time sort, Median and Order Statistics 1 Sorting 1.1 Problem Statement You are given a sequence of n numbers < a 1, a 2,..., a n >. You need to

More information

Comparison Sorts. Chapter 9.4, 12.1, 12.2

Comparison Sorts. Chapter 9.4, 12.1, 12.2 Comparison Sorts Chapter 9.4, 12.1, 12.2 Sorting We have seen the advantage of sorted data representations for a number of applications Sparse vectors Maps Dictionaries Here we consider the problem of

More information

Advanced Algorithms. Problem solving Techniques. Divide and Conquer הפרד ומשול

Advanced Algorithms. Problem solving Techniques. Divide and Conquer הפרד ומשול Advanced Algorithms Problem solving Techniques. Divide and Conquer הפרד ומשול 1 Divide and Conquer A method of designing algorithms that (informally) proceeds as follows: Given an instance of the problem

More information

School of Informatics, University of Edinburgh

School of Informatics, University of Edinburgh CS1Bh Lecture Note 1 An Overview of Algorithms The next five lectures are devoted to the study of algorithms, that is methods to solve specific problems. Other lectures in CS1Bh, further down the course,

More information

Lecture Notes on Quicksort

Lecture Notes on Quicksort Lecture Notes on Quicksort 15-122: Principles of Imperative Computation Frank Pfenning Lecture 8 February 5, 2015 1 Introduction In this lecture we consider two related algorithms for sorting that achieve

More information

Data Structures and Algorithms Week 4

Data Structures and Algorithms Week 4 Data Structures and Algorithms Week. About sorting algorithms. Heapsort Complete binary trees Heap data structure. Quicksort a popular algorithm very fast on average Previous Week Divide and conquer Merge

More information

Data Structures and Algorithms CMPSC 465

Data Structures and Algorithms CMPSC 465 Data Structures and Algorithms CMPSC 465 LECTURES 7-8 More Divide and Conquer Multiplication Adam Smith S. Raskhodnikova and A. Smith; based on slides by E. Demaine and C. Leiserson John McCarthy (1927

More information

Merge Sort. Run time typically depends on: Insertion sort can be faster than merge sort. Fast, able to handle any data

Merge Sort. Run time typically depends on: Insertion sort can be faster than merge sort. Fast, able to handle any data Run time typically depends on: How long things take to set up How many operations there are in each step How many steps there are Insertion sort can be faster than merge sort One array, one operation per

More information

Introduction to Algorithms

Introduction to Algorithms Introduction to Algorithms 6.046J/18.401J Lecture 5 Prof. Piotr Indyk Today Order statistics (e.g., finding median) Two O(n) time algorithms: Randomized: similar to Quicksort Deterministic: quite tricky

More information

Analysis of Algorithms - Medians and order statistic -

Analysis of Algorithms - Medians and order statistic - Analysis of Algorithms - Medians and order statistic - Andreas Ermedahl MRTC (Mälardalens Real-Time Reseach Center) andreas.ermedahl@mdh.se Autumn 2003 Order statistics Select the i:th smallest element

More information