From Pixels to Information Recent Advances in Visual Search

Size: px
Start display at page:

Download "From Pixels to Information Recent Advances in Visual Search"

Transcription

1 From Pixels to Information Recent Advances in Visual Search Bernd Girod Stanford University

2

3 Augmented Reality 3

4 Augmented Reality

5 Future: Smart Contact Lenses Sight: Contact Lenses with Augmented Reality [E. May-raz and D. Lazo, 2012] 5

6 Recognizing What the User Sees The Touring Machine [Feiner et al., 1997] 6

7 Stanford Landmark Recognition (2007) G. Takacs et al., ACM MIR

8 Recognizing Objects 8

9 Thomas Hill Jane Stanford Leland Stanford, Jr. Who s who? 9

10 10

11 Image-based Retrieval Levon Helm: Dirt Farmer $13.85 $

12 Outline Review: Computer vision for image-based retrieval Invariant local image features (SIFT); matching feature descriptors MPEG CDVS Standard: Compact Descriptors for Visual Search CDVS framework & pipeline; Fisher vectors as global descriptors Current research directions Query-by-image video retrieval; interframe compression of local and global descriptors 12

13 Standing on the Shoulders of Intelligent signal processing System architecture Coding & Communication Human interface Bernd Girod: From Pixels to Information Recent Advances in Visual Search 13

14 Local Image Features Vectors that describe local patterns in a way that is both distinctive and invariant to Brightness changes Contrast changes Shift in x,y Scale change Rotation (Affine distortion) Scale Invariant Feature Transform (SIFT) [Lowe, 1999, 2004] 14

15 Local Features: Keypoint Detection Grayscale Color Image DoG Filter σ = scale y x Response Scale Space 15

16 Local Features: Keypoint Detection Detect Extrema Extrema Oriented in Response Feature Keypoints Scale Space scale y x Response Scale Space 16

17 Local Features: Descriptor Computation Canonical Image Patches Oriented Feature Keypoints Image Gradients Gradient Orientation Histograms 17

18 Matching Local Feature Descriptors Numerical Recipes in C SFCity CityHall Hall SF 400 Van Van Ness Ness Ave. Ave. 400 (415) (415) Bernd Girod: From Pixels to Information Recent Advances in Visual Search 18

19 Mobile Augmented Reality Server Extract Features Query VocTree Check Geometry Send Query Frame High Motion Track Camera Pose Low Motion Time Compensate Camera Pose Send ID and Geometry Display ID and Draw Boundary John Mayer Inside Wants Out Network Client 19

20 Media Cover Recognition Nokia N95 Smartphone 20

21 Recognizing Books on A Shelf Motorola Droid Smartphone 21

22 Architecture A: Send Image 20 kbps à 20 sec Image Numerical Recipes in C SF City Hall 400 Van Ness Ave. (415) Wireless Network Information Camera Client Server Feature Extraction Feature Matching 22

23 Architecture B: Send Features Features Numerical Recipes in C SF City Hall 400 Van Ness Ave. (415) Wireless Network Information Camera Feature Extraction Feature Coding Client Server Feature Matching 23

24 Architecture C: Features on Mobile Device Numerical Recipes in C SF City Hall 400 Van Ness Ave. (415) Wireless Network Features Information Camera Feature Extraction Feature Matching Client 24

25 CDVS Standardization Moving Picture Experts Group (MPEG - ISO/IEC JTC1 SC29 WG11) initiated the Compact Descriptors for Visual Search (CDVS) standard activity at the 91st MPEG meeting (Kyoto, Jan. 2010). Final Draft of International Standard (FDIS) 25

26 CDVS Evaluation Framework Graphics Paintings Video Frames Landmarks Common Objects 26

27 ` 1M Distractor Images 27

28 CDVS Pipeline LoG peaks Non-orthogonal transform + quantization xy-location needed for object location (and geometric verification) Query Statistically optimized based on peak response, scale, location, SIFT descriptor 304, 384, 404, 1117, 1117, 1117 bytes 512, 1K, 2K, 4K, 8K, 16K bytes 28

29 Local Feature Descriptor Aggregation Nearest-neighbor matching of variable-size sets of local features is costly Compare images based on a global binary signature of constant size ( hash ) instead Naïve: VQ of feature vectors to generate histogram, compare non-empty histogram bins ( bag of features, bag of visual words ) Better: binarize gradient of log likelihood of w.r.t. to parameter vector ( Fisher vector ) 29

30 Fisher Vector Discriminative score function d-dimensional vector d k k-dimensional feature vector d Parameters Typical, we use Gaussian mixture model (GMM) for Parameters : mean (and variance) of Gaussian clusters For GMM, feature scores U(X) are soft-assigned distance vectors (and squared distance vectors) relative to cluster centers Sums of feature scores of an image are Fisher vector that can be used to compare images Binarization & Hamming distance comparison results in only minor performance loss ( Binarized Fisher vector ) 30

31 CDVS Evolution Average performance over all datasets and test conditions TMuC first reference software (based on SIFT) TM2 Global descriptor ( REVV ) based on Fisher vector framework introduced TM4 Scalable Fisher Vector (SCFV) TM11 Technology development complete Reduced algorithm memory requirements from ~400 MB to ~1MB at the same time 31

32 CDVS Performance (TM11) 32

33 Architecture C: Features on Mobile Device SF City Hall 400 Van Ness Ave. (415) Wireless Network Features Information Camera Feature Extraction Feature Matching Client 33

34 On-Device Timing Measurements Samsung Galaxy S3 Smartphone 1.4 GHz Processor 1 GB RAM Database of 100K Images Frequency queries Feature extraction 32% Global signature database search 54% Time (sec) 14% Geometric verification 34

35 On-Device Demo Image Video Matching Demo Database of 100K Images Samsung Galaxy S3 Smartphone 35

36 Augmented Reality Glasses Right-eye LCD Left-eye LCD Camera Android controller 36

37 Augmented Reality Glasses 37

38 Augmented Reality Glasses 38

39 AR w/ Head-Mounted Camera [Baidu Eye, 2014] 39

40 Visual Search: Where Do We Go From Here? Query: Image Database: Images Limitations of SIFT/CDVS framework Scale to very large databases Dense text Non-planar 3d objects Database: Videos Search Dark matter of the Internet Temporal redundancy of database Asymmetric comparisons Query: Video Streaming augmented reality Exploit temporal redundancy of queries Database caching in mobile device Tracking of copies Leverage audio Largely solved 40

41 Visual Search: Where Do We Go From Here? Query: Image Database: Images Limitations of SIFT/CDVS framework Scale to very large databases Dense text Non-planar 3d objects Database: Videos Search Dark matter of the Internet Temporal redundancy of database Asymmetric comparisons Query: Video Streaming augmented reality Exploit temporal redundancy of queries Database caching in mobile device Tracking of copies Leverage audio Largely solved 41

42 Query-by-Image Video Retrieval Applications News videos: search event footage using photos Online education: search lecture videos using slides Brand monitoring: search web videos for product placement 42

43 Fisher Vector Aggregation Stanford I2V dataset, 3,800 hours of news videos, 229 query images [Araujo et al., ICIP 2015] 43

44 Asymmetric Comparisons Query Images Database Frames Problem becomes more pronounced with temporal aggregation Solution: omit Fisher vector components of Gaussian clusters that the query does not visit [Araujo et al., ICIP 2015] Might have to use more Gaussian clusters to accommodate larger number of features on the database side 44

45 Visual Search: Where Do We Go From Here? Query: Image Database: Images Limitations of SIFT/CDVS framework Scale to very large databases Dense text Non-planar 3d objects Database: Videos Search Dark matter of the Internet Temporal redundancy of database Asymmetric comparisons Query: Video Streaming augmented reality Exploit temporal redundancy of queries Database caching in mobile device Tracking of copies Leverage audio Largely solved 45

46 Architecture B: Send Features Features Numerical Recipes in C SF City Hall 400 Van Ness Ave. (415) Wireless Network Information Camera Feature Extraction Feature Coding Client Server Feature Matching 46

47 Interframe Compression of Features InterframePatch Coding 1 2 Reba keypoints, frame 1 Reba keypoints, frame 2 t [Makar et al., IEEE Trans. Image Processing, 2014] 47

48 Interframe Compression of Features Interframe Descriptor Coding 1 2 Reba keypoints, frame 1 Reba keypoints, frame 2 t [Makar et al., IEEE Trans. Image Processing, 2014] 48

49 Interframe Compression of Features Differential Location Coding 1 2 Reba keypoints, frame 1 Reba keypoints, frame 2 [Makar et al., IEEE Trans. Image Processing, 2014] t 49

50 Interframe Compression of Features Matches post-ransac fps Send Descriptors, Indp. detection 10x 4x Send Patches, Temp. coherent Inter-coded patches Inter-coded descriptors Intra-coded descriptors H.264 video Send Video Intra-coded patches Send Patches, Indp. detection Send Descriptors, Temp. coherent Bit-rate (kbps) [Makar et al., IEEE Trans. Image Processing, 2014] 50

51 Temporally Coherent Keypoint Detection Conventional keypoint detection Temporally coherent Reba keypoints, frame 12 Reba keypoints, frame 21 [Makar et al., IEEE Trans. Image Processing, 2014] 51

52 Streaming MAR at ~15 kbps 52

53 Hybrid Query Mode Extract Local Features Aggregate Global Descriptor Match with Global Descriptors Perform Geometric Verification Wireless Network Send global descriptors in uplink Descriptor Database (Mobile) Match with Global Descriptors Send labels and local features for top-ranked database candidates in downlink 0.49 Descriptor Database (Cloud) 53

54 Mean Precision at Rank 1 (percent) Hybrid Query Mode Interframe coding of global descriptors with caching Solid Curves: Empirical Dashed Curves: Model 88x bitrate savings 30 fps Uplink Bitrate (kbps) Independent coding of global descriptors w/o caching 54

55 Conclusion: An Exciting Area! Mobile visual search is ready for prime-time Wide-spread use of augmented reality with HMDs probably still some years away Compression for visual matching is a key problem MPEG standardization Compact Descriptors for Visual Search (CDVS) Video is next: MPEG-CDVA Akin to video coding 1980 still mostly uncharted territory. Intelligent signal processing Coding & Communication System architecture Human interface 55

56 Bernd Girod: From Pixels to Information Recent Advances in Visual Search 56

Improved Coding for Image Feature Location Information

Improved Coding for Image Feature Location Information Improved Coding for Image Feature Location Information Sam S. Tsai, David Chen, Gabriel Takacs, Vijay Chandrasekhar Mina Makar, Radek Grzeszczuk, and Bernd Girod Department of Electrical Engineering, Stanford

More information

Interframe Coding of Canonical Patches for Mobile Augmented Reality

Interframe Coding of Canonical Patches for Mobile Augmented Reality Interframe Coding of Canonical Patches for Mobile Augmented Reality Mina Makar, Sam S. Tsai, Vijay Chandrasekhar, David Chen, and Bernd Girod Information Systems Laboratory, Department of Electrical Engineering

More information

From Structure-from-Motion Point Clouds to Fast Location Recognition

From Structure-from-Motion Point Clouds to Fast Location Recognition From Structure-from-Motion Point Clouds to Fast Location Recognition Arnold Irschara1;2, Christopher Zach2, Jan-Michael Frahm2, Horst Bischof1 1Graz University of Technology firschara, bischofg@icg.tugraz.at

More information

EE368 Project Report CD Cover Recognition Using Modified SIFT Algorithm

EE368 Project Report CD Cover Recognition Using Modified SIFT Algorithm EE368 Project Report CD Cover Recognition Using Modified SIFT Algorithm Group 1: Mina A. Makar Stanford University mamakar@stanford.edu Abstract In this report, we investigate the application of the Scale-Invariant

More information

Object Recognition with Invariant Features

Object Recognition with Invariant Features Object Recognition with Invariant Features Definition: Identify objects or scenes and determine their pose and model parameters Applications Industrial automation and inspection Mobile robots, toys, user

More information

CS 4495 Computer Vision A. Bobick. CS 4495 Computer Vision. Features 2 SIFT descriptor. Aaron Bobick School of Interactive Computing

CS 4495 Computer Vision A. Bobick. CS 4495 Computer Vision. Features 2 SIFT descriptor. Aaron Bobick School of Interactive Computing CS 4495 Computer Vision Features 2 SIFT descriptor Aaron Bobick School of Interactive Computing Administrivia PS 3: Out due Oct 6 th. Features recap: Goal is to find corresponding locations in two images.

More information

Building a Panorama. Matching features. Matching with Features. How do we build a panorama? Computational Photography, 6.882

Building a Panorama. Matching features. Matching with Features. How do we build a panorama? Computational Photography, 6.882 Matching features Building a Panorama Computational Photography, 6.88 Prof. Bill Freeman April 11, 006 Image and shape descriptors: Harris corner detectors and SIFT features. Suggested readings: Mikolajczyk

More information

Stanford I2V: A News Video Dataset for Query-by-Image Experiments

Stanford I2V: A News Video Dataset for Query-by-Image Experiments Stanford I2V: A News Video Dataset for Query-by-Image Experiments André Araujo, J. Chaves, D. Chen, R. Angst, B. Girod Stanford University 1 Motivation Example: Brand Monitoring Retrieval System Logo or

More information

Overview of the MPEG-CDVS standard

Overview of the MPEG-CDVS standard JAN 2015 1 Overview of the MPEG-CDVS standard Ling-Yu Duan, Member, IEEE, Vijay Chandrasekhar, Member, IEEE, Jie Chen, Jie Lin, Member, IEEE, Zhe Wang, Tiejun Huang, Senior Member, IEEE, Bernd Girod, Fellow,

More information

Mobile Visual Search with Word-HOG Descriptors

Mobile Visual Search with Word-HOG Descriptors Mobile Visual Search with Word-HOG Descriptors Sam S. Tsai, Huizhong Chen, David M. Chen, and Bernd Girod Department of Electrical Engineering, Stanford University, Stanford, CA, 9435 sstsai@alumni.stanford.edu,

More information

Lec 08 Feature Aggregation II: Fisher Vector, Super Vector and AKULA

Lec 08 Feature Aggregation II: Fisher Vector, Super Vector and AKULA Image Analysis & Retrieval CS/EE 5590 Special Topics (Class Ids: 44873, 44874) Fall 2016, M/W 4-5:15pm@Bloch 0012 Lec 08 Feature Aggregation II: Fisher Vector, Super Vector and AKULA Zhu Li Dept of CSEE,

More information

Evaluation of GIST descriptors for web scale image search

Evaluation of GIST descriptors for web scale image search Evaluation of GIST descriptors for web scale image search Matthijs Douze Hervé Jégou, Harsimrat Sandhawalia, Laurent Amsaleg and Cordelia Schmid INRIA Grenoble, France July 9, 2009 Evaluation of GIST for

More information

Residual Enhanced Visual Vectors for On-Device Image Matching

Residual Enhanced Visual Vectors for On-Device Image Matching Residual Enhanced Visual Vectors for On-Device Image Matching David Chen, Sam Tsai, Vijay Chandrasekhar, Gabriel Takacs, Huizhong Chen, Ramakrishna Vedantham, Radek Grzeszczuk, Bernd Girod Department of

More information

Outline 7/2/201011/6/

Outline 7/2/201011/6/ Outline Pattern recognition in computer vision Background on the development of SIFT SIFT algorithm and some of its variations Computational considerations (SURF) Potential improvement Summary 01 2 Pattern

More information

Large scale object/scene recognition

Large scale object/scene recognition Large scale object/scene recognition Image dataset: > 1 million images query Image search system ranked image list Each image described by approximately 2000 descriptors 2 10 9 descriptors to index! Database

More information

INTERFRAME CODING OF CANONICAL PATCHES FOR LOW BIT-RATE MOBILE AUGMENTED REALITY

INTERFRAME CODING OF CANONICAL PATCHES FOR LOW BIT-RATE MOBILE AUGMENTED REALITY International Journal of Semantic Computing Vol. 7, No. 1 (2013) 5 24 c World Scienti c Publishing Company DOI: 10.1142/S1793351X13400011 INTERFRAME CODING OF CANONICAL PATCHES FOR LOW BIT-RATE MOBILE

More information

Scale Invariant Feature Transform

Scale Invariant Feature Transform Why do we care about matching features? Scale Invariant Feature Transform Camera calibration Stereo Tracking/SFM Image moiaicing Object/activity Recognition Objection representation and recognition Automatic

More information

Scale Invariant Feature Transform

Scale Invariant Feature Transform Scale Invariant Feature Transform Why do we care about matching features? Camera calibration Stereo Tracking/SFM Image moiaicing Object/activity Recognition Objection representation and recognition Image

More information

Scale Invariant Feature Transform by David Lowe

Scale Invariant Feature Transform by David Lowe Scale Invariant Feature Transform by David Lowe Presented by: Jerry Chen Achal Dave Vaishaal Shankar Some slides from Jason Clemons Motivation Image Matching Correspondence Problem Desirable Feature Characteristics

More information

Local Features Tutorial: Nov. 8, 04

Local Features Tutorial: Nov. 8, 04 Local Features Tutorial: Nov. 8, 04 Local Features Tutorial References: Matlab SIFT tutorial (from course webpage) Lowe, David G. Distinctive Image Features from Scale Invariant Features, International

More information

Feature-based methods for image matching

Feature-based methods for image matching Feature-based methods for image matching Bag of Visual Words approach Feature descriptors SIFT descriptor SURF descriptor Geometric consistency check Vocabulary tree Digital Image Processing: Bernd Girod,

More information

Feature descriptors. Alain Pagani Prof. Didier Stricker. Computer Vision: Object and People Tracking

Feature descriptors. Alain Pagani Prof. Didier Stricker. Computer Vision: Object and People Tracking Feature descriptors Alain Pagani Prof. Didier Stricker Computer Vision: Object and People Tracking 1 Overview Previous lectures: Feature extraction Today: Gradiant/edge Points (Kanade-Tomasi + Harris)

More information

Introduction to SLAM Part II. Paul Robertson

Introduction to SLAM Part II. Paul Robertson Introduction to SLAM Part II Paul Robertson Localization Review Tracking, Global Localization, Kidnapping Problem. Kalman Filter Quadratic Linear (unless EKF) SLAM Loop closing Scaling: Partition space

More information

SCALE INVARIANT FEATURE TRANSFORM (SIFT)

SCALE INVARIANT FEATURE TRANSFORM (SIFT) 1 SCALE INVARIANT FEATURE TRANSFORM (SIFT) OUTLINE SIFT Background SIFT Extraction Application in Content Based Image Search Conclusion 2 SIFT BACKGROUND Scale-invariant feature transform SIFT: to detect

More information

Keypoint-based Recognition and Object Search

Keypoint-based Recognition and Object Search 03/08/11 Keypoint-based Recognition and Object Search Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem Notices I m having trouble connecting to the web server, so can t post lecture

More information

CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt.

CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt. CEE598 - Visual Sensing for Civil Infrastructure Eng. & Mgmt. Section 10 - Detectors part II Descriptors Mani Golparvar-Fard Department of Civil and Environmental Engineering 3129D, Newmark Civil Engineering

More information

CS664 Lecture #21: SIFT, object recognition, dynamic programming

CS664 Lecture #21: SIFT, object recognition, dynamic programming CS664 Lecture #21: SIFT, object recognition, dynamic programming Some material taken from: Sebastian Thrun, Stanford http://cs223b.stanford.edu/ Yuri Boykov, Western Ontario David Lowe, UBC http://www.cs.ubc.ca/~lowe/keypoints/

More information

Fisher vector image representation

Fisher vector image representation Fisher vector image representation Jakob Verbeek January 13, 2012 Course website: http://lear.inrialpes.fr/~verbeek/mlcr.11.12.php Fisher vector representation Alternative to bag-of-words image representation

More information

Introduction. Introduction. Related Research. SIFT method. SIFT method. Distinctive Image Features from Scale-Invariant. Scale.

Introduction. Introduction. Related Research. SIFT method. SIFT method. Distinctive Image Features from Scale-Invariant. Scale. Distinctive Image Features from Scale-Invariant Keypoints David G. Lowe presented by, Sudheendra Invariance Intensity Scale Rotation Affine View point Introduction Introduction SIFT (Scale Invariant Feature

More information

Feature Detection. Raul Queiroz Feitosa. 3/30/2017 Feature Detection 1

Feature Detection. Raul Queiroz Feitosa. 3/30/2017 Feature Detection 1 Feature Detection Raul Queiroz Feitosa 3/30/2017 Feature Detection 1 Objetive This chapter discusses the correspondence problem and presents approaches to solve it. 3/30/2017 Feature Detection 2 Outline

More information

Local features and image matching. Prof. Xin Yang HUST

Local features and image matching. Prof. Xin Yang HUST Local features and image matching Prof. Xin Yang HUST Last time RANSAC for robust geometric transformation estimation Translation, Affine, Homography Image warping Given a 2D transformation T and a source

More information

SIFT: SCALE INVARIANT FEATURE TRANSFORM SURF: SPEEDED UP ROBUST FEATURES BASHAR ALSADIK EOS DEPT. TOPMAP M13 3D GEOINFORMATION FROM IMAGES 2014

SIFT: SCALE INVARIANT FEATURE TRANSFORM SURF: SPEEDED UP ROBUST FEATURES BASHAR ALSADIK EOS DEPT. TOPMAP M13 3D GEOINFORMATION FROM IMAGES 2014 SIFT: SCALE INVARIANT FEATURE TRANSFORM SURF: SPEEDED UP ROBUST FEATURES BASHAR ALSADIK EOS DEPT. TOPMAP M13 3D GEOINFORMATION FROM IMAGES 2014 SIFT SIFT: Scale Invariant Feature Transform; transform image

More information

Augmented Reality VU. Computer Vision 3D Registration (2) Prof. Vincent Lepetit

Augmented Reality VU. Computer Vision 3D Registration (2) Prof. Vincent Lepetit Augmented Reality VU Computer Vision 3D Registration (2) Prof. Vincent Lepetit Feature Point-Based 3D Tracking Feature Points for 3D Tracking Much less ambiguous than edges; Point-to-point reprojection

More information

Enhanced and Efficient Image Retrieval via Saliency Feature and Visual Attention

Enhanced and Efficient Image Retrieval via Saliency Feature and Visual Attention Enhanced and Efficient Image Retrieval via Saliency Feature and Visual Attention Anand K. Hase, Baisa L. Gunjal Abstract In the real world applications such as landmark search, copy protection, fake image

More information

Computer Vision. Recap: Smoothing with a Gaussian. Recap: Effect of σ on derivatives. Computer Science Tripos Part II. Dr Christopher Town

Computer Vision. Recap: Smoothing with a Gaussian. Recap: Effect of σ on derivatives. Computer Science Tripos Part II. Dr Christopher Town Recap: Smoothing with a Gaussian Computer Vision Computer Science Tripos Part II Dr Christopher Town Recall: parameter σ is the scale / width / spread of the Gaussian kernel, and controls the amount of

More information

2D Image Processing Feature Descriptors

2D Image Processing Feature Descriptors 2D Image Processing Feature Descriptors Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de 1 Overview

More information

Eppur si muove ( And yet it moves )

Eppur si muove ( And yet it moves ) Eppur si muove ( And yet it moves ) - Galileo Galilei University of Texas at Arlington Tracking of Image Features CSE 4392-5369 Vision-based Robot Sensing, Localization and Control Dr. Gian Luca Mariottini,

More information

IMAGE MATCHING - ALOK TALEKAR - SAIRAM SUNDARESAN 11/23/2010 1

IMAGE MATCHING - ALOK TALEKAR - SAIRAM SUNDARESAN 11/23/2010 1 IMAGE MATCHING - ALOK TALEKAR - SAIRAM SUNDARESAN 11/23/2010 1 : Presentation structure : 1. Brief overview of talk 2. What does Object Recognition involve? 3. The Recognition Problem 4. Mathematical background:

More information

EE368/CS232 Digital Image Processing Winter

EE368/CS232 Digital Image Processing Winter EE368/CS232 Digital Image Processing Winter 207-208 Lecture Review and Quizzes (Due: Wednesday, February 28, :30pm) Please review what you have learned in class and then complete the online quiz questions

More information

Visual Word based Location Recognition in 3D models using Distance Augmented Weighting

Visual Word based Location Recognition in 3D models using Distance Augmented Weighting Visual Word based Location Recognition in 3D models using Distance Augmented Weighting Friedrich Fraundorfer 1, Changchang Wu 2, 1 Department of Computer Science ETH Zürich, Switzerland {fraundorfer, marc.pollefeys}@inf.ethz.ch

More information

Local features: detection and description. Local invariant features

Local features: detection and description. Local invariant features Local features: detection and description Local invariant features Detection of interest points Harris corner detection Scale invariant blob detection: LoG Description of local patches SIFT : Histograms

More information

BSB663 Image Processing Pinar Duygulu. Slides are adapted from Selim Aksoy

BSB663 Image Processing Pinar Duygulu. Slides are adapted from Selim Aksoy BSB663 Image Processing Pinar Duygulu Slides are adapted from Selim Aksoy Image matching Image matching is a fundamental aspect of many problems in computer vision. Object or scene recognition Solving

More information

SUMMARY: DISTINCTIVE IMAGE FEATURES FROM SCALE- INVARIANT KEYPOINTS

SUMMARY: DISTINCTIVE IMAGE FEATURES FROM SCALE- INVARIANT KEYPOINTS SUMMARY: DISTINCTIVE IMAGE FEATURES FROM SCALE- INVARIANT KEYPOINTS Cognitive Robotics Original: David G. Lowe, 004 Summary: Coen van Leeuwen, s1460919 Abstract: This article presents a method to extract

More information

Computational Optical Imaging - Optique Numerique. -- Multiple View Geometry and Stereo --

Computational Optical Imaging - Optique Numerique. -- Multiple View Geometry and Stereo -- Computational Optical Imaging - Optique Numerique -- Multiple View Geometry and Stereo -- Winter 2013 Ivo Ihrke with slides by Thorsten Thormaehlen Feature Detection and Matching Wide-Baseline-Matching

More information

Local Features: Detection, Description & Matching

Local Features: Detection, Description & Matching Local Features: Detection, Description & Matching Lecture 08 Computer Vision Material Citations Dr George Stockman Professor Emeritus, Michigan State University Dr David Lowe Professor, University of British

More information

Implementing the Scale Invariant Feature Transform(SIFT) Method

Implementing the Scale Invariant Feature Transform(SIFT) Method Implementing the Scale Invariant Feature Transform(SIFT) Method YU MENG and Dr. Bernard Tiddeman(supervisor) Department of Computer Science University of St. Andrews yumeng@dcs.st-and.ac.uk Abstract The

More information

An Associate-Predict Model for Face Recognition FIPA Seminar WS 2011/2012

An Associate-Predict Model for Face Recognition FIPA Seminar WS 2011/2012 An Associate-Predict Model for Face Recognition FIPA Seminar WS 2011/2012, 19.01.2012 INSTITUTE FOR ANTHROPOMATICS, FACIAL IMAGE PROCESSING AND ANALYSIS YIG University of the State of Baden-Wuerttemberg

More information

Lecture 12 Recognition

Lecture 12 Recognition Institute of Informatics Institute of Neuroinformatics Lecture 12 Recognition Davide Scaramuzza 1 Lab exercise today replaced by Deep Learning Tutorial Room ETH HG E 1.1 from 13:15 to 15:00 Optional lab

More information

EFFECTIVE FISHER VECTOR AGGREGATION FOR 3D OBJECT RETRIEVAL

EFFECTIVE FISHER VECTOR AGGREGATION FOR 3D OBJECT RETRIEVAL EFFECTIVE FISHER VECTOR AGGREGATION FOR 3D OBJECT RETRIEVAL Jean-Baptiste Boin, André Araujo, Lamberto Ballan, Bernd Girod Department of Electrical Engineering, Stanford University, CA Media Integration

More information

Large-scale visual recognition Efficient matching

Large-scale visual recognition Efficient matching Large-scale visual recognition Efficient matching Florent Perronnin, XRCE Hervé Jégou, INRIA CVPR tutorial June 16, 2012 Outline!! Preliminary!! Locality Sensitive Hashing: the two modes!! Hashing!! Embedding!!

More information

Feature Based Registration - Image Alignment

Feature Based Registration - Image Alignment Feature Based Registration - Image Alignment Image Registration Image registration is the process of estimating an optimal transformation between two or more images. Many slides from Alexei Efros http://graphics.cs.cmu.edu/courses/15-463/2007_fall/463.html

More information

Compressed local descriptors for fast image and video search in large databases

Compressed local descriptors for fast image and video search in large databases Compressed local descriptors for fast image and video search in large databases Matthijs Douze2 joint work with Hervé Jégou1, Cordelia Schmid2 and Patrick Pérez3 1: INRIA Rennes, TEXMEX team, France 2:

More information

Motion Estimation and Optical Flow Tracking

Motion Estimation and Optical Flow Tracking Image Matching Image Retrieval Object Recognition Motion Estimation and Optical Flow Tracking Example: Mosiacing (Panorama) M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003 Example 3D Reconstruction

More information

Local Feature Detectors

Local Feature Detectors Local Feature Detectors Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr Slides adapted from Cordelia Schmid and David Lowe, CVPR 2003 Tutorial, Matthew Brown,

More information

Lecture 12 Recognition. Davide Scaramuzza

Lecture 12 Recognition. Davide Scaramuzza Lecture 12 Recognition Davide Scaramuzza Oral exam dates UZH January 19-20 ETH 30.01 to 9.02 2017 (schedule handled by ETH) Exam location Davide Scaramuzza s office: Andreasstrasse 15, 2.10, 8050 Zurich

More information

SIFT - scale-invariant feature transform Konrad Schindler

SIFT - scale-invariant feature transform Konrad Schindler SIFT - scale-invariant feature transform Konrad Schindler Institute of Geodesy and Photogrammetry Invariant interest points Goal match points between images with very different scale, orientation, projective

More information

CS 260: Seminar in Computer Science: Multimedia Networking

CS 260: Seminar in Computer Science: Multimedia Networking CS 260: Seminar in Computer Science: Multimedia Networking Jiasi Chen Lectures: MWF 4:10-5pm in CHASS http://www.cs.ucr.edu/~jiasi/teaching/cs260_spring17/ Multimedia is User perception Content creation

More information

Features Points. Andrea Torsello DAIS Università Ca Foscari via Torino 155, Mestre (VE)

Features Points. Andrea Torsello DAIS Università Ca Foscari via Torino 155, Mestre (VE) Features Points Andrea Torsello DAIS Università Ca Foscari via Torino 155, 30172 Mestre (VE) Finding Corners Edge detectors perform poorly at corners. Corners provide repeatable points for matching, so

More information

Patch-based Object Recognition. Basic Idea

Patch-based Object Recognition. Basic Idea Patch-based Object Recognition 1! Basic Idea Determine interest points in image Determine local image properties around interest points Use local image properties for object classification Example: Interest

More information

Modern-era mobile phones and tablets

Modern-era mobile phones and tablets Anthony Vetro Mitsubishi Electric Research Labs Mobile Visual Search: Architectures, Technologies, and the Emerging MPEG Standard Bernd Girod and Vijay Chandrasekhar Stanford University Radek Grzeszczuk

More information

Bus Detection and recognition for visually impaired people

Bus Detection and recognition for visually impaired people Bus Detection and recognition for visually impaired people Hangrong Pan, Chucai Yi, and Yingli Tian The City College of New York The Graduate Center The City University of New York MAP4VIP Outline Motivation

More information

Feature Descriptors. CS 510 Lecture #21 April 29 th, 2013

Feature Descriptors. CS 510 Lecture #21 April 29 th, 2013 Feature Descriptors CS 510 Lecture #21 April 29 th, 2013 Programming Assignment #4 Due two weeks from today Any questions? How is it going? Where are we? We have two umbrella schemes for object recognition

More information

Image Segmentation and Registration

Image Segmentation and Registration Image Segmentation and Registration Dr. Christine Tanner (tanner@vision.ee.ethz.ch) Computer Vision Laboratory, ETH Zürich Dr. Verena Kaynig, Machine Learning Laboratory, ETH Zürich Outline Segmentation

More information

Object Recognition and Augmented Reality

Object Recognition and Augmented Reality 11/02/17 Object Recognition and Augmented Reality Dali, Swans Reflecting Elephants Computational Photography Derek Hoiem, University of Illinois Last class: Image Stitching 1. Detect keypoints 2. Match

More information

A Comparison of SIFT, PCA-SIFT and SURF

A Comparison of SIFT, PCA-SIFT and SURF A Comparison of SIFT, PCA-SIFT and SURF Luo Juan Computer Graphics Lab, Chonbuk National University, Jeonju 561-756, South Korea qiuhehappy@hotmail.com Oubong Gwun Computer Graphics Lab, Chonbuk National

More information

Designing Applications that See Lecture 7: Object Recognition

Designing Applications that See Lecture 7: Object Recognition stanford hci group / cs377s Designing Applications that See Lecture 7: Object Recognition Dan Maynes-Aminzade 29 January 2008 Designing Applications that See http://cs377s.stanford.edu Reminders Pick up

More information

Image Features: Detection, Description, and Matching and their Applications

Image Features: Detection, Description, and Matching and their Applications Image Features: Detection, Description, and Matching and their Applications Image Representation: Global Versus Local Features Features/ keypoints/ interset points are interesting locations in the image.

More information

Feature Matching and Robust Fitting

Feature Matching and Robust Fitting Feature Matching and Robust Fitting Computer Vision CS 143, Brown Read Szeliski 4.1 James Hays Acknowledgment: Many slides from Derek Hoiem and Grauman&Leibe 2008 AAAI Tutorial Project 2 questions? This

More information

University of Cambridge Engineering Part IIB Module 4F12 - Computer Vision and Robotics Mobile Computer Vision

University of Cambridge Engineering Part IIB Module 4F12 - Computer Vision and Robotics Mobile Computer Vision report University of Cambridge Engineering Part IIB Module 4F12 - Computer Vision and Robotics Mobile Computer Vision Web Server master database User Interface Images + labels image feature algorithm Extract

More information

Video Google faces. Josef Sivic, Mark Everingham, Andrew Zisserman. Visual Geometry Group University of Oxford

Video Google faces. Josef Sivic, Mark Everingham, Andrew Zisserman. Visual Geometry Group University of Oxford Video Google faces Josef Sivic, Mark Everingham, Andrew Zisserman Visual Geometry Group University of Oxford The objective Retrieve all shots in a video, e.g. a feature length film, containing a particular

More information

Chapter 3 Image Registration. Chapter 3 Image Registration

Chapter 3 Image Registration. Chapter 3 Image Registration Chapter 3 Image Registration Distributed Algorithms for Introduction (1) Definition: Image Registration Input: 2 images of the same scene but taken from different perspectives Goal: Identify transformation

More information

A Comparison of SIFT and SURF

A Comparison of SIFT and SURF A Comparison of SIFT and SURF P M Panchal 1, S R Panchal 2, S K Shah 3 PG Student, Department of Electronics & Communication Engineering, SVIT, Vasad-388306, India 1 Research Scholar, Department of Electronics

More information

Adaptive and robust feature selection for low bitrate mobile augmented reality applications

Adaptive and robust feature selection for low bitrate mobile augmented reality applications University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 2014 Adaptive and robust feature selection for

More information

EXAM SOLUTIONS. Image Processing and Computer Vision Course 2D1421 Monday, 13 th of March 2006,

EXAM SOLUTIONS. Image Processing and Computer Vision Course 2D1421 Monday, 13 th of March 2006, School of Computer Science and Communication, KTH Danica Kragic EXAM SOLUTIONS Image Processing and Computer Vision Course 2D1421 Monday, 13 th of March 2006, 14.00 19.00 Grade table 0-25 U 26-35 3 36-45

More information

CAP 5415 Computer Vision Fall 2012

CAP 5415 Computer Vision Fall 2012 CAP 5415 Computer Vision Fall 01 Dr. Mubarak Shah Univ. of Central Florida Office 47-F HEC Lecture-5 SIFT: David Lowe, UBC SIFT - Key Point Extraction Stands for scale invariant feature transform Patented

More information

3D object recognition used by team robotto

3D object recognition used by team robotto 3D object recognition used by team robotto Workshop Juliane Hoebel February 1, 2016 Faculty of Computer Science, Otto-von-Guericke University Magdeburg Content 1. Introduction 2. Depth sensor 3. 3D object

More information

Midterm Wed. Local features: detection and description. Today. Last time. Local features: main components. Goal: interest operator repeatability

Midterm Wed. Local features: detection and description. Today. Last time. Local features: main components. Goal: interest operator repeatability Midterm Wed. Local features: detection and description Monday March 7 Prof. UT Austin Covers material up until 3/1 Solutions to practice eam handed out today Bring a 8.5 11 sheet of notes if you want Review

More information

3D Photography. Marc Pollefeys, Torsten Sattler. Spring 2015

3D Photography. Marc Pollefeys, Torsten Sattler. Spring 2015 3D Photography Marc Pollefeys, Torsten Sattler Spring 2015 Schedule (tentative) Feb 16 Feb 23 Mar 2 Mar 9 Mar 16 Mar 23 Mar 30 Apr 6 Apr 13 Apr 20 Apr 27 May 4 May 11 May 18 May 25 Introduction Geometry,

More information

CS231A Section 6: Problem Set 3

CS231A Section 6: Problem Set 3 CS231A Section 6: Problem Set 3 Kevin Wong Review 6 -! 1 11/09/2012 Announcements PS3 Due 2:15pm Tuesday, Nov 13 Extra Office Hours: Friday 6 8pm Huang Common Area, Basement Level. Review 6 -! 2 Topics

More information

Local features: detection and description May 12 th, 2015

Local features: detection and description May 12 th, 2015 Local features: detection and description May 12 th, 2015 Yong Jae Lee UC Davis Announcements PS1 grades up on SmartSite PS1 stats: Mean: 83.26 Standard Dev: 28.51 PS2 deadline extended to Saturday, 11:59

More information

CS 378: Autonomous Intelligent Robotics. Instructor: Jivko Sinapov

CS 378: Autonomous Intelligent Robotics. Instructor: Jivko Sinapov CS 378: Autonomous Intelligent Robotics Instructor: Jivko Sinapov http://www.cs.utexas.edu/~jsinapov/teaching/cs378/ Visual Registration and Recognition Announcements Homework 6 is out, due 4/5 4/7 Installing

More information

A Systems View of Large- Scale 3D Reconstruction

A Systems View of Large- Scale 3D Reconstruction Lecture 23: A Systems View of Large- Scale 3D Reconstruction Visual Computing Systems Goals and motivation Construct a detailed 3D model of the world from unstructured photographs (e.g., Flickr, Facebook)

More information

Large Scale 3D Reconstruction by Structure from Motion

Large Scale 3D Reconstruction by Structure from Motion Large Scale 3D Reconstruction by Structure from Motion Devin Guillory Ziang Xie CS 331B 7 October 2013 Overview Rome wasn t built in a day Overview of SfM Building Rome in a Day Building Rome on a Cloudless

More information

Determinant of homography-matrix-based multiple-object recognition

Determinant of homography-matrix-based multiple-object recognition Determinant of homography-matrix-based multiple-object recognition 1 Nagachetan Bangalore, Madhu Kiran, Anil Suryaprakash Visio Ingenii Limited F2-F3 Maxet House Liverpool Road Luton, LU1 1RS United Kingdom

More information

Multiple-Choice Questionnaire Group C

Multiple-Choice Questionnaire Group C Family name: Vision and Machine-Learning Given name: 1/28/2011 Multiple-Choice naire Group C No documents authorized. There can be several right answers to a question. Marking-scheme: 2 points if all right

More information

Robotics Programming Laboratory

Robotics Programming Laboratory Chair of Software Engineering Robotics Programming Laboratory Bertrand Meyer Jiwon Shin Lecture 8: Robot Perception Perception http://pascallin.ecs.soton.ac.uk/challenges/voc/databases.html#caltech car

More information

3D Vision. Viktor Larsson. Spring 2019

3D Vision. Viktor Larsson. Spring 2019 3D Vision Viktor Larsson Spring 2019 Schedule Feb 18 Feb 25 Mar 4 Mar 11 Mar 18 Mar 25 Apr 1 Apr 8 Apr 15 Apr 22 Apr 29 May 6 May 13 May 20 May 27 Introduction Geometry, Camera Model, Calibration Features,

More information

Large-scale visual recognition The bag-of-words representation

Large-scale visual recognition The bag-of-words representation Large-scale visual recognition The bag-of-words representation Florent Perronnin, XRCE Hervé Jégou, INRIA CVPR tutorial June 16, 2012 Outline Bag-of-words Large or small vocabularies? Extensions for instance-level

More information

AKULA Adaptive Cluster Aggregation for Visual Search

AKULA Adaptive Cluster Aggregation for Visual Search AKULA Adaptive Cluster Aggregation for Visual Search Abhishek Nagar *, Zhu Li *, Gaurav Srivastava *, and Kyungmo Park + * Samsung Research America 1301 E. Lookout Dr. Richardson, TX 75082, USA {a.nagar,

More information

Recognition of Animal Skin Texture Attributes in the Wild. Amey Dharwadker (aap2174) Kai Zhang (kz2213)

Recognition of Animal Skin Texture Attributes in the Wild. Amey Dharwadker (aap2174) Kai Zhang (kz2213) Recognition of Animal Skin Texture Attributes in the Wild Amey Dharwadker (aap2174) Kai Zhang (kz2213) Motivation Patterns and textures are have an important role in object description and understanding

More information

Geometric VLAD for Large Scale Image Search. Zixuan Wang 1, Wei Di 2, Anurag Bhardwaj 2, Vignesh Jagadesh 2, Robinson Piramuthu 2

Geometric VLAD for Large Scale Image Search. Zixuan Wang 1, Wei Di 2, Anurag Bhardwaj 2, Vignesh Jagadesh 2, Robinson Piramuthu 2 Geometric VLAD for Large Scale Image Search Zixuan Wang 1, Wei Di 2, Anurag Bhardwaj 2, Vignesh Jagadesh 2, Robinson Piramuthu 2 1 2 Our Goal 1) Robust to various imaging conditions 2) Small memory footprint

More information

Category vs. instance recognition

Category vs. instance recognition Category vs. instance recognition Category: Find all the people Find all the buildings Often within a single image Often sliding window Instance: Is this face James? Find this specific famous building

More information

Differential Compression and Optimal Caching Methods for Content-Based Image Search Systems

Differential Compression and Optimal Caching Methods for Content-Based Image Search Systems Differential Compression and Optimal Caching Methods for Content-Based Image Search Systems Di Zhong a, Shih-Fu Chang a, John R. Smith b a Department of Electrical Engineering, Columbia University, NY,

More information

School of Computing University of Utah

School of Computing University of Utah School of Computing University of Utah Presentation Outline 1 2 3 4 Main paper to be discussed David G. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, IJCV, 2004. How to find useful keypoints?

More information

Aggregating Descriptors with Local Gaussian Metrics

Aggregating Descriptors with Local Gaussian Metrics Aggregating Descriptors with Local Gaussian Metrics Hideki Nakayama Grad. School of Information Science and Technology The University of Tokyo Tokyo, JAPAN nakayama@ci.i.u-tokyo.ac.jp Abstract Recently,

More information

Efficient Representation of Local Geometry for Large Scale Object Retrieval

Efficient Representation of Local Geometry for Large Scale Object Retrieval Efficient Representation of Local Geometry for Large Scale Object Retrieval Michal Perďoch Ondřej Chum and Jiří Matas Center for Machine Perception Czech Technical University in Prague IEEE Computer Society

More information

Local invariant features

Local invariant features Local invariant features Tuesday, Oct 28 Kristen Grauman UT-Austin Today Some more Pset 2 results Pset 2 returned, pick up solutions Pset 3 is posted, due 11/11 Local invariant features Detection of interest

More information

Three things everyone should know to improve object retrieval. Relja Arandjelović and Andrew Zisserman (CVPR 2012)

Three things everyone should know to improve object retrieval. Relja Arandjelović and Andrew Zisserman (CVPR 2012) Three things everyone should know to improve object retrieval Relja Arandjelović and Andrew Zisserman (CVPR 2012) University of Oxford 2 nd April 2012 Large scale object retrieval Find all instances of

More information

Video Google: A Text Retrieval Approach to Object Matching in Videos

Video Google: A Text Retrieval Approach to Object Matching in Videos Video Google: A Text Retrieval Approach to Object Matching in Videos Josef Sivic, Frederik Schaffalitzky, Andrew Zisserman Visual Geometry Group University of Oxford The vision Enable video, e.g. a feature

More information

IMAGE-GUIDED TOURS: FAST-APPROXIMATED SIFT WITH U-SURF FEATURES

IMAGE-GUIDED TOURS: FAST-APPROXIMATED SIFT WITH U-SURF FEATURES IMAGE-GUIDED TOURS: FAST-APPROXIMATED SIFT WITH U-SURF FEATURES Eric Chu, Erin Hsu, Sandy Yu Department of Electrical Engineering Stanford University {echu508, erinhsu, snowy}@stanford.edu Abstract In

More information