Large Scale Circuit Partitioning

Size: px
Start display at page:

Download "Large Scale Circuit Partitioning"

Transcription

1 Large Scale Circuit Partitioning With Loose/Stable Net Removal And Signal Flow Based Clustering Jason Cong Honching Li Sung-Kyu Lim Dongmin Xu UCLA VLSI CAD Lab Toshiyuki Shibuya Fujitsu Lab, LTD Support : DARPA/ITO, NSF, Fujitsu MICRO

2 Outline Loose and Stable net Removal Partitioning Algorithm Maximum Fanout Free Subgraph Clustering Algorithm Performance of LSR/MFFS Conclusion & Ongoing Work

3 LSR Partitioning 1. Background 2. Motivation 3. Implementation

4 Circuit Partitioning Formulation minimize connection satisfy area constraint Significance fundamental for hierarchical layout essential for future technology Iterative Improvement Partitioning flexible, effective, and efficient

5 Evolution of IIP Algorithm Early Development KL : Kernighan & Lin [Bell70] FM : Fiduccia & Mattheyses [DAC82] LA : Krishnamurthy [TCom84] Recent Development CDIP/PROPf : Dutt & Deng [ICCAD96] Strawman : Hauck & Borriello [TCAD96] hmetis : Karypis & Kumar [DAC97] MLc : Alpert, Huang & Kahng [DAC97]

6 FM Algorithm Basics Basic Operation : Cell Move cost : gain (= reduction in cutsize) constraint : area balance cell status : free or locked Structure while (gain > 0) while ( free cell) move cell retrieve max-gain moves pass run

7 Loose-net Removal (LR) New Gain Formulation FREE net : only free cells block 0 block 1

8 Loose-net Removal (LR) New Gain Formulation LOOSE net : locked cells in one block block 0 block 1

9 Loose-net Removal (LR) New Gain Formulation FREE cells of LOOSE net FM : -3-2 block 0 block 1

10 Loose-net Removal (LR) New Gain Formulation IMMEDIATE ATTENTION, W > 0 LR : W W block 0 block 1

11 Loose-net Removal (LR) New Gain Formulation LR : W+W block 0 block 1

12 Loose-net Removal (LR) New Gain Formulation LOOSE net removed block 0 block 1

13 Loose-net Removal (LR) New Gain Formulation more LOOSE net formed block 0 block 1

14 Loose-net Removal (LR) New Gain Formulation Net Pulling Effect block 0 block 1

15 LR Implementation Gain Increase of LR favor shorter nets block 0 block 1

16 LR Implementation Gain Increase of LR incr(n) = k = 100 size(n) block 0 block 1

17 LR Implementation Gain Increase of LR : upper bound k Less Tie-Break

18 LR Implementation FM Enhancement while (gain > 0) while ( free cell) move max-gain cell c for (each loose net n incident on c) for (each free cell f of n) if (f.gain < T) f.gain += incr(n) retrieve max-gain moves

19 Performance of LR Bipartitioning without Clustering FM 1761 LA CDIP 1023 LR

20 Stable Net Transition (SNT) Stable Net [Shibuya et al, FSTJ95] remain cut during entire run limit FM solution Stable Net Removal at the end of each run detect stable net and isolate new initial partition fast convergence

21 Enhancement of LR Benefit of LR + SNT small loose + big stable net dynamic + static speedup LR How? initial partition by SNT for next run of LR Loose and Stable net Removal (LSR)

22 MFFS Clustering 1. Motivation 2. Algorithm 3. Speedup

23 Circuit Clustering Definition group closely connected component in circuits Significance reduce problem size speedup partitioning improve partitioning solution refinement through decomposition

24 Maximum Fanout Free Cone Significance [Cong & Ding, DAC93] exploit signal flow during clustering group logically dependant cells linear time complexity Benefit partitioning [Cong, Li, & Bagrodia DAC94] placement [Cong & Xu, ASP-DAC95]

25 Definition of MFFC Cone Rooted at v : Cv v and its predecessor s.t. if u in Cv, every path from u to v resides entirely in Cv Fanout Free Cone at v : FFCv Cv is fanout free if output(cv) = output(v) Maximum FFCv : MFFCv fanout free and maximum FFCv

26 Definition of MFFC Find All Single MFFC complexity : O( N + E )

27 Limitation of MFFC Designed for Combinational Circuit can t handle cycles in sequential circuit apply MFFC algorithm

28 Limitation of MFFC Designed for Combinational Circuit can t handle cycles in sequential circuit apply MFFS algorithm

29 Definition of MFFS For a node v in a sequential circuit; Fanout Free Subgraph rooted at v FFSv = {u every path from u to some PO passes through v } Maximum Fanout Free Subgraph rooted at v MFFSv = {u for all FFSv, u FFCv }

30 For Single MFFSv MFFS Construction

31 MFFS Construction For Single MFFSv select root node v and cut its fanout v

32 MFFS Construction For Single MFFSv mark nodes reachable backwards from PO v

33 MFFS Construction For Single MFFSv MFFSv = {unmarked nodes} v

34 MFFS Construction For Single MFFSv complexity : O( N + E ) v

35 MFFS Clustering For Clustering Entire Circuit

36 MFFS Clustering For Clustering Entire Circuit find MFFSv and remove v

37 MFFS Clustering For Clustering Entire Circuit find MFFSv and remove v

38 MFFS Clustering For Clustering Entire Circuit output to removed nodes is new PO v

39 MFFS Clustering For Clustering Entire Circuit repeat until all nodes are clustered v v

40 MFFS Clustering For Clustering Entire Circuit repeat until all nodes are clustered v v

41 MFFS Clustering For Clustering Entire Circuit repeat until all nodes are clustered v v v

42 MFFS Clustering For Clustering Entire Circuit repeat until all nodes are clustered v v v

43 MFFS Clustering For Clustering Entire Circuit complexity : O( N ( N + E ))

44 Speedup of MFFS Clustering Single MFFSv Construction slow : O( N + E ) v

45 Speedup of MFFS Clustering Subset of MFFSv search on subcircuit v

46 Speedup of MFFS Clustering Subset of MFFSv internal node : depth h-bfs at node v pseudo PI/PO : I/O to/from subcircuit pseudo PIs circuit SC (v, h) h pseudo POs v

47 LSR/MFFS Algorithm Overview cluster circuit with MFFS approximation algorithm partition clustered circuit with LSR algorithm decompose clusters completely refine cutline with LSR algorithm on declustered circuit

48 Experimental Result 1. Experiment Setting 2. MFFS Clustering 3. LSR/MFFS Partitioning

49 Experimental Setting Benchmark 16 MCNC circuits with signal flow info SPARC 5-85 with gcc v2.4 bipartitioning under 45-55% skew real cell area Area Variation Ratio = max cell area min cell area Metric cutsize : min of 20 runs runtime : total of 10 runs

50 MFFS Clustering Result Exact Approx ckt size AVR # clst time # clst time s sioo s s avq.sm S avq.lg Total

51 Cutsize Reduction Trend FM SNT LR LSR

52 Cutsize Reduction Trend FM SNT LR LSR

53 Cutsize Reduction Trend FM SNT LR LSR

54 Cutsize Reduction Trend FM SNT LR FLAT MFFS LSR LR, SNT, MFFS are all effective

55 Runtime Reduction Trend FM SNT LR LSR

56 Runtime Reduction Trend FM SNT LR LSR

57 Runtime Reduction Trend FM SNT LR LSR

58 Runtime Reduction Trend FM SNT LR FLAT MFFS LSR SNT and MFFS are both effective

59 Cutsizes Among IIPs CDIP 1023 PROPf 961 Strawman hmetis MLc LSR/MFFS achieved BEST cutsize

60 Runtimes Among IIPs CDIP PROPf Strawman hmetis 1388??? MLc 3455 LSR/MFFS achieved BEST runtime

61 Cutsizes Among Non-IIPs Paraboli 749 FBB 648 PANZA 516 LSR/MFFS achieved BEST cutsize

62 Runtimes Among Non-IIPs Paraboli FBB PANZA LSR/MFFS??? achieved BEST cutsize

63 Conclusion & Ongoing Work LSR Partitioning Loose and Stable net Removal MFFS Clustering Maximum Fanout Free Subgraph Performance of LSR/MFFS Ongoing Work LSR : multi-way partitioning MFFS : multi-level cluster hierarchy LSR/MFFS : mincut based placement

64 Thank You For Your Attention

Eu = {n1, n2} n1 n2. u n3. Iu = {n4} gain(u) = 2 1 = 1 V 1 V 2. Cutset

Eu = {n1, n2} n1 n2. u n3. Iu = {n4} gain(u) = 2 1 = 1 V 1 V 2. Cutset Shantanu Dutt 1 and Wenyong Deng 2 A Probability-Based Approach to VLSI Circuit Partitioning Department of Electrical Engineering 1 of Minnesota University Minneapolis, Minnesota 55455 LSI Logic Corporation

More information

Optimality, Scalability and Stability Study of Partitioning and Placement Algorithms

Optimality, Scalability and Stability Study of Partitioning and Placement Algorithms Optimality, Scalability and Stability Study of Partitioning and Placement Algorithms Jason Cong, Michail Romesis, Min Xie Computer Science Department University of California at Los Angeles Los Angeles,

More information

CAD Algorithms. Circuit Partitioning

CAD Algorithms. Circuit Partitioning CAD Algorithms Partitioning Mohammad Tehranipoor ECE Department 13 October 2008 1 Circuit Partitioning Partitioning: The process of decomposing a circuit/system into smaller subcircuits/subsystems, which

More information

An Interconnect-Centric Design Flow for Nanometer Technologies. Outline

An Interconnect-Centric Design Flow for Nanometer Technologies. Outline An Interconnect-Centric Design Flow for Nanometer Technologies Jason Cong UCLA Computer Science Department Email: cong@cs.ucla.edu Tel: 310-206-2775 http://cadlab.cs.ucla.edu/~cong Outline Global interconnects

More information

Acyclic Multi-Way Partitioning of Boolean Networks

Acyclic Multi-Way Partitioning of Boolean Networks Acyclic Multi-Way Partitioning of Boolean Networks Jason Cong, Zheng Li, and Rajive Bagrodia Department of Computer Science University of California, Los Angeles, CA 90024 Abstract Acyclic partitioning

More information

THE ISPD98 CIRCUIT BENCHMARK SUITE

THE ISPD98 CIRCUIT BENCHMARK SUITE THE ISPD98 CIRCUIT BENCHMARK SUITE Charles J. Alpert IBM Austin Research Laboratory, Austin TX 78758 alpert@austin.ibm.com Abstract From 1985-1993, the MCNC regularly introduced and maintained circuit

More information

Preclass Warmup. ESE535: Electronic Design Automation. Motivation (1) Today. Bisection Width. Motivation (2)

Preclass Warmup. ESE535: Electronic Design Automation. Motivation (1) Today. Bisection Width. Motivation (2) ESE535: Electronic Design Automation Preclass Warmup What cut size were you able to achieve? Day 4: January 28, 25 Partitioning (Intro, KLFM) 2 Partitioning why important Today Can be used as tool at many

More information

Hypergraph Partitioning With Fixed Vertices

Hypergraph Partitioning With Fixed Vertices Hypergraph Partitioning With Fixed Vertices Andrew E. Caldwell, Andrew B. Kahng and Igor L. Markov UCLA Computer Science Department, Los Angeles, CA 90095-596 Abstract We empirically assess the implications

More information

VLSI Circuit Partitioning by Cluster-Removal Using Iterative Improvement Techniques

VLSI Circuit Partitioning by Cluster-Removal Using Iterative Improvement Techniques VLSI Circuit Partitioning by Cluster-Removal Using Iterative Improvement Techniques Shantanu Dutt and Wenyong Deng Department of Electrical Engineering, University of Minnesota, Minneapolis, MN 5555, USA

More information

L14 - Placement and Routing

L14 - Placement and Routing L14 - Placement and Routing Ajay Joshi Massachusetts Institute of Technology RTL design flow HDL RTL Synthesis manual design Library/ module generators netlist Logic optimization a b 0 1 s d clk q netlist

More information

VLSI Circuit Partitioning by Cluster-Removal Using Iterative Improvement Techniques

VLSI Circuit Partitioning by Cluster-Removal Using Iterative Improvement Techniques To appear in Proc. IEEE/ACM International Conference on CAD, 996 VLSI Circuit Partitioning by Cluster-Removal Using Iterative Improvement Techniques Shantanu Dutt and Wenyong Deng Department of Electrical

More information

An Interconnect-Centric Design Flow for Nanometer Technologies

An Interconnect-Centric Design Flow for Nanometer Technologies An Interconnect-Centric Design Flow for Nanometer Technologies Jason Cong UCLA Computer Science Department Email: cong@cs.ucla.edu Tel: 310-206-2775 URL: http://cadlab.cs.ucla.edu/~cong Exponential Device

More information

Can Recursive Bisection Alone Produce Routable Placements?

Can Recursive Bisection Alone Produce Routable Placements? Supported by Cadence Can Recursive Bisection Alone Produce Routable Placements? Andrew E. Caldwell Andrew B. Kahng Igor L. Markov http://vlsicad.cs.ucla.edu Outline l Routability and the placement context

More information

Multilevel k-way Hypergraph Partitioning

Multilevel k-way Hypergraph Partitioning _ Multilevel k-way Hypergraph Partitioning George Karypis and Vipin Kumar fkarypis, kumarg@cs.umn.edu Department of Computer Science & Engineering, University of Minnesota, Minneapolis, MN 55455 Abstract

More information

An Effective Algorithm for Multiway Hypergraph Partitioning

An Effective Algorithm for Multiway Hypergraph Partitioning An Effective Algorithm for Multiway Hypergraph Partitioning Zhizi Zhao, Lixin Tao, Yongchang Zhao 3 Concordia University, zhao_z@cs.concordia.ca, Pace University, ltao@pace.edu, 3 retired Abstract In this

More information

Local Unidirectional Bias for Smooth Cutsize-Delay Tradeoff in Performance-Driven Bipartitioning

Local Unidirectional Bias for Smooth Cutsize-Delay Tradeoff in Performance-Driven Bipartitioning Local Unidirectional Bias for Smooth Cutsize-Delay Tradeoff in Performance-Driven Bipartitioning Andrew B. Kahng CSE and ECE Departments UCSD La Jolla, CA 92093 abk@ucsd.edu Xu Xu CSE Department UCSD La

More information

VLSI Physical Design: From Graph Partitioning to Timing Closure

VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter Netlist and System Partitioning Original Authors: Andrew B. Kahng, Jens, Igor L. Markov, Jin Hu Chapter Netlist and System Partitioning. Introduction. Terminology. Optimization Goals. Partitioning

More information

Exploiting Signal Flow and Logic Dependency in Standard Cell Placement

Exploiting Signal Flow and Logic Dependency in Standard Cell Placement Exploiting Signal Flow and Logic Dependency in Standard Cell Placement Jason Cong and Dongmin Xu Computer Sci. Dept., UCLA, Los Angeles, CA 90024 Abstract -- Most existing placement algorithms consider

More information

Delay Estimation for Technology Independent Synthesis

Delay Estimation for Technology Independent Synthesis Delay Estimation for Technology Independent Synthesis Yutaka TAMIYA FUJITSU LABORATORIES LTD. 4-1-1 Kamikodanaka, Nakahara-ku, Kawasaki, JAPAN, 211-88 Tel: +81-44-754-2663 Fax: +81-44-754-2664 E-mail:

More information

Multi-Resource Aware Partitioning Algorithms for FPGAs with Heterogeneous Resources

Multi-Resource Aware Partitioning Algorithms for FPGAs with Heterogeneous Resources Multi-Resource Aware Partitioning Algorithms for FPGAs with Heterogeneous Resources Navaratnasothie Selvakkumaran Abhishek Ranjan HierDesign Inc Salil Raje HierDesign Inc George Karypis Department of Computer

More information

Partitioning. Course contents: Readings. Kernighang-Lin partitioning heuristic Fiduccia-Mattheyses heuristic. Chapter 7.5.

Partitioning. Course contents: Readings. Kernighang-Lin partitioning heuristic Fiduccia-Mattheyses heuristic. Chapter 7.5. Course contents: Partitioning Kernighang-Lin partitioning heuristic Fiduccia-Mattheyses heuristic Readings Chapter 7.5 Partitioning 1 Basic Definitions Cell: a logic block used to build larger circuits.

More information

CIRCUIT PARTITIONING is a fundamental problem in

CIRCUIT PARTITIONING is a fundamental problem in IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 12, DECEMBER 1996 1533 Efficient Network Flow Based Min-Cut Balanced Partitioning Hannah Honghua Yang and D.

More information

Multi-Objective Hypergraph Partitioning Algorithms for Cut and Maximum Subdomain Degree Minimization

Multi-Objective Hypergraph Partitioning Algorithms for Cut and Maximum Subdomain Degree Minimization Multi-Objective Hypergraph Partitioning Algorithms for Cut and Maximum Subdomain Degree Minimization Navaratnasothie Selvakkumaran and George Karypis Department of Computer Science / Army HPC Research

More information

Improved Algorithms for Hypergraph Bipartitioning

Improved Algorithms for Hypergraph Bipartitioning Improved Algorithms for Hypergraph Bipartitioning Andrew E. Caldwell, Andrew B. Kahng and Igor L. Markov* UCLA Computer Science Dept., Los Angeles, CA 90095-1596 {caldwell,abk,imarkov}@cs.ucla.edu Abstract

More information

Simultaneous Depth and Area Minimization in LUT-based FPGA Mapping

Simultaneous Depth and Area Minimization in LUT-based FPGA Mapping Simultaneous Depth and Area Minimization in LUT-based FPGA Mapping Jason Cong and Yean-Yow Hwang Department of Computer Science University of California, Los Angeles, CA 90024 Abstract In this paper, we

More information

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 2, FEBRUARY

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 2, FEBRUARY IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 2, FEBRUARY 2000 267 Short Papers Hypergraph Partitioning with Fixed Vertices Charles J. Alpert, Andrew E. Caldwell,

More information

ESE535: Electronic Design Automation. Today. LUT Mapping. Simplifying Structure. Preclass: Cover in 4-LUT? Preclass: Cover in 4-LUT?

ESE535: Electronic Design Automation. Today. LUT Mapping. Simplifying Structure. Preclass: Cover in 4-LUT? Preclass: Cover in 4-LUT? ESE55: Electronic Design Automation Day 7: February, 0 Clustering (LUT Mapping, Delay) Today How do we map to LUTs What happens when IO dominates Delay dominates Lessons for non-luts for delay-oriented

More information

Iterative Partitioning with Varying Node Weights*

Iterative Partitioning with Varying Node Weights* VLSI DESIGN 2000, Vol. 11, No. 3, pp. 249-258 Reprints available directly from the publisher Photocopying permitted by license only (C) 2000 OPA (Overseas Publishers Association) N.V. Published by license

More information

Genetic Algorithm for Circuit Partitioning

Genetic Algorithm for Circuit Partitioning Genetic Algorithm for Circuit Partitioning ZOLTAN BARUCH, OCTAVIAN CREŢ, KALMAN PUSZTAI Computer Science Department, Technical University of Cluj-Napoca, 26, Bariţiu St., 3400 Cluj-Napoca, Romania {Zoltan.Baruch,

More information

Akey driver for hypergraph partitioning research in VLSI CAD has been the top-down global placement of standard-cell designs. Key attributes of real-w

Akey driver for hypergraph partitioning research in VLSI CAD has been the top-down global placement of standard-cell designs. Key attributes of real-w Iterative Partitioning with Varying Node Weights Andrew E. Caldwell, Andrew B. Kahng and Igor L. Markov UCLA Computer Science Dept., Los Angeles, CA 90095-1596 USA fcaldwell,abk,imarkovg@cs.ucla.edu. Abstract

More information

COMPARATIVE STUDY OF CIRCUIT PARTITIONING ALGORITHMS

COMPARATIVE STUDY OF CIRCUIT PARTITIONING ALGORITHMS COMPARATIVE STUDY OF CIRCUIT PARTITIONING ALGORITHMS Zoltan Baruch 1, Octavian Creţ 2, Kalman Pusztai 3 1 PhD, Lecturer, Technical University of Cluj-Napoca, Romania 2 Assistant, Technical University of

More information

Multi-Objective Hypergraph Partitioning Algorithms for Cut and Maximum Subdomain Degree Minimization

Multi-Objective Hypergraph Partitioning Algorithms for Cut and Maximum Subdomain Degree Minimization IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN, VOL XX, NO. XX, 2005 1 Multi-Objective Hypergraph Partitioning Algorithms for Cut and Maximum Subdomain Degree Minimization Navaratnasothie Selvakkumaran and

More information

Research Article Accounting for Recent Changes of Gain in Dealing with Ties in Iterative Methods for Circuit Partitioning

Research Article Accounting for Recent Changes of Gain in Dealing with Ties in Iterative Methods for Circuit Partitioning Discrete Dynamics in Nature and Society Volume 25, Article ID 625, 8 pages http://dxdoiorg/55/25/625 Research Article Accounting for Recent Changes of Gain in Dealing with Ties in Iterative Methods for

More information

PushPull: Short Path Padding for Timing Error Resilient Circuits YU-MING YANG IRIS HUI-RU JIANG SUNG-TING HO. IRIS Lab National Chiao Tung University

PushPull: Short Path Padding for Timing Error Resilient Circuits YU-MING YANG IRIS HUI-RU JIANG SUNG-TING HO. IRIS Lab National Chiao Tung University PushPull: Short Path Padding for Timing Error Resilient Circuits YU-MING YANG IRIS HUI-RU JIANG SUNG-TING HO IRIS Lab National Chiao Tung University Outline Introduction Problem Formulation Algorithm -

More information

Multilevel Algorithms for Multi-Constraint Hypergraph Partitioning

Multilevel Algorithms for Multi-Constraint Hypergraph Partitioning Multilevel Algorithms for Multi-Constraint Hypergraph Partitioning George Karypis University of Minnesota, Department of Computer Science / Army HPC Research Center Minneapolis, MN 55455 Technical Report

More information

PARALLEL PERFORMANCE DIRECTED TECHNOLOGY MAPPING FOR FPGA. Laurent Lemarchand. Informatique. ea 2215, D pt. ubo University{ bp 809

PARALLEL PERFORMANCE DIRECTED TECHNOLOGY MAPPING FOR FPGA. Laurent Lemarchand. Informatique. ea 2215, D pt. ubo University{ bp 809 PARALLEL PERFORMANCE DIRECTED TECHNOLOGY MAPPING FOR FPGA Laurent Lemarchand Informatique ubo University{ bp 809 f-29285, Brest { France lemarch@univ-brest.fr ea 2215, D pt ABSTRACT An ecient distributed

More information

Partitioning With Terminals: A New Problem and New Benchmarks

Partitioning With Terminals: A New Problem and New Benchmarks Partitioning With Terminals: A New Problem and New Benchmarks C. J. Alpert,A.E.Caldwell,A.B.KahngandI.L.Markov UCLA Computer Science Dept., Los Angeles, CA 90095-596 USA IBM Austin Research Laboratory,

More information

CS137: Electronic Design Automation

CS137: Electronic Design Automation CS137: Electronic Design Automation Day 4: January 16, 2002 Clustering (LUT Mapping, Delay) Today How do we map to LUTs? What happens when delay dominates? Lessons for non-luts for delay-oriented partitioning

More information

Unit 5A: Circuit Partitioning

Unit 5A: Circuit Partitioning Course contents: Unit 5A: Circuit Partitioning Kernighang-Lin partitioning heuristic Fiduccia-Mattheyses heuristic Simulated annealing based partitioning algorithm Readings Chapter 7.5 Unit 5A 1 Course

More information

Beyond the Combinatorial Limit in Depth Minimization for LUT-Based FPGA Designs

Beyond the Combinatorial Limit in Depth Minimization for LUT-Based FPGA Designs Beyond the Combinatorial Limit in Depth Minimization for LUT-Based FPGA Designs Jason Cong and Yuzheng Ding Department of Computer Science University of California, Los Angeles, CA 90024 Abstract In this

More information

Mincut Placement with FM Partitioning featuring Terminal Propagation. Brett Wilson Lowe Dantzler

Mincut Placement with FM Partitioning featuring Terminal Propagation. Brett Wilson Lowe Dantzler Mincut Placement with FM Partitioning featuring Terminal Propagation Brett Wilson Lowe Dantzler Project Overview Perform Mincut Placement using the FM Algorithm to perform partitioning. Goals: Minimize

More information

[HaKa92] L. Hagen and A. B. Kahng, A new approach to eective circuit clustering, Proc. IEEE

[HaKa92] L. Hagen and A. B. Kahng, A new approach to eective circuit clustering, Proc. IEEE [HaKa92] L. Hagen and A. B. Kahng, A new approach to eective circuit clustering, Proc. IEEE International Conference on Computer-Aided Design, pp. 422-427, November 1992. [HaKa92b] L. Hagen and A. B.Kahng,

More information

2 A. E. Caldwell, A. B. Kahng and I. L. Markov based, mathematical programming-based, etc. approaches, is given in a comprehensive survey [5] by Alper

2 A. E. Caldwell, A. B. Kahng and I. L. Markov based, mathematical programming-based, etc. approaches, is given in a comprehensive survey [5] by Alper Design and Implementation of Move-Based Heuristics for VLSI Hypergraph Partitioning Andrew E. Caldwell, Andrew B. Kahng and Igor L. Markov fcaldwell,abk,imarkovg@cs.ucla.edu Supported by a grant from Cadence

More information

Global Clustering-Based Performance-Driven Circuit Partitioning

Global Clustering-Based Performance-Driven Circuit Partitioning Global Clustering-Based Performance-Driven Circuit Partitioning Jason Cong University of California at Los Angeles Los Angeles, CA 90095 cong@cs.ucla.edu Chang Wu Aplus Design Technologies, Inc. Los Angeles,

More information

On Improving Recursive Bipartitioning-Based Placement

On Improving Recursive Bipartitioning-Based Placement Purdue University Purdue e-pubs ECE Technical Reports Electrical and Computer Engineering 12-1-2003 On Improving Recursive Bipartitioning-Based Placement Chen Li Cheng-Kok Koh Follow this and additional

More information

A HYBRID MULTILEVEL/GENETIC APPROACH FOR CIRCUIT PARTITIONING. signicantly better than random or \rst-in-rst-out" tiebreaking

A HYBRID MULTILEVEL/GENETIC APPROACH FOR CIRCUIT PARTITIONING. signicantly better than random or \rst-in-rst-out tiebreaking A HYBRID MULTILEVEL/GENETIC APPROACH FOR CIRCUIT PARTITIONING Charles J. Alpert 1 Lars W. Hagen 2 Andrew B. Kahng 1 1 UCLA Computer Science Department, Los Angeles, CA 90095-1596 2 Cadence Design Systems,

More information

Planning for Local Net Congestion in Global Routing

Planning for Local Net Congestion in Global Routing Planning for Local Net Congestion in Global Routing Hamid Shojaei, Azadeh Davoodi, and Jeffrey Linderoth* Department of Electrical and Computer Engineering *Department of Industrial and Systems Engineering

More information

BACKEND DESIGN. Circuit Partitioning

BACKEND DESIGN. Circuit Partitioning BACKEND DESIGN Circuit Partitioning Partitioning System Design Decomposition of a complex system into smaller subsystems. Each subsystem can be designed independently. Decomposition scheme has to minimize

More information

Implementation of Multi-Way Partitioning Algorithm

Implementation of Multi-Way Partitioning Algorithm Implementation of Multi-Way Partitioning Algorithm Kulpreet S. Sikand, Sandeep S. Gill, R. Chandel, and A. Chandel Abstract This paper presents a discussion of methods to solve partitioning problems and

More information

Interconnect Delay and Area Estimation for Multiple-Pin Nets

Interconnect Delay and Area Estimation for Multiple-Pin Nets Interconnect Delay and Area Estimation for Multiple-Pin Nets Jason Cong and David Z. Pan UCLA Computer Science Department Los Angeles, CA 90095 Sponsored by SRC and Avant!! under CA-MICRO Presentation

More information

ECE 5745 Complex Digital ASIC Design Topic 13: Physical Design Automation Algorithms

ECE 5745 Complex Digital ASIC Design Topic 13: Physical Design Automation Algorithms ECE 7 Complex Digital ASIC Design Topic : Physical Design Automation Algorithms Christopher atten School of Electrical and Computer Engineering Cornell University http://www.csl.cornell.edu/courses/ece7

More information

The Partitioning Problem

The Partitioning Problem The Partitioning Problem 1. Iterative Improvement The partitioning problem is the problem of breaking a circuit into two subcircuits. Like many problems in VLSI design automation, we will solve this problem

More information

FlowMap: An Optimal Technology Mapping Algorithm for Delay Optimization in Lookup-Table Based FPGA Designs

FlowMap: An Optimal Technology Mapping Algorithm for Delay Optimization in Lookup-Table Based FPGA Designs . FlowMap: An Optimal Technology Mapping Algorithm for Delay Optimization in Lookup-Table Based FPGA Designs Jason Cong and Yuzheng Ding Department of Computer Science University of California, Los Angeles,

More information

A New 2-way Multi-level Partitioning Algorithm*

A New 2-way Multi-level Partitioning Algorithm* VLSI DESIGN 2000, Vol. ll, No. 3, pp. 301-310 Reprints available directly from the publisher Photocopying permitted by license only 2000 OPA (Overseas Publishers Association) N.V. Published by license

More information

Generic Integer Linear Programming Formulation for 3D IC Partitioning

Generic Integer Linear Programming Formulation for 3D IC Partitioning JOURNAL OF INFORMATION SCIENCE AND ENGINEERING (ID: 100500, REVISED VERSION) Generic Integer Linear Programming Formulation for 3D IC Partitioning Department of Electronics Engineering & Institute of Electronics

More information

Using Analytical Placement Techniques. Technical University of Munich, Munich, Germany. depends on the initial partitioning.

Using Analytical Placement Techniques. Technical University of Munich, Munich, Germany. depends on the initial partitioning. Partitioning Very Large Circuits Using Analytical Placement Techniques Bernhard M. Riess, Konrad Doll, and Frank M. Johannes Institute of Electronic Design Automation Technical University of Munich, 9

More information

k-way Hypergraph Partitioning via n-level Recursive Bisection

k-way Hypergraph Partitioning via n-level Recursive Bisection k-way Hypergraph Partitioning via n-level Recursive Bisection Sebastian Schlag, Vitali Henne, Tobias Heuer, Henning Meyerhenke Peter Sanders, Christian Schulz January 10th, 2016 @ ALENEX 16 INSTITUTE OF

More information

Tree Structure and Algorithms for Physical Design

Tree Structure and Algorithms for Physical Design Tree Structure and Algorithms for Physical Design Chung Kuan Cheng, Ronald Graham, Ilgweon Kang, Dongwon Park and Xinyuan Wang CSE and ECE Departments UC San Diego Outline: Introduction Ancestor Trees

More information

UNIVERSITY OF CALGARY. Force-Directed Partitioning Technique for 3D IC. Aysa Fakheri Tabrizi A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

UNIVERSITY OF CALGARY. Force-Directed Partitioning Technique for 3D IC. Aysa Fakheri Tabrizi A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES UNIVERSITY OF CALGARY Force-Directed Partitioning Technique for 3D IC by Aysa Fakheri Tabrizi A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

More information

Linking Layout to Logic Synthesis: A Unification-Based Approach

Linking Layout to Logic Synthesis: A Unification-Based Approach Linking Layout to Logic Synthesis: A Unification-Based Approach Massoud Pedram Department of EE-Systems University of Southern California Los Angeles, CA February 1998 Outline Introduction Technology and

More information

Minimizing Clock Domain Crossing in Network on Chip Interconnect

Minimizing Clock Domain Crossing in Network on Chip Interconnect Minimizing Clock Domain Crossing in Network on Chip Interconnect Parag Kulkarni 1, Puneet Gupta 2, Rudy Beraha 3 1 Synopsys 2 UCLA 3 Qualcomm Corp. R&D Outline Motivation The Router Coloring Problem Approaches

More information

Parallel Algorithm for Multilevel Graph Partitioning and Sparse Matrix Ordering

Parallel Algorithm for Multilevel Graph Partitioning and Sparse Matrix Ordering Parallel Algorithm for Multilevel Graph Partitioning and Sparse Matrix Ordering George Karypis and Vipin Kumar Brian Shi CSci 8314 03/09/2017 Outline Introduction Graph Partitioning Problem Multilevel

More information

Multilevel Graph Partitioning

Multilevel Graph Partitioning Multilevel Graph Partitioning George Karypis and Vipin Kumar Adapted from Jmes Demmel s slide (UC-Berkely 2009) and Wasim Mohiuddin (2011) Cover image from: Wang, Wanyi, et al. "Polygonal Clustering Analysis

More information

Placement Algorithm for FPGA Circuits

Placement Algorithm for FPGA Circuits Placement Algorithm for FPGA Circuits ZOLTAN BARUCH, OCTAVIAN CREŢ, KALMAN PUSZTAI Computer Science Department, Technical University of Cluj-Napoca, 26, Bariţiu St., 3400 Cluj-Napoca, Romania {Zoltan.Baruch,

More information

Parallelizing FPGA Technology Mapping using GPUs. Doris Chen Deshanand Singh Aug 31 st, 2010

Parallelizing FPGA Technology Mapping using GPUs. Doris Chen Deshanand Singh Aug 31 st, 2010 Parallelizing FPGA Technology Mapping using GPUs Doris Chen Deshanand Singh Aug 31 st, 2010 Motivation: Compile Time In last 12 years: 110x increase in FPGA Logic, 23x increase in CPU speed, 4.8x gap Question:

More information

Graph and Hypergraph Partitioning for Parallel Computing

Graph and Hypergraph Partitioning for Parallel Computing Graph and Hypergraph Partitioning for Parallel Computing Edmond Chow School of Computational Science and Engineering Georgia Institute of Technology June 29, 2016 Graph and hypergraph partitioning References:

More information

Multi-level Quadratic Placement for Standard Cell Designs

Multi-level Quadratic Placement for Standard Cell Designs CS258f Project Report Kenton Sze Kevin Chen 06.10.02 Prof Cong Multi-level Quadratic Placement for Standard Cell Designs Project Description/Objectives: The goal of this project was to provide an algorithm

More information

Place and Route for FPGAs

Place and Route for FPGAs Place and Route for FPGAs 1 FPGA CAD Flow Circuit description (VHDL, schematic,...) Synthesize to logic blocks Place logic blocks in FPGA Physical design Route connections between logic blocks FPGA programming

More information

Abacus: Fast Legalization of Standard Cell Circuits with Minimal Movement

Abacus: Fast Legalization of Standard Cell Circuits with Minimal Movement EDA Institute for Electronic Design Automation Prof. Ulf Schlichtmann Abacus: Fast Legalization of Standard Cell Circuits with Minimal Movement Peter Spindler, Ulf Schlichtmann and Frank M. Johannes Technische

More information

Metal-Density Driven Placement for CMP Variation and Routability

Metal-Density Driven Placement for CMP Variation and Routability Metal-Density Driven Placement for CMP Variation and Routability ISPD-2008 Tung-Chieh Chen 1, Minsik Cho 2, David Z. Pan 2, and Yao-Wen Chang 1 1 Dept. of EE, National Taiwan University 2 Dept. of ECE,

More information

DAOmap: A Depth-optimal Area Optimization Mapping Algorithm for FPGA Designs

DAOmap: A Depth-optimal Area Optimization Mapping Algorithm for FPGA Designs DAOmap: A Depth-optimal Area Optimization Mapping Algorithm for FPGA Designs Deming Chen, Jason Cong Computer Science Department University of California, Los Angeles {demingc, cong}@cs.ucla.edu ABSTRACT

More information

Wirelength Estimation based on Rent Exponents of Partitioning and Placement Λ

Wirelength Estimation based on Rent Exponents of Partitioning and Placement Λ Wirelength Estimation based on Rent Exponents of Partitioning and Placement Λ Xiaojian Yang Elaheh Bozorgzadeh Majid Sarrafzadeh Computer Science Department University of California at Los Angeles Los

More information

Double Patterning Layout Decomposition for Simultaneous Conflict and Stitch Minimization

Double Patterning Layout Decomposition for Simultaneous Conflict and Stitch Minimization Double Patterning Layout Decomposition for Simultaneous Conflict and Stitch Minimization Kun Yuan, Jae-Seo Yang, David Z. Pan Dept. of Electrical and Computer Engineering The University of Texas at Austin

More information

Combinational and Sequential Mapping with Priority Cuts

Combinational and Sequential Mapping with Priority Cuts Combinational and Sequential Mapping with Priority Cuts Alan Mishchenko Sungmin Cho Satrajit Chatterjee Robert Brayton Department of EECS, University of California, Berkeley {alanmi, smcho, satrajit, brayton@eecs.berkeley.edu

More information

AN ACCELERATOR FOR FPGA PLACEMENT

AN ACCELERATOR FOR FPGA PLACEMENT AN ACCELERATOR FOR FPGA PLACEMENT Pritha Banerjee and Susmita Sur-Kolay * Abstract In this paper, we propose a constructive heuristic for initial placement of a given netlist of CLBs on a FPGA, in order

More information

ABC basics (compilation from different articles)

ABC basics (compilation from different articles) 1. AIG construction 2. AIG optimization 3. Technology mapping ABC basics (compilation from different articles) 1. BACKGROUND An And-Inverter Graph (AIG) is a directed acyclic graph (DAG), in which a node

More information

On Nominal Delay Minimization in LUT-Based FPGA Technology Mapping

On Nominal Delay Minimization in LUT-Based FPGA Technology Mapping On Nominal Delay Minimization in LUT-Based FPGA Technology Mapping Jason Cong and Yuzheng Ding Department of Computer Science University of California, Los Angeles, CA 90024 Abstract In this report, we

More information

A Linear-Time Heuristic for Improving Network Partitions

A Linear-Time Heuristic for Improving Network Partitions A Linear-Time Heuristic for Improving Network Partitions ECE 556 Project Report Josh Brauer Introduction The Fiduccia-Matteyses min-cut heuristic provides an efficient solution to the problem of separating

More information

Introduction VLSI PHYSICAL DESIGN AUTOMATION

Introduction VLSI PHYSICAL DESIGN AUTOMATION VLSI PHYSICAL DESIGN AUTOMATION PROF. INDRANIL SENGUPTA DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING Introduction Main steps in VLSI physical design 1. Partitioning and Floorplanning l 2. Placement 3.

More information

A Framework for Systematic Evaluation and Exploration of Design Rules

A Framework for Systematic Evaluation and Exploration of Design Rules A Framework for Systematic Evaluation and Exploration of Design Rules Rani S. Ghaida* and Prof. Puneet Gupta EE Dept., University of California, Los Angeles (rani@ee.ucla.edu), (puneet@ee.ucla.edu) Work

More information

Can Recursive Bisection Alone Produce Routable Placements?

Can Recursive Bisection Alone Produce Routable Placements? Can Recursive Bisection Alone Produce Routable Placements? Andrew E. Caldwell, Andrew B. Kahng and Igor L. Markov UCLA Computer Science Dept., Los Angeles, CA 90095-1596 fcaldwell,abk,imarkovg@cs.ucla.edu

More information

An Interconnect-Centric Design Flow for Nanometer Technologies

An Interconnect-Centric Design Flow for Nanometer Technologies An Interconnect-Centric Design Flow for Nanometer Technologies Professor Jason Cong UCLA Computer Science Department Los Angeles, CA 90095 http://cadlab.cs.ucla.edu/~ /~cong

More information

Wirelength Estimation based on Rent Exponents of Partitioning and Placement 1

Wirelength Estimation based on Rent Exponents of Partitioning and Placement 1 Wirelength Estimation based on Rent Exponents of Partitioning and Placement 1 Xiaojian Yang, Elaheh Bozorgzadeh, and Majid Sarrafzadeh Synplicity Inc. Sunnyvale, CA 94086 xjyang@synplicity.com Computer

More information

An Introduction to FPGA Placement. Yonghong Xu Supervisor: Dr. Khalid

An Introduction to FPGA Placement. Yonghong Xu Supervisor: Dr. Khalid RESEARCH CENTRE FOR INTEGRATED MICROSYSTEMS UNIVERSITY OF WINDSOR An Introduction to FPGA Placement Yonghong Xu Supervisor: Dr. Khalid RESEARCH CENTRE FOR INTEGRATED MICROSYSTEMS UNIVERSITY OF WINDSOR

More information

PARTITIONING COMBINATIONAL CIRCUITS FOR K-LUT BASED FPGA MAPPING

PARTITIONING COMBINATIONAL CIRCUITS FOR K-LUT BASED FPGA MAPPING U.P.B. Sci. Bull., Series C, Vol. 68, No. 2, 2006 PARTITIONING COMBINATIONAL CIRCUITS FOR K-LUT BASED FPGA MAPPING I. I. BUCUR Partiţionarea este o problemă centrală în automatizarea proiectării VLSI vizând

More information

DpRouter: A Fast and Accurate Dynamic- Pattern-Based Global Routing Algorithm

DpRouter: A Fast and Accurate Dynamic- Pattern-Based Global Routing Algorithm DpRouter: A Fast and Accurate Dynamic- Pattern-Based Global Routing Algorithm Zhen Cao 1,Tong Jing 1, 2, Jinjun Xiong 2, Yu Hu 2, Lei He 2, Xianlong Hong 1 1 Tsinghua University 2 University of California,

More information

Efficient FM Algorithm for VLSI Circuit Partitioning

Efficient FM Algorithm for VLSI Circuit Partitioning Efficient FM Algorithm for VLSI Circuit Partitioning M.RAJESH #1, R.MANIKANDAN #2 #1 School Of Comuting, Sastra University, Thanjavur-613401. #2 Senior Assistant Professer, School Of Comuting, Sastra University,

More information

Multi-way Netlist Partitioning into Heterogeneous FPGAs and Minimization of Total Device Cost and Interconnect

Multi-way Netlist Partitioning into Heterogeneous FPGAs and Minimization of Total Device Cost and Interconnect Multi-way Netlist Partitioning into Heterogeneous FPGAs and Minimization of Total Device Cost and Interconnect Roman Kužnar, Franc Brglez 2, Baldomir Zajc Department of ECE, Tržaška 25, University of Ljubljana,

More information

Mapping-aware Logic Synthesis with Parallelized Stochastic Optimization

Mapping-aware Logic Synthesis with Parallelized Stochastic Optimization Mapping-aware Logic Synthesis with Parallelized Stochastic Optimization Zhiru Zhang School of ECE, Cornell University September 29, 2017 @ EPFL A Case Study on Digit Recognition bit6 popcount(bit49 digit)

More information

EE244: Design Technology for Integrated Circuits and Systems Outline Lecture 9.2. Introduction to Behavioral Synthesis (cont.)

EE244: Design Technology for Integrated Circuits and Systems Outline Lecture 9.2. Introduction to Behavioral Synthesis (cont.) EE244: Design Technology for Integrated Circuits and Systems Outline Lecture 9.2 Introduction to Behavioral Synthesis (cont.) Relationship to silicon compilation Stochastic Algorithms and Learning EE244

More information

Circuit Placement: 2000-Caldwell,Kahng,Markov; 2002-Kennings,Markov; 2006-Kennings,Vorwerk

Circuit Placement: 2000-Caldwell,Kahng,Markov; 2002-Kennings,Markov; 2006-Kennings,Vorwerk Circuit Placement: 2000-Caldwell,Kahng,Markov; 2002-Kennings,Markov; 2006-Kennings,Vorwerk Andrew A. Kennings, Univ. of Waterloo, Canada, http://gibbon.uwaterloo.ca/ akenning/ Igor L. Markov, Univ. of

More information

Combinational Equivalence Checking Using Incremental SAT Solving, Output Ordering, and Resets

Combinational Equivalence Checking Using Incremental SAT Solving, Output Ordering, and Resets ASP-DAC 2007 Yokohama Combinational Equivalence Checking Using Incremental SAT Solving, Output ing, and Resets Stefan Disch Christoph Scholl Outline Motivation Preliminaries Our Approach Output ing Heuristics

More information

Study of a Multilevel Approach to Partitioning for Parallel Logic Simulation Λ

Study of a Multilevel Approach to Partitioning for Parallel Logic Simulation Λ Study of a Multilevel Approach to Partitioning for Parallel Logic Simulation Λ Swaminathan Subramanian, Dhananjai M. Rao,andPhilip A. Wilsey Experimental Computing Laboratory, Cincinnati, OH 45221 0030

More information

Fast Dual-V dd Buffering Based on Interconnect Prediction and Sampling

Fast Dual-V dd Buffering Based on Interconnect Prediction and Sampling Based on Interconnect Prediction and Sampling Yu Hu King Ho Tam Tom Tong Jing Lei He Electrical Engineering Department University of California at Los Angeles System Level Interconnect Prediction (SLIP),

More information

Simultaneous Depth and Area Minimization in LUT-based FPGA Mapping

Simultaneous Depth and Area Minimization in LUT-based FPGA Mapping Simultaneous Depth and Area Minimization in LUT-based FPGA Mapping Jason Cong and Yean-Yow Hwang Department of Computer Science University of California, Los Angeles, CA 90024 January 31, 1995 Abstract

More information

Retiming. Adapted from: Synthesis and Optimization of Digital Circuits, G. De Micheli Stanford. Outline. Structural optimization methods. Retiming.

Retiming. Adapted from: Synthesis and Optimization of Digital Circuits, G. De Micheli Stanford. Outline. Structural optimization methods. Retiming. Retiming Adapted from: Synthesis and Optimization of Digital Circuits, G. De Micheli Stanford Outline Structural optimization methods. Retiming. Modeling. Retiming for minimum delay. Retiming for minimum

More information

Fast Minimum-Register Retiming via Binary Maximum-Flow

Fast Minimum-Register Retiming via Binary Maximum-Flow Fast Minimum-Register Retiming via Binary Maximum-Flow Alan Mishchenko Aaron Hurst Robert Brayton Department of EECS, University of California, Berkeley alanmi, ahurst, brayton@eecs.berkeley.edu Abstract

More information

PowerRanger: Assessing Circuit Vulnerability to Power Attacks Using SAT-Based Static Analysis

PowerRanger: Assessing Circuit Vulnerability to Power Attacks Using SAT-Based Static Analysis PowerRanger: Assessing Circuit Vulnerability to Power Attacks Using SAT-Based Static Analysis Jeff Hao, Valeria Bertacco Department of Computer Science and Engineering University of Michigan Ann Arbor,

More information

Incorporating the Controller Eects During Register Transfer Level. Synthesis. Champaka Ramachandran and Fadi J. Kurdahi

Incorporating the Controller Eects During Register Transfer Level. Synthesis. Champaka Ramachandran and Fadi J. Kurdahi Incorporating the Controller Eects During Register Transfer Level Synthesis Champaka Ramachandran and Fadi J. Kurdahi Department of Electrical & Computer Engineering, University of California, Irvine,

More information

Double Patterning-Aware Detailed Routing with Mask Usage Balancing

Double Patterning-Aware Detailed Routing with Mask Usage Balancing Double Patterning-Aware Detailed Routing with Mask Usage Balancing Seong-I Lei Department of Computer Science National Tsing Hua University HsinChu, Taiwan Email: d9762804@oz.nthu.edu.tw Chris Chu Department

More information