Dark Silicon Accelerators for Database Indexing

Size: px
Start display at page:

Download "Dark Silicon Accelerators for Database Indexing"

Transcription

1 Dark Silicon Accelerators for Database Indexing Onur Kocberber, Kevin Lim, Babak Falsafi, Partha Ranganathan, Stavros Harizopoulos

2 Dark Silicon and Big Data Challenges Data explosion Data growing faster than technology End of Free energy Higher density higher energy Challenge: CPUs ill- matched to server workloads Most of Rme wairng for data rather than compurng Need to specialize for data-centric workloads

3 How Do Data- Centric Workloads Access Data? Databases create and use an index Data structures for fast data lookup Most ouen balanced tree or hash table Frequently accessed Hash Table Tree Indexing is pointer- intensive UnderuRlize general- purpose CPUs IPCs as low as 0.25 on OoO core

4 ContribuRon: Database Indexing Widget Index lookups on general- purpose CPUs: Pointer- intensive low IPC Time- intensive poor energy- efficiency Database Indexing Widget Dedicated hardware for database index lookups Full- service offload: core sleeps when widget runs Up to 65% less energy per query

5 Outline IntroducRon Indexing in Databases Indexing Widget Results

6 Modern Databases and Indexing Two types of contemporary in- memory databases: Column- store analy/cal processing Scale- out transac/on processing Customer Date Product Customer Date Product Customer Date Product with DSS with OLTP Two fundamental indexing operarons Hash table probe Tree traversal

7 How Much Time is Spent Indexing? Measurement on Xeon 5670 CPU with HW Counters 100% ExecuEon Time 75% 50% 25% Tree / Hash Table Tree Hash Table Hash Table 0% Order Status Payment Query 2 Query 17 OLTP DSS Indexing can account for up to 73% of execution

8 Example: Hash Join SQL : SELECT A_name FROM A,B WHERE A_age = B_age ❶ Build Table B (60M rows) age Table A (2M rows) age ❸ Result Hash Table (A) ❷ Probe Hash table probes dominate execution

9 Indexing with Hash Table Probes Key Hash FuncEon >> Compare? Buckets Hash Table Chains Each hash probe operaeon: à dynamic instrucrons: hash, then chase pointers à 50% memory ref.

10 Indexing with Tree Traversals SQL : SELECT A_Product,A_Customer FROM A WHERE A_age = 25 Index on A_age Key Tuple Ptr Customer Age Date Product Result

11 Indexing with Tree Traversals SQL : SELECT A_Product,A_Customer FROM A WHERE A_age = 25 Index on A_age Key Each index traversal : à 10K- 15K dynamic instrucrons: lots of pointer chasing à 50-60% memory ref.

12 Outline IntroducRon Indexing in Databases Indexing Widget Results

13 Indexing Widget Overview Dedicated offload engine for index lookups AcRvated on- demand by the core Full- service index lookup Core sleeps when widget runs Widget features Efficient: Specialized control and funcronal units Low- latency: Caches frequently- accessed index data Tightly- integrated: Uses core s L1- D and TLB

14 From Core Widget Details Configura3on Registers Index Addr. Key Search Type Result Table Addr. Data type Controller (FSM) ComputaEonal Logic Buffer (SRAM) ❶ Configure ❷ Run ❸ Return Hash Tree

15 From Core Widget Details Configura3on Registers Index Addr. Key Search Type Result Table Addr. Data type Controller (FSM) Hash Tree ComputaEonal Logic Buffer (SRAM) ❶ Configure If (haswidget) {! widget.index=&a;! widget.key=&b;! widget.type=equal;! widget.result=&r;! widget.data= int;!!! widget.run();! } else {! Hashprobe(); }!!

16 From Core Widget Details Configura3on Registers Index Addr. Key Search Type Result Table Addr. Data type Controller (FSM) ComputaEonal Logic Buffer (SRAM) ❷ Run Hash Tree To/From L1

17 From Core Widget Details Configura3on Registers Index Addr. Key Search Type Result Table Addr. Data type Controller (FSM) ComputaEonal Logic Buffer (SRAM) ❸ Return Hash Tree Store To/From L1 &Result Table, Key &Result Table, Key &Result Table, Key

18 Methodology First- order analyrcal model ExecuRon traces: Pin ExecuRon profiling: Vtune, Oprofile Benchmark ApplicaRons OLTP: TPC- C on VoltDB DSS: TPC- H on MonetDB Model Parameters L1 / L2 / Off- chip latency: 2 / 12 / 200 cycles Widget buffer: 2- way set associarve cache Energy EsRmaRons Mcpat

19 Energy Efficiency with Indexing Widget ReducEon in Energy (%) Qry 17 Order S. Payment Qry 2 ReducRon over ConvenRonal OoO ReducRon over ARM- like OoO ApplicaEon Coverage (%) Up to 65% reduction in energy

20 Performance with Indexing Widget 4 Overall Speedup Qry 17 Order Status Payment Qry KB 1KB 2KB 4KB 8KB Widget Buffer Size Widget does not hurt performance

21 Conclusions Data explosion, dark silicon trends call for specializaron Rethinking of architectures to achieve efficiency Databases spend significant Rme in indexing Mostly pointer chasing: general purpose CPUs are poorly suited Augment CPU with indexing widget Dedicated offload engine: core sleeps when widget runs Improves efficiency: 65% less energy, 3x faster query execuron More challenges: Data types, data sharing, generalizaron

22 Thanks!

Meet the Walkers! Accelerating Index Traversals for In-Memory Databases"

Meet the Walkers! Accelerating Index Traversals for In-Memory Databases Meet the Walkers! Accelerating Index Traversals for In-Memory Databases Onur Kocberber Boris Grot, Javier Picorel, Babak Falsafi, Kevin Lim, Parthasarathy Ranganathan Our World is Data-Driven! Data resides

More information

Domain-specific Architectures for Emerging Data-Centric Workloads

Domain-specific Architectures for Emerging Data-Centric Workloads Domain-specific Architectures for Emerging Data-Centric Workloads Kevin Lim November 8, 2012 Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change

More information

Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation Kevin Hsieh

Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation Kevin Hsieh Accelerating Pointer Chasing in 3D-Stacked : Challenges, Mechanisms, Evaluation Kevin Hsieh Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali Boroumand, Saugata Ghose, Onur Mutlu Executive Summary

More information

Database Workload. from additional misses in this already memory-intensive databases? interference could be a problem) Key question:

Database Workload. from additional misses in this already memory-intensive databases? interference could be a problem) Key question: Database Workload + Low throughput (0.8 IPC on an 8-wide superscalar. 1/4 of SPEC) + Naturally threaded (and widely used) application - Already high cache miss rates on a single-threaded machine (destructive

More information

Sort vs. Hash Join Revisited for Near-Memory Execution. Nooshin Mirzadeh, Onur Kocberber, Babak Falsafi, Boris Grot

Sort vs. Hash Join Revisited for Near-Memory Execution. Nooshin Mirzadeh, Onur Kocberber, Babak Falsafi, Boris Grot Sort vs. Hash Join Revisited for Near-Memory Execution Nooshin Mirzadeh, Onur Kocberber, Babak Falsafi, Boris Grot 1 Near-Memory Processing (NMP) Emerging technology Stacked memory: A logic die w/ a stack

More information

STEPS Towards Cache-Resident Transaction Processing

STEPS Towards Cache-Resident Transaction Processing STEPS Towards Cache-Resident Transaction Processing Stavros Harizopoulos joint work with Anastassia Ailamaki VLDB 2004 Carnegie ellon CPI OLTP workloads on modern CPUs 6 4 2 L2-I stalls L2-D stalls L1-I

More information

Reactive NUCA: Near-Optimal Block Placement and Replication in Distributed Caches

Reactive NUCA: Near-Optimal Block Placement and Replication in Distributed Caches Reactive NUCA: Near-Optimal Block Placement and Replication in Distributed Caches Nikos Hardavellas Michael Ferdman, Babak Falsafi, Anastasia Ailamaki Carnegie Mellon and EPFL Data Placement in Distributed

More information

ECSE 425 Lecture 21: More Cache Basics; Cache Performance

ECSE 425 Lecture 21: More Cache Basics; Cache Performance ECSE 425 Lecture 21: More Cache Basics; Cache Performance H&P Appendix C 2011 Gross, Hayward, Arbel, Vu, Meyer Textbook figures Last Time Two QuesRons Q1: Block placement Q2: Block idenrficaron ECSE 425,

More information

Architecture-Conscious Database Systems

Architecture-Conscious Database Systems Architecture-Conscious Database Systems 2009 VLDB Summer School Shanghai Peter Boncz (CWI) Sources Thank You! l l l l Database Architectures for New Hardware VLDB 2004 tutorial, Anastassia Ailamaki Query

More information

CSE 4/521 Introduction to Operating Systems. Lecture 14 Main Memory III (Paging, Structure of Page Table) Summer 2018

CSE 4/521 Introduction to Operating Systems. Lecture 14 Main Memory III (Paging, Structure of Page Table) Summer 2018 CSE 4/521 Introduction to Operating Systems Lecture 14 Main Memory III (Paging, Structure of Page Table) Summer 2018 Overview Objective: To discuss how paging works in contemporary computer systems. Paging

More information

Optimizing Datacenter Power with Memory System Levers for Guaranteed Quality-of-Service

Optimizing Datacenter Power with Memory System Levers for Guaranteed Quality-of-Service Optimizing Datacenter Power with Memory System Levers for Guaranteed Quality-of-Service * Kshitij Sudan* Sadagopan Srinivasan Rajeev Balasubramonian* Ravi Iyer Executive Summary Goal: Co-schedule N applications

More information

Performance Evaluation and Acceleration for XML Data Parsing

Performance Evaluation and Acceleration for XML Data Parsing Performance Evaluation and Acceleration for XML Data Parsing Li Zhao System Technology Lab Intel Corporation, Hillsboro, OR 97124 li.zhao@intel.com Laxmi Bhuyan Department of Computer Science University

More information

Chip-Multithreading Systems Need A New Operating Systems Scheduler

Chip-Multithreading Systems Need A New Operating Systems Scheduler Chip-Multithreading Systems Need A New Operating Systems Scheduler Alexandra Fedorova Christopher Small Daniel Nussbaum Margo Seltzer Harvard University, Sun Microsystems Sun Microsystems Sun Microsystems

More information

Memory Ordering Mechanisms for ARM? Tao C. Lee, Marc-Alexandre Boéchat CS, EPFL

Memory Ordering Mechanisms for ARM? Tao C. Lee, Marc-Alexandre Boéchat CS, EPFL Memory Ordering Mechanisms for ARM? Tao C. Lee, Marc-Alexandre Boéchat CS, EPFL Forecast This research studies the performance of memory ordering mechanisms on Chip Multi- Processors (CMPs) for modern

More information

Near Memory Key/Value Lookup Acceleration MemSys 2017

Near Memory Key/Value Lookup Acceleration MemSys 2017 Near Key/Value Lookup Acceleration MemSys 2017 October 3, 2017 Scott Lloyd, Maya Gokhale Center for Applied Scientific Computing This work was performed under the auspices of the U.S. Department of Energy

More information

Morsel- Drive Parallelism: A NUMA- Aware Query Evaluation Framework for the Many- Core Age. Presented by Dennis Grishin

Morsel- Drive Parallelism: A NUMA- Aware Query Evaluation Framework for the Many- Core Age. Presented by Dennis Grishin Morsel- Drive Parallelism: A NUMA- Aware Query Evaluation Framework for the Many- Core Age Presented by Dennis Grishin What is the problem? Efficient computation requires distribution of processing between

More information

CIS 601 Graduate Seminar. Dr. Sunnie S. Chung Dhruv Patel ( ) Kalpesh Sharma ( )

CIS 601 Graduate Seminar. Dr. Sunnie S. Chung Dhruv Patel ( ) Kalpesh Sharma ( ) Guide: CIS 601 Graduate Seminar Presented By: Dr. Sunnie S. Chung Dhruv Patel (2652790) Kalpesh Sharma (2660576) Introduction Background Parallel Data Warehouse (PDW) Hive MongoDB Client-side Shared SQL

More information

Asynchronous Memory Access Chaining

Asynchronous Memory Access Chaining Asynchronous Memory Access Chaining Onur Kocberber EcoCloud,EPFL onur.kocberber@epfl.ch Babak Falsafi EcoCloud,EPFL babak.falsafi@epfl.ch Boris Grot University of Edinburgh boris.grot@ed.ac.uk ABSTRACT

More information

Architecture-Conscious Database Systems

Architecture-Conscious Database Systems Architecture-Conscious Database Systems Anastassia Ailamaki Ph.D. Examination November 30, 2000 A DBMS on a 1980 Computer DBMS Execution PROCESSOR 10 cycles/instruction DBMS Data and Instructions 6 cycles

More information

Staged Memory Scheduling

Staged Memory Scheduling Staged Memory Scheduling Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian, Gabriel H. Loh*, Onur Mutlu Carnegie Mellon University, *AMD Research June 12 th 2012 Executive Summary Observation:

More information

Jignesh M. Patel. Blog:

Jignesh M. Patel. Blog: Jignesh M. Patel Blog: http://bigfastdata.blogspot.com Go back to the design Query Cache from Processing for Conscious 98s Modern (at Algorithms Hardware least for Hash Joins) 995 24 2 Processor Processor

More information

CCNoC: Specializing On-Chip Interconnects for Energy Efficiency in Cache-Coherent Servers

CCNoC: Specializing On-Chip Interconnects for Energy Efficiency in Cache-Coherent Servers CCNoC: Specializing On-Chip Interconnects for Energy Efficiency in Cache-Coherent Servers Stavros Volos, Ciprian Seiculescu, Boris Grot, Naser Khosro Pour, Babak Falsafi, and Giovanni De Micheli Toward

More information

Weaving Relations for Cache Performance

Weaving Relations for Cache Performance VLDB 2001, Rome, Italy Best Paper Award Weaving Relations for Cache Performance Anastassia Ailamaki David J. DeWitt Mark D. Hill Marios Skounakis Presented by: Ippokratis Pandis Bottleneck in DBMSs Processor

More information

Erik Riedel Hewlett-Packard Labs

Erik Riedel Hewlett-Packard Labs Erik Riedel Hewlett-Packard Labs Greg Ganger, Christos Faloutsos, Dave Nagle Carnegie Mellon University Outline Motivation Freeblock Scheduling Scheduling Trade-Offs Performance Details Applications Related

More information

Workload Characterization and Optimization of TPC-H Queries on Apache Spark

Workload Characterization and Optimization of TPC-H Queries on Apache Spark Workload Characterization and Optimization of TPC-H Queries on Apache Spark Tatsuhiro Chiba and Tamiya Onodera IBM Research - Tokyo April. 17-19, 216 IEEE ISPASS 216 @ Uppsala, Sweden Overview IBM Research

More information

Improving DRAM Performance by Parallelizing Refreshes with Accesses

Improving DRAM Performance by Parallelizing Refreshes with Accesses Improving DRAM Performance by Parallelizing Refreshes with Accesses Kevin Chang Donghyuk Lee, Zeshan Chishti, Alaa Alameldeen, Chris Wilkerson, Yoongu Kim, Onur Mutlu Executive Summary DRAM refresh interferes

More information

Many-Core Computing Era and New Challenges. Nikos Hardavellas, EECS

Many-Core Computing Era and New Challenges. Nikos Hardavellas, EECS Many-Core Computing Era and New Challenges Nikos Hardavellas, EECS Moore s Law Is Alive And Well 90nm 90nm transistor (Intel, 2005) Swine Flu A/H1N1 (CDC) 65nm 2007 45nm 2010 32nm 2013 22nm 2016 16nm 2019

More information

Row Buffer Locality Aware Caching Policies for Hybrid Memories. HanBin Yoon Justin Meza Rachata Ausavarungnirun Rachael Harding Onur Mutlu

Row Buffer Locality Aware Caching Policies for Hybrid Memories. HanBin Yoon Justin Meza Rachata Ausavarungnirun Rachael Harding Onur Mutlu Row Buffer Locality Aware Caching Policies for Hybrid Memories HanBin Yoon Justin Meza Rachata Ausavarungnirun Rachael Harding Onur Mutlu Executive Summary Different memory technologies have different

More information

EFFICIENTLY ENABLING CONVENTIONAL BLOCK SIZES FOR VERY LARGE DIE- STACKED DRAM CACHES

EFFICIENTLY ENABLING CONVENTIONAL BLOCK SIZES FOR VERY LARGE DIE- STACKED DRAM CACHES EFFICIENTLY ENABLING CONVENTIONAL BLOCK SIZES FOR VERY LARGE DIE- STACKED DRAM CACHES MICRO 2011 @ Porte Alegre, Brazil Gabriel H. Loh [1] and Mark D. Hill [2][1] December 2011 [1] AMD Research [2] University

More information

SGI Challenge Overview

SGI Challenge Overview CS/ECE 757: Advanced Computer Architecture II (Parallel Computer Architecture) Symmetric Multiprocessors Part 2 (Case Studies) Copyright 2001 Mark D. Hill University of Wisconsin-Madison Slides are derived

More information

ScaleArc for SQL Server

ScaleArc for SQL Server Solution Brief ScaleArc for SQL Server Overview Organizations around the world depend on SQL Server for their revenuegenerating, customer-facing applications, running their most business-critical operations

More information

CHAPTER 8 - MEMORY MANAGEMENT STRATEGIES

CHAPTER 8 - MEMORY MANAGEMENT STRATEGIES CHAPTER 8 - MEMORY MANAGEMENT STRATEGIES OBJECTIVES Detailed description of various ways of organizing memory hardware Various memory-management techniques, including paging and segmentation To provide

More information

15-740/ Computer Architecture Lecture 5: Project Example. Jus%n Meza Yoongu Kim Fall 2011, 9/21/2011

15-740/ Computer Architecture Lecture 5: Project Example. Jus%n Meza Yoongu Kim Fall 2011, 9/21/2011 15-740/18-740 Computer Architecture Lecture 5: Project Example Jus%n Meza Yoongu Kim Fall 2011, 9/21/2011 Reminder: Project Proposals Project proposals due NOON on Monday 9/26 Two to three pages consisang

More information

Analyzing Memory Access Patterns and Optimizing Through Spatial Memory Streaming. Ogün HEPER CmpE 511 Computer Architecture December 24th, 2009

Analyzing Memory Access Patterns and Optimizing Through Spatial Memory Streaming. Ogün HEPER CmpE 511 Computer Architecture December 24th, 2009 Analyzing Memory Access Patterns and Optimizing Through Spatial Memory Streaming Ogün HEPER CmpE 511 Computer Architecture December 24th, 2009 Agenda Introduction Memory Hierarchy Design CPU Speed vs.

More information

Anastasia Ailamaki. Performance and energy analysis using transactional workloads

Anastasia Ailamaki. Performance and energy analysis using transactional workloads Performance and energy analysis using transactional workloads Anastasia Ailamaki EPFL and RAW Labs SA students: Danica Porobic, Utku Sirin, and Pinar Tozun Online Transaction Processing $2B+ industry Characteristics:

More information

Understanding Reduced-Voltage Operation in Modern DRAM Devices

Understanding Reduced-Voltage Operation in Modern DRAM Devices Understanding Reduced-Voltage Operation in Modern DRAM Devices Experimental Characterization, Analysis, and Mechanisms Kevin Chang A. Giray Yaglikci, Saugata Ghose,Aditya Agrawal *, Niladrish Chatterjee

More information

Bridging the Processor/Memory Performance Gap in Database Applications

Bridging the Processor/Memory Performance Gap in Database Applications Bridging the Processor/Memory Performance Gap in Database Applications Anastassia Ailamaki Carnegie Mellon http://www.cs.cmu.edu/~natassa Memory Hierarchies PROCESSOR EXECUTION PIPELINE L1 I-CACHE L1 D-CACHE

More information

In-Memory Data Management

In-Memory Data Management In-Memory Data Management Martin Faust Research Assistant Research Group of Prof. Hasso Plattner Hasso Plattner Institute for Software Engineering University of Potsdam Agenda 2 1. Changed Hardware 2.

More information

Main-Memory Databases 1 / 25

Main-Memory Databases 1 / 25 1 / 25 Motivation Hardware trends Huge main memory capacity with complex access characteristics (Caches, NUMA) Many-core CPUs SIMD support in CPUs New CPU features (HTM) Also: Graphic cards, FPGAs, low

More information

Performance Profiling

Performance Profiling Performance Profiling Minsoo Ryu Real-Time Computing and Communications Lab. Hanyang University msryu@hanyang.ac.kr Outline History Understanding Profiling Understanding Performance Understanding Performance

More information

HyPer-sonic Combined Transaction AND Query Processing

HyPer-sonic Combined Transaction AND Query Processing HyPer-sonic Combined Transaction AND Query Processing Thomas Neumann Technische Universität München December 2, 2011 Motivation There are different scenarios for database usage: OLTP: Online Transaction

More information

Chapter 8: Main Memory

Chapter 8: Main Memory Chapter 8: Main Memory Chapter 8: Memory Management Background Swapping Contiguous Memory Allocation Segmentation Paging Structure of the Page Table Example: The Intel 32 and 64-bit Architectures Example:

More information

Chapter 8: Memory-Management Strategies

Chapter 8: Memory-Management Strategies Chapter 8: Memory-Management Strategies Chapter 8: Memory Management Strategies Background Swapping Contiguous Memory Allocation Segmentation Paging Structure of the Page Table Example: The Intel 32 and

More information

ECE 571 Advanced Microprocessor-Based Design Lecture 13

ECE 571 Advanced Microprocessor-Based Design Lecture 13 ECE 571 Advanced Microprocessor-Based Design Lecture 13 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 21 March 2017 Announcements More on HW#6 When ask for reasons why cache

More information

Panu Silvasti Page 1

Panu Silvasti Page 1 Multicore support in databases Panu Silvasti Page 1 Outline Building blocks of a storage manager How do existing storage managers scale? Optimizing Shore database for multicore processors Page 2 Building

More information

XPU A Programmable FPGA Accelerator for Diverse Workloads

XPU A Programmable FPGA Accelerator for Diverse Workloads XPU A Programmable FPGA Accelerator for Diverse Workloads Jian Ouyang, 1 (ouyangjian@baidu.com) Ephrem Wu, 2 Jing Wang, 1 Yupeng Li, 1 Hanlin Xie 1 1 Baidu, Inc. 2 Xilinx Outlines Background - FPGA for

More information

ADDICT: Advanced Instruction Chasing for Transactions

ADDICT: Advanced Instruction Chasing for Transactions ADDICT: Advanced Instruction Chasing for Transactions Pınar Tözün EPFL pinar.tozun@epfl.ch Islam Atta University of Toronto iatta@eecg.toronto.edu Anastasia Ailamaki EPFL natassa@epfl.ch Andreas Moshovos

More information

The Gap Between the Virtual Machine and the Real Machine. Charles Forgy Production Systems Tech

The Gap Between the Virtual Machine and the Real Machine. Charles Forgy Production Systems Tech The Gap Between the Virtual Machine and the Real Machine Charles Forgy Production Systems Tech How to Improve Performance Use better algorithms. Use parallelism. Make better use of the hardware. Argument

More information

BuMP: Bulk Memory Access Prediction and Streaming

BuMP: Bulk Memory Access Prediction and Streaming : Bulk Memory Access Prediction and Stavros Volos Javier Picorel Babak Falsafi Boris Grot EcoCloud, EPFL University of Edinburgh Abstract With the end of Dennard scaling, server power has emerged as the

More information

Efficient Data Mapping and Buffering Techniques for Multi-Level Cell Phase-Change Memories

Efficient Data Mapping and Buffering Techniques for Multi-Level Cell Phase-Change Memories Efficient Data Mapping and Buffering Techniques for Multi-Level Cell Phase-Change Memories HanBin Yoon, Justin Meza, Naveen Muralimanohar*, Onur Mutlu, Norm Jouppi* Carnegie Mellon University * Hewlett-Packard

More information

Memory Management. Dr. Yingwu Zhu

Memory Management. Dr. Yingwu Zhu Memory Management Dr. Yingwu Zhu Big picture Main memory is a resource A process/thread is being executing, the instructions & data must be in memory Assumption: Main memory is infinite Allocation of memory

More information

Weaving Relations for Cache Performance

Weaving Relations for Cache Performance Weaving Relations for Cache Performance Anastassia Ailamaki Carnegie Mellon Computer Platforms in 198 Execution PROCESSOR 1 cycles/instruction Data and Instructions cycles

More information

A high performance database kernel for query-intensive applications. Peter Boncz

A high performance database kernel for query-intensive applications. Peter Boncz MonetDB: A high performance database kernel for query-intensive applications Peter Boncz CWI Amsterdam The Netherlands boncz@cwi.nl Contents The Architecture of MonetDB The MIL language with examples Where

More information

InnoDB: Status, Architecture, and Latest Enhancements

InnoDB: Status, Architecture, and Latest Enhancements InnoDB: Status, Architecture, and Latest Enhancements O'Reilly MySQL Conference, April 14, 2011 Inaam Rana, Oracle John Russell, Oracle Bios Inaam Rana (InnoDB / MySQL / Oracle) Crash recovery speedup

More information

class 9 fast scans 1.0 prof. Stratos Idreos

class 9 fast scans 1.0 prof. Stratos Idreos class 9 fast scans 1.0 prof. Stratos Idreos HTTP://DASLAB.SEAS.HARVARD.EDU/CLASSES/CS165/ 1 pass to merge into 8 sorted pages (2N pages) 1 pass to merge into 4 sorted pages (2N pages) 1 pass to merge into

More information

EMC XTREMCACHE ACCELERATES MICROSOFT SQL SERVER

EMC XTREMCACHE ACCELERATES MICROSOFT SQL SERVER White Paper EMC XTREMCACHE ACCELERATES MICROSOFT SQL SERVER EMC XtremSF, EMC XtremCache, EMC VNX, Microsoft SQL Server 2008 XtremCache dramatically improves SQL performance VNX protects data EMC Solutions

More information

Virtual Memory. Main memory is a CACHE for disk Advantages: illusion of having more physical memory program relocation protection.

Virtual Memory. Main memory is a CACHE for disk Advantages: illusion of having more physical memory program relocation protection. Virtual Memory Main memory is a CACHE for disk Advantages: illusion of having more physical memory program relocation protection L18 Virtual Memory 1 Pages: Virtual Memory Blocks Page faults: the data

More information

Efficient Data Movement in Modern SoC Designs Why It Matters

Efficient Data Movement in Modern SoC Designs Why It Matters WHITE PAPER Efficient Data Movement in Modern SoC Designs Why It Matters COPROCESSORS OFFLOAD AND ACCELERATE SPECIFIC WORKLOADS, HOWEVER DATA MOVEMENT EFFICIENCY ACROSS THE PROCESSING CORES AND MEMORY

More information

Cache-Aware Database Systems Internals Chapter 7

Cache-Aware Database Systems Internals Chapter 7 Cache-Aware Database Systems Internals Chapter 7 1 Data Placement in RDBMSs A careful analysis of query processing operators and data placement schemes in RDBMS reveals a paradox: Workloads perform sequential

More information

Evalua&ng STT- RAM as an Energy- Efficient Main Memory Alterna&ve

Evalua&ng STT- RAM as an Energy- Efficient Main Memory Alterna&ve Evalua&ng STT- RAM as an Energy- Efficient Main Memory Alterna&ve Emre Kültürsay *, Mahmut Kandemir *, Anand Sivasubramaniam *, and Onur Mutlu * Pennsylvania State University Carnegie Mellon University

More information

Advanced Database Systems

Advanced Database Systems Lecture IV Query Processing Kyumars Sheykh Esmaili Basic Steps in Query Processing 2 Query Optimization Many equivalent execution plans Choosing the best one Based on Heuristics, Cost Will be discussed

More information

Chapter 8: Main Memory. Operating System Concepts 9 th Edition

Chapter 8: Main Memory. Operating System Concepts 9 th Edition Chapter 8: Main Memory Silberschatz, Galvin and Gagne 2013 Chapter 8: Memory Management Background Swapping Contiguous Memory Allocation Segmentation Paging Structure of the Page Table Example: The Intel

More information

Lecture 23 10/21/15. CMPSC431W: Database Management Systems. Instructor: Yu- San Lin

Lecture 23 10/21/15. CMPSC431W: Database Management Systems. Instructor: Yu- San Lin CMPSC431W: Database Management Systems Lecture 23 10/21/15 Instructor: Yu- San Lin yusan@psu.edu Course Website: hcp://www.cse.psu.edu/~yul189/cmpsc431w 1 INTRODUCTION TO NOSQL DATABASE 2 3 What is NoSQL?

More information

SCHISM: A WORKLOAD-DRIVEN APPROACH TO DATABASE REPLICATION AND PARTITIONING

SCHISM: A WORKLOAD-DRIVEN APPROACH TO DATABASE REPLICATION AND PARTITIONING SCHISM: A WORKLOAD-DRIVEN APPROACH TO DATABASE REPLICATION AND PARTITIONING ZEYNEP KORKMAZ CS742 - PARALLEL AND DISTRIBUTED DATABASE SYSTEMS UNIVERSITY OF WATERLOO OUTLINE. Background 2. What is Schism?

More information

Compression in Bankware

Compression in Bankware Compression in Bankware This work was done on the sk-bankware\skbankware instance of the sk-bankware server aimed for the ART applications in Skopje RO. The sk-bankware server characterizes with the following

More information

Performance Monitoring

Performance Monitoring Performance Monitoring Performance Monitoring Goals Monitoring should check that the performanceinfluencing database parameters are correctly set and if they are not, it should point to where the problems

More information

Chapter 8: Main Memory

Chapter 8: Main Memory Chapter 8: Main Memory Silberschatz, Galvin and Gagne 2013 Chapter 8: Memory Management Background Swapping Contiguous Memory Allocation Segmentation Paging Structure of the Page Table Example: The Intel

More information

CS162 Operating Systems and Systems Programming Lecture 10 Caches and TLBs"

CS162 Operating Systems and Systems Programming Lecture 10 Caches and TLBs CS162 Operating Systems and Systems Programming Lecture 10 Caches and TLBs" October 1, 2012! Prashanth Mohan!! Slides from Anthony Joseph and Ion Stoica! http://inst.eecs.berkeley.edu/~cs162! Caching!

More information

Chapter 8 Memory Management

Chapter 8 Memory Management Chapter 8 Memory Management Da-Wei Chang CSIE.NCKU Source: Abraham Silberschatz, Peter B. Galvin, and Greg Gagne, "Operating System Concepts", 9th Edition, Wiley. 1 Outline Background Swapping Contiguous

More information

Virtual to physical address translation

Virtual to physical address translation Virtual to physical address translation Virtual memory with paging Page table per process Page table entry includes present bit frame number modify bit flags for protection and sharing. Page tables can

More information

OpenEdge 12.0 Database Performance and Server Side Joins. Richard Banville Fellow, OpenEdge Development October 12, 2018

OpenEdge 12.0 Database Performance and Server Side Joins. Richard Banville Fellow, OpenEdge Development October 12, 2018 OpenEdge 12.0 Database Performance and Server Side Joins Richard Banville Fellow, OpenEdge Development October 12, 2018 Data Access Performance Enhancements Increasing overall throughput Provide more concurrency

More information

Page 1. Review: Address Segmentation " Review: Address Segmentation " Review: Address Segmentation "

Page 1. Review: Address Segmentation  Review: Address Segmentation  Review: Address Segmentation Review Address Segmentation " CS162 Operating Systems and Systems Programming Lecture 10 Caches and TLBs" February 23, 2011! Ion Stoica! http//inst.eecs.berkeley.edu/~cs162! 1111 0000" 1110 000" Seg #"

More information

Addressing the Memory Wall

Addressing the Memory Wall Lecture 26: Addressing the Memory Wall Parallel Computer Architecture and Programming CMU 15-418/15-618, Spring 2015 Tunes Cage the Elephant Back Against the Wall (Cage the Elephant) This song is for the

More information

A Comprehensive Analytical Performance Model of DRAM Caches

A Comprehensive Analytical Performance Model of DRAM Caches A Comprehensive Analytical Performance Model of DRAM Caches Authors: Nagendra Gulur *, Mahesh Mehendale *, and R Govindarajan + Presented by: Sreepathi Pai * Texas Instruments, + Indian Institute of Science

More information

HyPer-sonic Combined Transaction AND Query Processing

HyPer-sonic Combined Transaction AND Query Processing HyPer-sonic Combined Transaction AND Query Processing Thomas Neumann Technische Universität München October 26, 2011 Motivation - OLTP vs. OLAP OLTP and OLAP have very different requirements OLTP high

More information

Accelerating Microsoft SQL Server Performance With NVDIMM-N on Dell EMC PowerEdge R740

Accelerating Microsoft SQL Server Performance With NVDIMM-N on Dell EMC PowerEdge R740 Accelerating Microsoft SQL Server Performance With NVDIMM-N on Dell EMC PowerEdge R740 A performance study with NVDIMM-N Dell EMC Engineering September 2017 A Dell EMC document category Revisions Date

More information

Application of TRIE data structure and corresponding associative algorithms for process optimization in GRID environment

Application of TRIE data structure and corresponding associative algorithms for process optimization in GRID environment Application of TRIE data structure and corresponding associative algorithms for process optimization in GRID environment V. V. Kashansky a, I. L. Kaftannikov b South Ural State University (National Research

More information

LLVM-based dynamic dataflow compila6on for heterogeneous targets

LLVM-based dynamic dataflow compila6on for heterogeneous targets LLVM-based dynamic dataflow compila6on for heterogeneous targets V. Ducrot, K. Juilly, S.Monot, G. Bayle Des Courchamps Donnons de la suite à vos idées AS+ Groupe Eolen T. Goubier CEA List /DACLE /LCE

More information

The Case for Heterogeneous HTAP

The Case for Heterogeneous HTAP The Case for Heterogeneous HTAP Raja Appuswamy, Manos Karpathiotakis, Danica Porobic, and Anastasia Ailamaki Data-Intensive Applications and Systems Lab EPFL 1 HTAP the contract with the hardware Hybrid

More information

SEESAW: Set Enhanced Superpage Aware caching

SEESAW: Set Enhanced Superpage Aware caching SEESAW: Set Enhanced Superpage Aware caching http://synergy.ece.gatech.edu/ Set Associativity Mayank Parasar, Abhishek Bhattacharjee Ω, Tushar Krishna School of Electrical and Computer Engineering Georgia

More information

A Row Buffer Locality-Aware Caching Policy for Hybrid Memories. HanBin Yoon Justin Meza Rachata Ausavarungnirun Rachael Harding Onur Mutlu

A Row Buffer Locality-Aware Caching Policy for Hybrid Memories. HanBin Yoon Justin Meza Rachata Ausavarungnirun Rachael Harding Onur Mutlu A Row Buffer Locality-Aware Caching Policy for Hybrid Memories HanBin Yoon Justin Meza Rachata Ausavarungnirun Rachael Harding Onur Mutlu Overview Emerging memories such as PCM offer higher density than

More information

Efficient Hardware Acceleration on SoC- FPGA using OpenCL

Efficient Hardware Acceleration on SoC- FPGA using OpenCL Efficient Hardware Acceleration on SoC- FPGA using OpenCL Advisor : Dr. Benjamin Carrion Schafer Susmitha Gogineni 30 th August 17 Presentation Overview 1.Objective & Motivation 2.Configurable SoC -FPGA

More information

Memory Hierarchies && The New Bottleneck == Cache Conscious Data Access. Martin Grund

Memory Hierarchies && The New Bottleneck == Cache Conscious Data Access. Martin Grund Memory Hierarchies && The New Bottleneck == Cache Conscious Data Access Martin Grund Agenda Key Question: What is the memory hierarchy and how to exploit it? What to take home How is computer memory organized.

More information

ElasticFlow: A Complexity-Effective Approach for Pipelining Irregular Loop Nests

ElasticFlow: A Complexity-Effective Approach for Pipelining Irregular Loop Nests ElasticFlow: A Complexity-Effective Approach for Pipelining Irregular Loop Nests Mingxing Tan 1 2, Gai Liu 1, Ritchie Zhao 1, Steve Dai 1, Zhiru Zhang 1 1 Computer Systems Laboratory, Electrical and Computer

More information

Chapter 05. Authors: John Hennessy & David Patterson. Copyright 2011, Elsevier Inc. All rights Reserved. 1

Chapter 05. Authors: John Hennessy & David Patterson. Copyright 2011, Elsevier Inc. All rights Reserved. 1 Chapter 05 Authors: John Hennessy & David Patterson Copyright 2011, Elsevier Inc. All rights Reserved. 1 Figure 5.1 Basic structure of a centralized shared-memory multiprocessor based on a multicore chip.

More information

FPGA-Accelerated Instrumentation

FPGA-Accelerated Instrumentation ROTOFLEX: FGA-Accelerated Instrumentation Michael K. apamichael, Eric S. Chung, James C. Hoe, Babak Falsafi, Ken Mai papamix@cs.cmu.edu, {echung, jhoe, babak, kenmai}@ece.cmu.edu ROTOFLEX Computer Architecture

More information

Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks Amirali Boroumand

Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks Amirali Boroumand Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks Amirali Boroumand Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan

More information

FIST: A Fast, Lightweight, FPGA-Friendly Packet Latency Estimator for NoC Modeling in Full-System Simulations

FIST: A Fast, Lightweight, FPGA-Friendly Packet Latency Estimator for NoC Modeling in Full-System Simulations FIST: A Fast, Lightweight, FPGA-Friendly Packet Latency Estimator for oc Modeling in Full-System Simulations Michael K. Papamichael, James C. Hoe, Onur Mutlu papamix@cs.cmu.edu, jhoe@ece.cmu.edu, onur@cmu.edu

More information

[MS10987A]: Performance Tuning and Optimizing SQL Databases

[MS10987A]: Performance Tuning and Optimizing SQL Databases [MS10987A]: Performance Tuning and Optimizing SQL Databases Length : 4 Days Audience(s) : IT Professionals Level : 300 Technology : Microsoft SQL Server Delivery Method : Instructor-led (Classroom) Course

More information

A Case Study: Performance Evaluation of a DRAM-Based Solid State Disk

A Case Study: Performance Evaluation of a DRAM-Based Solid State Disk A Case Study: Performance Evaluation of a DRAM-Based Solid State Disk Hitoshi Oi The University of Aizu November 2, 2007 Japan-China Joint Workshop on Frontier of Computer Science and Technology (FCST)

More information

Multi-Process Systems: Memory (2) Memory & paging structures: free frames. Memory & paging structures. Physical memory

Multi-Process Systems: Memory (2) Memory & paging structures: free frames. Memory & paging structures. Physical memory Multi-Process Systems: Memory (2) What we will learn A detailed description of various ways of organizing memory Discuss various memory-management techniques, including paging and segmentation To provide

More information

Architectural Models and So2ware APIs in Graphite. What s available and how to extend

Architectural Models and So2ware APIs in Graphite. What s available and how to extend Architectural Models and So2ware APIs in Graphite What s available and how to extend 1 Architectural Models Overview Architectural Models List of available models in Graphite ConfiguraEon Parameters Base

More information

Storage hierarchy. Textbook: chapters 11, 12, and 13

Storage hierarchy. Textbook: chapters 11, 12, and 13 Storage hierarchy Cache Main memory Disk Tape Very fast Fast Slower Slow Very small Small Bigger Very big (KB) (MB) (GB) (TB) Built-in Expensive Cheap Dirt cheap Disks: data is stored on concentric circular

More information

Paging! 2/22! Anthony D. Joseph and Ion Stoica CS162 UCB Fall 2012! " (0xE0)" " " " (0x70)" " (0x50)"

Paging! 2/22! Anthony D. Joseph and Ion Stoica CS162 UCB Fall 2012!  (0xE0)    (0x70)  (0x50) CS162 Operating Systems and Systems Programming Lecture 10 Caches and TLBs" February 22, 2011! Anthony D. Joseph and Ion Stoica! http//inst.eecs.berkeley.edu/~cs162! Segmentation! Paging! Recap Segmentation

More information

Prefetching. Fall 2007 Prof. Thomas Wenisch. Correlating Prediction Table. Latest. Prefetch A3.

Prefetching. Fall 2007 Prof. Thomas Wenisch.  Correlating Prediction Table. Latest. Prefetch A3. History Table Correlating Prediction Table Prefetching Latest A0 A0,A1 A3 11 Fall 2007 Prof. Thomas Wenisch A1 http://www.eecs.umich.edu/courses/eecs470 Prefetch A3 Slides developed in part by Profs. Austin,

More information

Chapter 8: Memory- Management Strategies. Operating System Concepts 9 th Edition

Chapter 8: Memory- Management Strategies. Operating System Concepts 9 th Edition Chapter 8: Memory- Management Strategies Operating System Concepts 9 th Edition Silberschatz, Galvin and Gagne 2013 Chapter 8: Memory Management Strategies Background Swapping Contiguous Memory Allocation

More information

PS2 out today. Lab 2 out today. Lab 1 due today - how was it?

PS2 out today. Lab 2 out today. Lab 1 due today - how was it? 6.830 Lecture 7 9/25/2017 PS2 out today. Lab 2 out today. Lab 1 due today - how was it? Project Teams Due Wednesday Those of you who don't have groups -- send us email, or hand in a sheet with just your

More information

Kathleen Durant PhD Northeastern University CS Indexes

Kathleen Durant PhD Northeastern University CS Indexes Kathleen Durant PhD Northeastern University CS 3200 Indexes Outline for the day Index definition Types of indexes B+ trees ISAM Hash index Choosing indexed fields Indexes in InnoDB 2 Indexes A typical

More information

Kartik Lakhotia, Rajgopal Kannan, Viktor Prasanna USENIX ATC 18

Kartik Lakhotia, Rajgopal Kannan, Viktor Prasanna USENIX ATC 18 Accelerating PageRank using Partition-Centric Processing Kartik Lakhotia, Rajgopal Kannan, Viktor Prasanna USENIX ATC 18 Outline Introduction Partition-centric Processing Methodology Analytical Evaluation

More information

Computer Architecture: Main Memory (Part II) Prof. Onur Mutlu Carnegie Mellon University

Computer Architecture: Main Memory (Part II) Prof. Onur Mutlu Carnegie Mellon University Computer Architecture: Main Memory (Part II) Prof. Onur Mutlu Carnegie Mellon University Main Memory Lectures These slides are from the Scalable Memory Systems course taught at ACACES 2013 (July 15-19,

More information