Chapter 1: roadmap. 1.1 what is the Internet? 1.2 network edge. 1.3 network core

Size: px
Start display at page:

Download "Chapter 1: roadmap. 1.1 what is the Internet? 1.2 network edge. 1.3 network core"

Transcription

1 Chapter 1: roadmap 1.1 what is the Internet? 1.2 network edge end systems, access networks, links 1.3 network core packet switching, circuit switching, network structure 1.4 delay, loss, throughput in networks 1.5 protocol layers, service models Introduction 1-1

2 A closer look at network structure: network edge: hosts: clients and servers servers often in data centers access networks, physical media: wired, wireless communication links mobile network home network global ISP regional ISP network core: interconnected routers network of networks institutional network Introduction 1-2

3 What s the Internet: a service view Infrastructure that provides services to applications: Web, VoIP, , games, e- commerce, social nets, provides programming interface to apps hooks that allow sending and receiving app programs to connect to Internet provides service options, analogous to postal service mobile network home network institutional network global ISP regional ISP Introduction 1-3

4 Access net: digital subscriber line (DSL) central office telephone network DSL modem splitter voice, data transmitted at different frequencies over dedicated line to central office DSLAM DSL access multiplexer ISP use existing telephone line to central office DSLAM data over DSL phone line goes to Internet voice over DSL phone line goes to telephone net < 2.5 Mbps upstream transmission rate (typically < 1 Mbps) < 24 Mbps downstream transmission rate (typically < 10 Mbps) Introduction 1-4

5 Access net: cable network cable headend cable modem splitter data, TV transmitted at different frequencies over shared cable distribution network CMTS cable modem termination system ISP HFC: hybrid fiber coax asymmetric: up to 30Mbps downstream transmission rate, 2 Mbps upstream transmission rate network of cable, fiber attaches homes to ISP router homes share access network to cable headend unlike DSL, which has dedicated access to central office Introduction 1-5

6 Access net: home network wireless devices often combined in single box to/from headend or central office cable or DSL modem wireless access point (54 Mbps) router, firewall, NAT wired Ethernet (100 Mbps) Introduction 1-6

7 Enterprise access networks (Ethernet) institutional link to ISP (Internet) institutional router Ethernet switch institutional mail, web servers typically used in companies, universities, etc 10 Mbps, 100Mbps, 1Gbps, 10Gbps transmission rates today, end systems typically connect into Ethernet switch Introduction 1-7

8 Wireless access networks shared wireless access network connects end system to router via base station aka access point wireless LANs: within building (100 ft) b/g (WiFi): 11, 54 Mbps transmission rate wide-area wireless access provided by telco (cellular) operator, 10 s km between 1 and 10 Mbps 3G, 4G: LTE to Internet to Internet Introduction 1-8

9 The network core mesh of interconnected routers packet-switching: hosts break application-layer messages into packets forward packets from one router to the next, across links on path from source to destination each packet transmitted at full link capacity Introduction 1-9

10 Packet-switching: store-and-forward L bits per packet source R bps R bps destination takes L/R seconds to transmit (push out) L-bit packet into link at R bps store and forward: entire packet must arrive at router before it can be transmitted on next link end-end delay = 2L/R (assuming zero propagation delay) one-hop numerical example: L = 7.5 Mbits R = 1.5 Mbps one-hop transmission delay = 5 sec more on delay shortly Introduction 1-10

11 Packet Switching: queueing delay, loss A R = 100 Mb/s C B queue of packets waiting for output link R = 1.5 Mb/s D E queuing and loss: If arrival rate (in bits) to link exceeds transmission rate of link for a period of time: packets will queue, wait to be transmitted on link packets can be dropped (lost) if memory (buffer) fills up Introduction 1-11

12 Two key network-core functions routing: determines sourcedestination route taken by packets routing algorithms forwarding: move packets from router s input to appropriate router output routing algorithm local forwarding table header value output link dest address in arriving packet s header Network Layer 4-12

13 Alternative core: circuit switching end-end resources allocated to, reserved for call between source & dest: In diagram, each link has four circuits. call gets 2 nd circuit in top link and 1 st circuit in right link. dedicated resources: no sharing circuit-like (guaranteed) performance circuit segment idle if not used by call (no sharing) Commonly used in traditional telephone networks Introduction 1-13

14 Packet switching versus circuit switching packet switching allows more users to use network! example: 1 Mb/s link each user: 100 kb/s when active active 10% of time N users 1 Mbps link circuit-switching: 10 users packet switching: with 35 users, probability > 10 active at same time is less than.0004 Q: how did we get value ? Q: what happens if 50 users? Introduction 1-14

15 Internet structure: network of networks Tier 1 ISP Tier 1 ISP Google IXP Regional ISP IXP Regional ISP IXP access ISP access ISP access ISP access ISP access ISP access ISP access ISP access ISP at center: small # of well-connected large networks tier-1 commercial ISPs (e.g., Level 3, Sprint, AT&T, NTT), national & international coverage content provider network (e.g, Google): private network that connects it data centers to Internet, often bypassing tier-1, regional ISPs 1-15 Introduction

16 Four sources of packet delay A transmission propagation B nodal processing queueing d nodal = d proc + d queue + d trans + d prop d proc : nodal processing check bit errors determine output link typically < msec d queue : queueing delay time waiting at output link for transmission depends on congestion level of router Introduction 1-16

17 Four sources of packet delay A transmission propagation B nodal processing queueing d nodal = d proc + d queue + d trans + d prop d trans : transmission delay: L: packet length (bits) R: link bandwidth (bps) d trans = L/R d trans and d prop very different d prop : propagation delay: d: length of physical link s: propagation speed in medium (~2x10 8 m/sec) d prop = d/s Introduction 1-17

18 Packet loss queue (aka buffer) preceding link in buffer has finite capacity packet arriving to full queue dropped (aka lost) lost packet may be retransmitted by previous node, by source end system, or not at all A buffer (waiting area) packet being transmitted B packet arriving to full buffer is lost Introduction 1-18

19 Throughput throughput: rate (bits/time unit) at which bits transferred between sender/receiver instantaneous: rate at given point in time average: rate over longer period of time server server, sends withbits (fluid) file of into F bits pipe to send to client link pipe capacity that can carry R s bits/sec fluid at rate R s bits/sec) link pipe capacity that can carry R c bits/sec fluid at rate R c bits/sec) Introduction 1-19

20 Throughput: Internet scenario per-connection endend throughput: min(r c,r s,r/10) in practice: R c or R s is often bottleneck R s R s R s R R c R c R c 10 connections (fairly) share backbone bottleneck link R bits/sec Introduction 1-20

21 Why layering? dealing with complex systems: explicit structure allows identification, relationship of complex system s pieces layered reference model for discussion modularization eases maintenance, updating of system change of implementation of layer s service transparent to rest of system e.g., change in gate procedure doesn t affect rest of system layering considered harmful? Introduction 1-21

22 Internet protocol stack application: supporting network applications FTP, SMTP, HTTP transport: process data transfer TCP, UDP network: routing of datagrams from source to destination IP, routing protocols link: data transfer between neighboring network elements Ethernet, (WiFi), PPP physical: bits on the wire application transport network link physical Introduction 1-22

23 segment datagram frame message H l H t H n H t H n H t M M M M source application transport network link physical Encapsulation link physical switch H l H n H n H t H t H t M M M M destination application transport network link physical H l H n H n H t H t M M network link physical H n H t M router Introduction 1-23

24 Chapter 2: outline 2.1 principles of network applications 2.2 Web and HTTP 2.3 FTP 2.4 electronic mail SMTP, POP3, IMAP 2.5 DNS 2.6 P2P applications 2.7 socket programming with UDP and TCP Application Layer 2-24

25 Creating a network app write programs that: run on (different) end systems communicate over network e.g., web server software communicates with browser software no need to write software for network-core devices network-core devices do not run user applications applications on end systems allows for rapid app development, propagation application transport network data link physical application transport network data link physical application transport network data link physical Application Layer 2-25

26 Client-server architecture server: always-on host permanent IP address data centers for scaling client/server clients: communicate with server may be intermittently connected may have dynamic IP addresses do not communicate directly with each other Application Layer 2-26

27 P2P architecture no always-on server arbitrary end systems directly communicate peers request service from other peers, provide service in return to other peers self scalability new peers bring new service capacity, as well as new service demands peers are intermittently connected and change IP addresses complex management peer-peer Application Layer 2-27

28 Sockets process sends/receives messages to/from its socket (SW interface) socket analogous to door sending process shoves message out door sending process relies on transport infrastructure on other side of door to deliver message to socket at receiving process application process socket application process controlled by app developer transport network link physical Internet transport network link physical controlled by OS Application Layer 2-28

29 Addressing processes to receive messages, process must have identifier host device has unique 32- bit IP address Q: does IP address of host on which process runs suffice for identifying the process? A: no, many processes can be running on same host identifier includes both IP address and port numbers associated with process on host. example port numbers: HTTP server: 80 mail server: 25 to send HTTP message to gaia.cs.umass.edu web server: IP address: port number: 80 more shortly Application Layer 2-29

30 App-layer protocol defines types of messages exchanged, e.g., request, response message syntax: what fields in messages & how fields are delineated message semantics meaning of information in fields rules for when and how processes send & respond to messages open protocols: defined in RFCs allows for interoperability e.g., HTTP (RFC2616), SMTP (RFC5321) proprietary protocols: e.g., Skype Application Layer 2-30

31 What transport service does an app need? data integrity some apps (e.g., file transfer, web transactions) require 100% reliable data transfer other apps (e.g., audio) can tolerate some loss timing some apps (e.g., Internet telephony, interactive games) require low delay to be effective throughput some apps (e.g., multimedia) require minimum amount of throughput to be effective other apps ( elastic apps ) make use of whatever throughput they get security encryption, data integrity, Application Layer 2-31

32 Web and HTTP First, a review web page consists of objects object can be HTML file, JPEG image, Java applet, audio file, web page consists of base HTML-file which includes several referenced objects each object is addressable by a URL (Uniform Resource Locator), e.g., host name path name Application Layer 2-32

33 HTTP overview HTTP: hypertext transfer protocol Web s application layer protocol client/server model client: browser that requests, receives, (using HTTP protocol) and displays Web objects server: Web server sends (using HTTP protocol) objects in response to requests PC running Firefox browser iphone running Safari browser server running Apache Web server Application Layer 2-33

34 HTTP overview (continued) uses TCP: client initiates TCP connection (creates socket) to server, port 80 server accepts TCP connection from client HTTP messages (application-layer protocol messages) exchanged between browser (HTTP client) and Web server (HTTP server) TCP connection closed HTTP is stateless server maintains no information about past client requests aside protocols that maintain state are complex! past history (state) must be maintained if server/client crashes, their views of state may be inconsistent, must be reconciled Application Layer 2-34

35 HTTP connections non-persistent HTTP at most one object sent over TCP connection connection then closed downloading multiple objects required multiple connections persistent HTTP multiple objects can be sent over single TCP connection between client, server Application Layer 2-35

36 HTTP request message two types of HTTP messages: request, response HTTP request message: ASCII (human-readable format) request line (GET, POST, HEAD, PUT, DELETE commands) header lines carriage return, line feed at start of line indicates end of header lines carriage return character line-feed character GET /index.html HTTP/1.1\r\n Host: www-net.cs.umass.edu\r\n User-Agent: Firefox/3.6.10\r\n Accept: text/html,application/xhtml+xml\r\n Accept-Language: en-us,en;q=0.5\r\n Accept-Encoding: gzip,deflate\r\n Accept-Charset: ISO ,utf-8;q=0.7\r\n Keep-Alive: 115\r\n Connection: keep-alive\r\n \r\n Application Layer 2-36

37 HTTP response message status line (protocol version status code status phrase) header lines data, e.g., requested HTML file HTTP/ OK\r\n Date: Sun, 26 Sep :09:20 GMT\r\n Server: Apache/ (CentOS)\r\n Last-Modified: Tue, 30 Oct :00:02 GMT\r\n ETag: "17dc6-a5c-bf716880"\r\n Accept-Ranges: bytes\r\n Content-Length: 2652\r\n Keep-Alive: timeout=10, max=100\r\n Connection: Keep-Alive\r\n Content-Type: text/html; charset=iso \r\n \r\n data data data data data... Application Layer 2-37

38 User-server state: cookies many Web sites use cookies four components: 1) cookie header line of HTTP response message 2) cookie header line in next HTTP request message 3) cookie file kept on user s host, managed by user s browser 4) back-end database at Web site example: Susan always access Internet from PC visits specific e-commerce site for first time when initial HTTP requests arrives at site, site creates: unique ID entry in backend database for ID Application Layer 2-38

39 Web caches (proxy server) goal: satisfy client request without involving origin server user sets browser: Web accesses via cache browser sends all HTTP requests to cache object in cache: cache returns object else cache requests object from origin server, then returns object to client client client proxy server origin server origin server Application Layer 2-39

40 More about Web caching cache acts as both client and server server for original requesting client client to origin server typically cache is installed by ISP (university, company, residential ISP) why Web caching? reduce response time for client request reduce traffic on an institution s access link Enables poor content providers to effectively deliver content Application Layer 2-40

41 Caching example possible solution: install cache suppose hit rate is 0.4 consequence 40% requests will be satisfied almost immediately 60% requests satisfied by origin server utilization of access link reduced to 60%, resulting in negligible delays (say 70 msec) total avg delay = Internet delay + access delay + LAN delay = 0.6*( ) secs + 0.4* ( ) = 1.3 secs institutional network public Internet 15 Mbps access link 100 Mbps LAN origin servers institutional cache 2: Application Layer 41

42 Conditional GET Goal: don t send object if cache has up-to-date cached version no object transmission delay lower link utilization cache: specify date of cached copy in HTTP request If-modified-since: <date> server: response contains no object if cached copy is up-to-date: HTTP/ Not Modified cache HTTP request msg If-modified-since: <date> HTTP response HTTP/ Not Modified HTTP request msg If-modified-since: <date> HTTP response HTTP/ OK <data> server object not modified before <date> object modified after <date> Application Layer 2-42

43 FTP: the file transfer protocol user at host FTP user interface FTP client local file system file transfer FTP server remote file system transfer file to/from remote host client/server model client: side that initiates transfer (either to/from remote) server: remote host ftp: RFC 959 ftp server: port 21 Application Layer 2-43

44 FTP: separate control, data connections FTP client contacts FTP server at port 21, using TCP client authorized over control connection client browses remote directory, sends commands over control connection when server receives file transfer command, server opens 2 nd TCP data connection (for file) to client after transferring one file, server closes data connection FTP client TCP control connection, server port 21 TCP data connection, server port 20 FTP server server opens another TCP data connection to transfer another file control connection: out of band Application Layer 2-44

45 Electronic mail Three major components: user agents mail servers simple mail transfer protocol: SMTP User Agent a.k.a. mail reader composing, editing, reading mail messages e.g., Outlook, Thunderbird, iphone mail client outgoing, incoming messages stored on server mail server SMTP mail server user agent user agent SMTP SMTP user agent outgoing message queue mail server user mailbox user agent user agent user agent Application Layer 2-45

46 Electronic mail: mail servers mail servers: mailbox contains incoming messages for user message queue of outgoing (to be sent) mail messages SMTP protocol between mail servers to send messages client: sending mail server server : receiving mail server mail server SMTP mail server user agent user agent SMTP SMTP user agent mail server user agent user agent user agent Application Layer 2-46

47 Electronic Mail: SMTP [RFC 2821] uses TCP to reliably transfer message from client to server, port 25 direct transfer: sending server to receiving server three phases of transfer handshaking (greeting) transfer of messages closure command/response interaction (like HTTP, FTP) commands: ASCII text response: status code and phrase messages must be in 7-bit ASCII Application Layer 2-47

48 Mail access protocols user agent SMTP SMTP mail access protocol (e.g., POP, IMAP) user agent sender s mail server receiver s mail server SMTP: delivery/storage to receiver s server mail access protocol: retrieval from server POP: Post Office Protocol [RFC 1939]: authorization, download IMAP: Internet Mail Access Protocol [RFC 1730]: more features, including manipulation of stored msgs on server HTTP: gmail, Hotmail, Yahoo! Mail, etc. Application Layer 2-48

49 DNS: domain name system people: many identifiers: SSN, name, passport # Internet hosts, routers: IP address (32 bit) - used for addressing datagrams name, e.g., - used by humans Q: how to map between IP address and name, and vice versa? Domain Name System: distributed database implemented in hierarchy of many name servers application-layer protocol: hosts, name servers communicate to resolve names (address/name translation) note: core Internet function, implemented as applicationlayer protocol complexity at network s edge Application Layer 2-49

50 DNS: services, structure DNS services hostname to IP address translation host aliasing mail server aliasing load distribution replicated Web servers: many IP addresses correspond to one name why not centralize DNS? single point of failure traffic volume distant centralized database maintenance A: doesn t scale! Application Layer 2-50

51 DNS: a distributed, hierarchical database Root DNS Servers com DNS servers org DNS servers edu DNS servers yahoo.com DNS servers amazon.com DNS servers pbs.org DNS servers poly.edu umass.edu DNS serversdns servers client wants IP for 1 st approx: client queries root server to find com DNS server client queries.com DNS server to get amazon.com DNS server client queries amazon.com DNS server to get IP address for Application Layer 2-51

52 Local DNS name server does not strictly belong to hierarchy each ISP (residential ISP, company, university) has one also called default name server when host makes DNS query, query is sent to its local DNS server has local cache of recent name-to-address translation pairs (but may be out of date!) acts as proxy, forwards query into hierarchy Application Layer 2-52

53 DNS name resolution example root DNS server host at cis.poly.edu wants IP address for gaia.cs.umass.edu TLD DNS server iterated query: contacted server replies with name of server to contact I don t know this name, but ask this server local DNS server dns.poly.edu 1 8 requesting host cis.poly.edu 7 6 authoritative DNS server dns.cs.umass.edu gaia.cs.umass.edu Application Layer 2-53

54 DNS name resolution example root DNS server recursive query: puts burden of name resolution on contacted name server 2 local DNS server dns.poly.edu TLD DNS server 1 8 requesting host cis.poly.edu authoritative DNS server dns.cs.umass.edu gaia.cs.umass.edu Application Layer 2-54

55 DNS: caching, updating records once (any) name server learns mapping, it caches mapping cache entries timeout (disappear) after some time (TTL) TLD servers typically cached in local name servers thus root name servers not often visited cached entries may be out-of-date (best effort name-to-address translation!) if name host changes IP address, may not be known Internet-wide until all TTLs expire update/notify mechanisms proposed IETF standard RFC 2136 Application Layer 2-55

56 DNS records DNS: distributed db storing resource records (RR) RR format: (name, value, type, ttl) type=a name is hostname value is IP address type=ns name is domain (e.g., foo.com) value is hostname of authoritative name server for this domain type=cname name is alias name for some canonical (the real) name is really servereast.backup2.ibm.com value is canonical name type=mx value is name of mailserver associated with name Application Layer 2-56

57 Inserting records into DNS example: new startup Network Utopia register name networkuptopia.com at DNS registrar (e.g., Network Solutions) provide names, IP addresses of authoritative name server (primary and secondary) registrar inserts two RRs into.com TLD server: (networkutopia.com, dns1.networkutopia.com, NS) (dns1.networkutopia.com, , A) create authoritative server type A record for type MX record for networkutopia.com Application Layer 2-57

58 Chapter 3 outline 3.1 transport-layer services 3.2 multiplexing and demultiplexing 3.3 connectionless transport: UDP 3.4 principles of reliable data transfer 3.5 connection-oriented transport: TCP segment structure reliable data transfer flow control connection management 3.6 principles of congestion control 3.7 TCP congestion control Transport Layer 3-58

59 Transport services and protocols provide logical communication between app processes running on different hosts transport protocols run in end systems send side: breaks app messages into segments, passes to network layer rcv side: reassembles segments into messages, passes to app layer more than one transport protocol available to apps Internet: TCP and UDP application transport network data link physical application transport network data link physical Transport Layer 3-59

60 Transport vs. network layer network layer: logical communication between hosts transport layer: logical communication between processes relies on, enhances, network layer services 12 kids in Ann s house sending letters to 12 kids in Bill s house: hosts = houses processes = kids app messages = letters in household analogy: envelopes transport protocol = Ann and Bill who demux to inhouse siblings network-layer protocol = postal service Transport Layer 3-60

61 Internet transport-layer protocols reliable, in-order delivery (TCP) congestion control flow control connection setup unreliable, unordered delivery: UDP no-frills extension of best-effort IP services not available: delay guarantees bandwidth guarantees application transport network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical application transport network data link physical Transport Layer 3-61

62 Multiplexing/demultiplexing multiplexing at sender: handle data from multiple sockets, add transport header (later used for demultiplexing) demultiplexing at receiver: use header info to deliver received segments to correct socket application P3 transport network link application P1 P2 transport network link physical application P4 transport network link socket process physical physical Transport Layer 3-62

63 Connectionless demultiplexing recall: created socket has host-local port #: DatagramSocket mysocket1 = new DatagramSocket(12534); recall: when creating datagram to send into UDP socket, must specify destination IP address destination port # when host receives UDP segment: checks destination port # in segment directs UDP segment to socket with that port # IP datagrams with same dest. port #, but different source IP addresses and/or source port numbers will be directed to same socket at dest Transport Layer 3-63

64 Connection-oriented demux TCP socket identified by 4-tuple: source IP address source port number dest IP address dest port number demux: receiver uses all four values to direct segment to appropriate socket server host may support many simultaneous TCP sockets: each socket identified by its own 4-tuple web servers have different sockets for each connecting client non-persistent HTTP will have different socket for each request Transport Layer 3-64

65 UDP: User Datagram Protocol [RFC 768] no frills, bare bones Internet transport protocol best effort service, UDP segments may be: lost delivered out-of-order to app connectionless: no handshaking between UDP sender, receiver each UDP segment handled independently of others UDP use: streaming multimedia apps (loss tolerant, rate sensitive) DNS SNMP reliable transfer over UDP: add reliability at application layer application-specific error recovery! Transport Layer 3-65

66 UDP: segment header 32 bits source port # dest port # length application data (payload) checksum UDP segment format length, in bytes of UDP segment, including header why is there a UDP? no connection establishment (which can add delay) simple: no connection state at sender, receiver small header size no congestion control: UDP can blast away as fast as desired Transport Layer 3-66

67 UDP checksum Goal: detect errors (e.g., flipped bits) in transmitted segment sender: treat segment contents, including header fields, as sequence of 16-bit integers checksum: addition (one s complement sum) of segment contents sender puts checksum value into UDP checksum field receiver: compute checksum of received segment check if computed checksum equals checksum field value: NO - error detected YES - no error detected. But maybe errors nonetheless? More later. Transport Layer 3-67

68 Internet checksum: example example: add two 16-bit integers wraparound sum checksum Note: when adding numbers, a carryout from the most significant bit needs to be added to the result Transport Layer 3-68

69 Principles of reliable data transfer important in application, transport, link layers top-10 list of important networking topics! characteristics of unreliable channel will determine complexity of reliable data transfer protocol (rdt) Transport Layer 3-69

70 rdt1.0: reliable transfer over a reliable channel underlying channel perfectly reliable no bit errors no loss of packets separate FSMs for sender, receiver: sender sends data into underlying channel receiver reads data from underlying channel Wait for call from above rdt_send(data) packet = make_pkt(data) udt_send(packet) Wait for call from below rdt_rcv(packet) extract (packet,data) deliver_data(data) sender receiver Transport Layer 3-70

71 rdt2.0: channel with bit errors underlying channel may flip bits in packet checksum to detect bit errors the question: how to recover from errors: acknowledgements (ACKs): receiver explicitly tells sender that pkt received OK negative acknowledgements (NAKs): receiver explicitly tells sender that pkt had errors sender retransmits pkt on receipt of NAK new mechanisms in rdt2.0 (beyond rdt1.0): error detection feedback: control msgs (ACK,NAK) from receiver to sender Transport Layer 3-71

72 rdt2.0 has a fatal flaw! what happens if ACK/NAK corrupted? sender doesn t know what happened at receiver! can t just retransmit: possible duplicate handling duplicates: stop and wait sender sends one packet, then waits for receiver response sender retransmits current pkt if ACK/NAK corrupted sender adds sequence number to each pkt receiver discards (doesn t deliver up) duplicate pkt Transport Layer 3-72

73 rdt2.1: sender, handles garbled ACK/NAKs rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isack(rcvpkt) rdt_rcv(rcvpkt) && ( corrupt(rcvpkt) isnak(rcvpkt) ) udt_send(sndpkt) rdt_send(data) sndpkt = make_pkt(0, data, checksum) udt_send(sndpkt) Wait for call 0 from above Wait for ACK or NAK 1 rdt_send(data) Wait for ACK or NAK 0 Wait for call 1 from above rdt_rcv(rcvpkt) && ( corrupt(rcvpkt) isnak(rcvpkt) ) udt_send(sndpkt) rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isack(rcvpkt) sndpkt = make_pkt(1, data, checksum) udt_send(sndpkt) Transport Layer 3-73

74 rdt2.1: receiver, handles garbled ACK/NAKs rdt_rcv(rcvpkt) && (corrupt(rcvpkt) sndpkt = make_pkt(nak, chksum) udt_send(sndpkt) rdt_rcv(rcvpkt) && not corrupt(rcvpkt) && has_seq1(rcvpkt) sndpkt = make_pkt(ack, chksum) udt_send(sndpkt) rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && has_seq0(rcvpkt) extract(rcvpkt,data) deliver_data(data) sndpkt = make_pkt(ack, chksum) udt_send(sndpkt) Wait for 0 from below Wait for 1 from below rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && has_seq1(rcvpkt) rdt_rcv(rcvpkt) && (corrupt(rcvpkt) sndpkt = make_pkt(nak, chksum) udt_send(sndpkt) rdt_rcv(rcvpkt) && not corrupt(rcvpkt) && has_seq0(rcvpkt) sndpkt = make_pkt(ack, chksum) udt_send(sndpkt) extract(rcvpkt,data) deliver_data(data) sndpkt = make_pkt(ack, chksum) udt_send(sndpkt) Transport Layer 3-74

75 rdt3.0: channels with errors and loss new assumption: underlying channel can also lose packets (data, ACKs) checksum, seq. #, ACKs, retransmissions will be of help but not enough approach: sender waits reasonable amount of time for ACK retransmits if no ACK received in this time if pkt (or ACK) just delayed (not lost): retransmission will be duplicate, but seq. # s already handles this receiver must specify seq # of pkt being ACKed requires countdown timer Transport Layer 3-75

76 rdt3.0 sender rdt_rcv(rcvpkt) Wait for call 0from above rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isack(rcvpkt,1) stop_timer timeout udt_send(sndpkt) start_timer rdt_rcv(rcvpkt) && ( corrupt(rcvpkt) isack(rcvpkt,0) ) Wait for ACK1 rdt_send(data) sndpkt = make_pkt(0, data, checksum) udt_send(sndpkt) start_timer Wait for ACK0 Wait for call 1 from above rdt_send(data) sndpkt = make_pkt(1, data, checksum) udt_send(sndpkt) start_timer rdt_rcv(rcvpkt) && ( corrupt(rcvpkt) isack(rcvpkt,1) ) timeout udt_send(sndpkt) start_timer rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isack(rcvpkt,0) stop_timer rdt_rcv(rcvpkt) Transport Layer 3-76

COSC4377. Useful Linux Tool: screen

COSC4377. Useful Linux Tool: screen Lecture 10 Useful Linux Tool: screen Alternative to having multiple ssh/putty screens, you can have multiple virtual screens within the same session. To open a screen session: ~$ screen To suspend the

More information

CSC358 Week 4. Adapted from slides by J.F. Kurose and K. W. Ross. All material copyright J.F Kurose and K.W. Ross, All Rights Reserved

CSC358 Week 4. Adapted from slides by J.F. Kurose and K. W. Ross. All material copyright J.F Kurose and K.W. Ross, All Rights Reserved CSC358 Week 4 Adapted from slides by J.F. Kurose and K. W. Ross. All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved Logistics Assignment 1 due this Friday Office hour on Feb

More information

Transport layer. Our goals: Understand principles behind transport layer services: Learn about transport layer protocols in the Internet:

Transport layer. Our goals: Understand principles behind transport layer services: Learn about transport layer protocols in the Internet: Transport layer Our goals: Understand principles behind transport layer services: Multiplexing/demultiplexing Reliable data transfer Flow control Congestion control Learn about transport layer protocols

More information

Chapter III: Transport Layer

Chapter III: Transport Layer Chapter III: Transport Layer UG3 Computer Communications & Networks (COMN) Mahesh Marina mahesh@ed.ac.uk Slides thanks to Myungjin Lee and copyright of Kurose and Ross Transport services and protocols

More information

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 7

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 7 CMPE 150/L : Introduction to Computer Networks Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 7 1 Lab2 and Homework questions Available on course website 2 Chapter 3 outline 3.1 transport-layer

More information

Transport layer: Outline

Transport layer: Outline Transport layer Our goals: Understand principles behind transport layer services: Multiplexing/demultiplexing Reliable data transfer Flow control Congestion control Learn about transport layer protocols

More information

Announcement. Homework 1 due last night, how is that? Will discuss some problems in the lecture next week

Announcement. Homework 1 due last night, how is that? Will discuss some problems in the lecture next week Announcement Homework 1 due last night, how is that? Will discuss some problems in the lecture next week Should have completed at least part II of project 1 Homework 2 will be out next week Review of Previous

More information

CSCD 330 Network Programming

CSCD 330 Network Programming CSCD 330 Network Programming Lecture 9 Transport Layer Spring 2018 Reading: Begin Chapter 3 Some Material in these slides from J.F Kurose and K.W. Ross All material copyright 1996-2007 1 Outline Overview

More information

Chapter 2: outline. 2.6 P2P applications 2.7 socket programming with UDP and TCP

Chapter 2: outline. 2.6 P2P applications 2.7 socket programming with UDP and TCP Chapter 2: outline 2.1 principles of network applications 2.2 Web and HTTP 2.3 FTP 2.4 electronic mail SMTP, POP3, IMAP 2.5 DNS 2.6 P2P applications 2.7 socket programming with UDP and TCP Application

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer Reti degli Elaboratori Canale AL e MZ Prof.ssa Chiara Petrioli a.a. 2016/2017 We thank for the support material Prof. Kurose-Ross All material copyright 1996-2012 J.F Kurose and

More information

TDTS06: Computer Networks

TDTS06: Computer Networks TDTS06: Computer Networks Instructor: Niklas Carlsson Email: niklas.carlsson@liu.se Notes derived from Computer Networking: A Top Down Approach, by Jim Kurose and Keith Ross, Addison-Wesley. The slides

More information

CSC358 Week 2. Adapted from slides by J.F. Kurose and K. W. Ross. All material copyright J.F Kurose and K.W. Ross, All Rights Reserved

CSC358 Week 2. Adapted from slides by J.F. Kurose and K. W. Ross. All material copyright J.F Kurose and K.W. Ross, All Rights Reserved CSC358 Week 2 Adapted from slides by J.F. Kurose and K. W. Ross. All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved Logistics Tutorial this Friday Assignment 1 will be out shortly

More information

CC451 Computer Networks

CC451 Computer Networks CC451 Computer Networks Lecture 5 Transport Layer Transport Layer 3-1 Chapter 3 Transport Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students,

More information

Chapter II: Application Layer

Chapter II: Application Layer Chapter II: Application Layer UG3 Computer Communications & Networks (COMN) MAHESH MARINA mahesh@ed.ac.uk Slides thanks to Myungjin Lee, and copyright of Kurose and Ross First, a review Web and HTTP web

More information

Lecture 04: Application Layer (Part 01) Principles and the World Wide Web (HTTP) Dr. Anis Koubaa

Lecture 04: Application Layer (Part 01) Principles and the World Wide Web (HTTP) Dr. Anis Koubaa NET 331 Computer Networks Lecture 04: Application Layer (Part 01) Principles and the World Wide Web (HTTP) Dr. Anis Koubaa Reformatted slides from textbook Computer Networking a top-down appraoch, Fifth

More information

Transport services and protocols. Chapter 3 outline. Internet transport-layer protocols Chapter 3 outline. Multiplexing/demultiplexing

Transport services and protocols. Chapter 3 outline. Internet transport-layer protocols Chapter 3 outline. Multiplexing/demultiplexing Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless : UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented : TCP segment structure reliable

More information

Internet transport-layer protocols. Transport services and protocols. Sending and receiving. Connection-oriented (TCP) Connection-oriented

Internet transport-layer protocols. Transport services and protocols. Sending and receiving. Connection-oriented (TCP) Connection-oriented Transport services and protocols Internet -layer protocols logical communication between processes protocols run in end systems send side: breaks app messages into segments, passes to layer rcv side: reassembles

More information

Application Layer. Pure P2P architecture. Client-server architecture. Processes communicating. Hybrid of client-server and P2P. Creating a network app

Application Layer. Pure P2P architecture. Client-server architecture. Processes communicating. Hybrid of client-server and P2P. Creating a network app Application Layer e- web instant messaging remote login PP file sharing multi- network games streaming stored video (YouTube) voice over IP real-time video conferencing cloud computing Creating a network

More information

DATA COMMUNICATOIN NETWORKING

DATA COMMUNICATOIN NETWORKING DATA COMMUNICATOIN NETWORKING Instructor: Ouldooz Baghban Karimi Course Book: Computer Networking, A Top-Down Approach By: Kurose, Ross Introduction Course Overview Basics of Computer Networks Internet

More information

Review for Internet Introduction

Review for Internet Introduction Review for Internet Introduction What s the Internet: Two Views View 1: Nuts and Bolts View billions of connected hosts routers and switches protocols control sending, receiving of messages network of

More information

Chapter 2 Application Layer

Chapter 2 Application Layer Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Application Layer 2-1 Some network apps e-mail web text messaging remote

More information

Application Layer. Pure P2P architecture. Client-server architecture. Processes communicating. Hybrid of client-server and P2P. Creating a network app

Application Layer. Pure P2P architecture. Client-server architecture. Processes communicating. Hybrid of client-server and P2P. Creating a network app Application Layer e- web instant messaging remote login P2P file sharing multi- network games streaming stored video (YouTube) voice over IP real-time video conferencing cloud computing Creating a network

More information

CSE 3214: Computer Network Protocols and Applications Transport Layer (Part 2) Chapter 3 outline. UDP checksum. Port numbers

CSE 3214: Computer Network Protocols and Applications Transport Layer (Part 2) Chapter 3 outline. UDP checksum. Port numbers CSE 3214: Computer Network Protocols and Applications Transport Layer (Part 2) Dr. Peter Lian, Professor Department of Computer Science and Engineering York University Email: peterlian@cse.yorku.ca Office:

More information

Chapter 2: outline. 2.6 P2P applications 2.7 socket programming with UDP and TCP

Chapter 2: outline. 2.6 P2P applications 2.7 socket programming with UDP and TCP Chapter 2: outline 2.1 principles of network applications app architectures app requirements 2.2 Web and HTTP 2.3 FTP 2.4 electronic mail SMTP, POP3, IMAP 2.5 DNS 2.6 P2P applications 2.7 socket programming

More information

CSC 8560 Computer Networks: Transport Layer

CSC 8560 Computer Networks: Transport Layer CSC 8560 Computer Networks: Transport Layer Professor Henry Carter Fall 2017 Last Time... Sockets programming API TCP and UDP look different. Remember, there is no connect() in UDP - just start sending

More information

EECS 3214: Computer Network Protocols and Applications

EECS 3214: Computer Network Protocols and Applications EECS 3214: Computer Network Protocols and Applications Suprakash Datta Course page: http://www.eecs.yorku.ca/course/3214 Office: LAS 3043 Email: datta [at] cse.yorku.ca These slides are adapted from Jim

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations;

More information

Lecture 07 The Transport Layer (TCP & UDP) Dr. Anis Koubaa

Lecture 07 The Transport Layer (TCP & UDP) Dr. Anis Koubaa NET 331 Computer Networks Lecture 07 The Transport Layer (TCP & UDP) Dr. Anis Koubaa Reformatted slides from textbook Computer Networking a top-down appraoch, Fifth Edition by Kurose and Ross, (c) Pearson

More information

Lecture 05: Application Layer (Part 02) Domain Name System. Dr. Anis Koubaa

Lecture 05: Application Layer (Part 02) Domain Name System. Dr. Anis Koubaa NET 331 Computer Networks Lecture 05: Application Layer (Part 02) Domain Name System Dr. Anis Koubaa Reformatted slides from textbook Computer Networking a top-down appraoch, Fifth Edition by Kurose and

More information

CS4/MSc Computer Networking. Lecture 3: The Application Layer

CS4/MSc Computer Networking. Lecture 3: The Application Layer CS4/MSc Computer Networking Lecture 3: The Application Layer Computer Networking, Copyright University of Edinburgh 2005 Network Applications Examine a popular network application: Web Client-server architecture

More information

Application layer. Some network apps. Client-server architecture. Hybrid of client-server and P2P. Pure P2P architecture. Creating a network app

Application layer. Some network apps. Client-server architecture. Hybrid of client-server and P2P. Pure P2P architecture. Creating a network app Application layer Some network apps e- web instant messaging remote login P2P file sharing multi- network games streaming stored video (YouTube) voice over IP real-time video conferencing cloud computing

More information

Chapter 2: Application layer

Chapter 2: Application layer Chapter 2: Application layer 2.1 Principles of network applications 2.2 Web and HTTP 2.3 FTP 2.4 Electronic Mail SMTP, POP3, IMAP 2.5 DNS 2.6 P2P applications 2.7 Socket programming with TCP 2.8 Socket

More information

CSCE 463/612 Networks and Distributed Processing Spring 2018

CSCE 463/612 Networks and Distributed Processing Spring 2018 CSCE 463/612 Networks and Distributed Processing Spring 2018 Transport Layer II Dmitri Loguinov Texas A&M University February 27, 2018 Original slides copyright 1996-2004 J.F Kurose and K.W. Ross 1 Chapter

More information

CSC 401 Data and Computer Communications Networks

CSC 401 Data and Computer Communications Networks CSC 401 Data and Computer Communications Networks Transport Layer Principles of Reliable Data Transfer Sec 3.4 Prof. Lina Battestilli 2017 Fall Transport Layer Chapter 3 Outline 3.1 Transport-layer Services

More information

Chapter 3 outline. 3.5 connection-oriented transport: TCP segment structure reliable data transfer flow control connection management

Chapter 3 outline. 3.5 connection-oriented transport: TCP segment structure reliable data transfer flow control connection management Chapter 3 outline 3.1 transport-layer services 3.2 multiplexing and demultiplexing 3.3 connectionless transport: UDP 3.4 principles of reliable data transfer 3.5 connection-oriented transport: TCP segment

More information

Computer Networks and the Internet. CMPS 4750/6750: Computer Networks

Computer Networks and the Internet. CMPS 4750/6750: Computer Networks Computer Networks and the Inter CMPS 4750/6750: Computer Networks Outline What Is the Inter? Access Networks Packet Switching and Circuit Switching A closer look at delay, loss, and throughput Interconnection

More information

Chapter 2 Application Layer. Lecture 5 DNS. Computer Networking: A Top Down Approach. 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012

Chapter 2 Application Layer. Lecture 5 DNS. Computer Networking: A Top Down Approach. 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Chapter 2 Application Layer Lecture 5 DNS Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Application Layer 2-1 Chapter 2: outline 2.1 principles

More information

Last time. Mobility in Cellular networks. Transport Layer. HLR, VLR, MSC Handoff. Introduction Multiplexing / demultiplexing UDP 14-1

Last time. Mobility in Cellular networks. Transport Layer. HLR, VLR, MSC Handoff. Introduction Multiplexing / demultiplexing UDP 14-1 Last time Mobility in Cellular networks HLR, VLR, MSC Handoff Transport Layer Introduction Multiplexing / demultiplexing UDP 14-1 This time Reliable Data Transfer Midterm review 14-2 Chapter 3 outline

More information

CMSC 332 Computer Networks Reliable Data Transfer

CMSC 332 Computer Networks Reliable Data Transfer CMSC 332 Computer Networks Reliable Data Transfer Professor Szajda Last Time Multiplexing/Demultiplexing at the Transport Layer. How do TCP and UDP differ? UDP gives us virtually bare-bones access to the

More information

Lecture 9: Transpor Layer Overview and UDP

Lecture 9: Transpor Layer Overview and UDP Lecture 9: Transpor Layer Overview and UDP COMP 332, Spring 2018 Victoria Manfredi Acknowledgements: materials adapted from Computer Networking: A Top Down Approach 7 th edition: 1996-2016, J.F Kurose

More information

Application Layer: HTTP

Application Layer: HTTP Application Layer: HTTP EECS 3214 Slides courtesy of J.F Kurose and K.W. Ross, All Rights Reserved 23-Jan-18 1-1 Chapter 2: outline 2.1 principles of network applications 2.2 Web and HTTP 2.3 electronic

More information

Introduction to computer networking

Introduction to computer networking edge core Introduction to computer networking Comp Sci 3600 Security Outline edge core 1 2 edge 3 core 4 5 6 The edge core Outline edge core 1 2 edge 3 core 4 5 6 edge core Billions of connected computing

More information

end systems, access networks, links 1.3 network core

end systems, access networks, links 1.3 network core Chapter 1: roadmap 1.1 what is the Inter? 1.2 work edge end systems, works, links 1.3 work core packet switching, circuit switching, work structure 1.4 delay, loss, throughput in works 1.5 protocol layers,

More information

CS 4390 Computer Networks. Transport Services and Protocols

CS 4390 Computer Networks. Transport Services and Protocols CS 4390 Computer Networks UT D data Session 07 Transport Layer Overview and UDP Adapted from Computer Networking a Top-Down Approach 1996-2012 by J.F Kurose and K.W. Ross, All Rights Reserved Transport

More information

CS 3516: Computer Networks

CS 3516: Computer Networks Welcome to CS 3516: Computer Networks Prof. Yanhua Li Time: 9:00am 9:50am M, T, R, and F Location: AK 219 Fall 2018 A-term 1 Some slides are originally from the course materials of the textbook Computer

More information

Computer Networking Introduction

Computer Networking Introduction Computer Networking Introduction Halgurd S. Maghdid Software Engineering Department Koya University-Koya, Kurdistan-Iraq Lecture No.5 Chapter 2: outline 2.1 principles of network applications app architectures

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer Lec 8: Transport Layer Service Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 All material copyright 1996-2012 J.F Kurose

More information

Computer Networks & Security 2016/2017

Computer Networks & Security 2016/2017 Computer Networks & Security 2016/2017 Transport Layer (04) Dr. Tanir Ozcelebi Courtesy: Kurose & Ross Courtesy: Forouzan TU/e Computer Science Security and Embedded Networked Systems Transport Layer Our

More information

CSC 4900 Computer Networks: Reliable Data Transport

CSC 4900 Computer Networks: Reliable Data Transport CSC 4900 Computer Networks: Reliable Data Transport Professor Henry Carter Fall 2017 Last Time Multiplexing/Demultiplexing at the Transport Layer. How do TCP and UDP differ? UDP gives us virtually bare-bones

More information

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 5

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 5 CMPE 150/L : Introduction to Computer Networks Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 5 1 Any problem of your lab? Due by next Monday (Jan 29) Using Canvas? Email me cqian12@ucsc.edu

More information

Chapter 2: Application layer

Chapter 2: Application layer Chapter 2 Application Layer A note on the use of these ppt slides: Were making these slides freely available to all (faculty, students, readers). Theyre in PowerPoint form so you can add, modify, and delete

More information

Chapter 2: outline. 2.6 P2P applications 2.7 socket programming with UDP and TCP

Chapter 2: outline. 2.6 P2P applications 2.7 socket programming with UDP and TCP Chapter 2: outline 2.1 principles of network applications app architectures app requirements 2.2 Web and HTTP 2.3 FTP 2.4 electronic mail SMTP, POP3, IMAP 2.5 DNS 2.6 P2P applications 2.7 socket programming

More information

Different Layers Lecture 21

Different Layers Lecture 21 Different Layers Lecture 21 10/17/2003 Jian Ren 1 The Transport Layer 10/17/2003 Jian Ren 2 Transport Services and Protocols Provide logical communication between app processes running on different hosts

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Slides adopted from original ones provided by the textbook authors. Introduction

More information

FTP. Mail. File Transfer Protocol (FTP) FTP commands, responses. Electronic Mail. TDTS06: Computer Networks

FTP. Mail. File Transfer Protocol (FTP) FTP commands, responses. Electronic Mail. TDTS06: Computer Networks TDTS0: Computer Networks Instructor: Niklas Carlsson Email: niklas.carlsson@liu.se FTP Notes derived from Computer Networking: A Top Down Approach, by Jim Kurose and Keith Ross, Addison-Wesley. The slides

More information

Lecture 10: Transpor Layer Principles of Reliable Data Transfer

Lecture 10: Transpor Layer Principles of Reliable Data Transfer Lecture 10: Transpor Layer Principles of Reliable Data Transfer COMP 332, Spring 2018 Victoria Manfredi Acknowledgements: materials adapted from Computer Networking: A Top Down Approach 7 th edition: 1996-2016,

More information

Chapter 2 Application Layer

Chapter 2 Application Layer Chapter 2 Application Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations;

More information

Application Layer Protocols

Application Layer Protocols Application Layer Protocols Dr. Ihsan Ullah Department of Computer Science & IT University of Balochistan, Quetta Pakistan Email: ihsan.ullah.cs@gmail.com These slides are adapted from the slides accompanying

More information

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 8

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 8 CMPE 150/L : Introduction to Computer Networks Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 8 1 A lot of students have been having difficulty seeing the HTTP packets generated when navigating

More information

Application Layer: , DNS

Application Layer:  , DNS Application Layer: E-mail, DNS EECS 3214 Slides courtesy of J.F Kurose and K.W. Ross, All Rights Reserved 22-Jan-18 1-1 Chapter 2: outline 2.1 principles of network applications 2.2 Web and HTTP 2.3 electronic

More information

Lecture 5. Transport Layer. Transport Layer 1-1

Lecture 5. Transport Layer. Transport Layer 1-1 Lecture 5 Transport Layer Transport Layer 1-1 Agenda The Transport Layer (TL) Introduction to TL Protocols and Services Connectionless and Connection-oriented Processes in TL Unreliable Data Transfer User

More information

CS 204: Advanced Computer Networks

CS 204: Advanced Computer Networks CS 204: Advanced Computer Networks Jiasi Chen Lectures: MWF 12:10-1pm Humanities and Social Sciences 1403 http://www.cs.ucr.edu/~jiasi/teaching/cs204_spring17/ 1 Why Networks? Supports the applications

More information

Chapter 2 Application Layer

Chapter 2 Application Layer Chapter 2 Application Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations;

More information

Chapter 2: outline. 2.1 principles of network applications app architectures app requirements

Chapter 2: outline. 2.1 principles of network applications app architectures app requirements Chapter 2: outline 2.1 principles of network applications app architectures app requirements 2.2 Web and HTTP 2.3 FTP 2.4 electronic mail SMTP, POP3, IMAP 2.5 DNS 2.6 P2P applications 2.7 socket programming

More information

internet technologies and standards

internet technologies and standards Institute of Telecommunications Warsaw University of Technology 2015 internet technologies and standards Piotr Gajowniczek Andrzej Bąk Michał Jarociński Internet application layer introduction The majority

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer Lec 9: Reliable Data Transfer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 All material copyright 1996-2012 J.F Kurose

More information

Data Communications & Networks. Session 6 Main Theme Reliable Data Transfer. Dr. Jean-Claude Franchitti

Data Communications & Networks. Session 6 Main Theme Reliable Data Transfer. Dr. Jean-Claude Franchitti Data Communications & Networks Session 6 Main Theme Reliable Data Transfer Dr. Jean-Claude Franchitti New York University Computer Science Department Courant Institute of Mathematical Sciences Adapted

More information

The Transport Layer Multiplexing, Error Detection, & UDP

The Transport Layer Multiplexing, Error Detection, & UDP CPSC 852 Internetworking The Transport Layer Multiplexing, Error Detection, & UDP Michele Weigle Department of Computer Science Clemson University mweigle@cs.clemson.edu http://www.cs.clemson.edu/~mweigle/courses/cpsc852

More information

Chapter 3: Transport Layer. Chapter 3 Transport Layer. Chapter 3 outline. Transport services and protocols

Chapter 3: Transport Layer. Chapter 3 Transport Layer. Chapter 3 outline. Transport services and protocols Chapter 3 Transport Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete

More information

CS 3516: Advanced Computer Networks

CS 3516: Advanced Computer Networks Welcome to CS 3516: Advanced Computer Networks Prof. Yanhua Li Time: 9:00am 9:50am M, T, R, and F Location: Fuller 320 Fall 2017 A-term 1 Some slides are originally from the course materials of the textbook

More information

Introduction to Computer Networking. Guy Leduc. Chapter 2 Application Layer. Chapter 2: outline

Introduction to Computer Networking. Guy Leduc. Chapter 2 Application Layer. Chapter 2: outline Introduction to Computer Networking Guy Leduc Chapter 2 Application Layer Computer Networking: A Top Down Approach, 7 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2016 2: Application Layer

More information

Chapter 2 Application Layer

Chapter 2 Application Layer Chapter 2 Application Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations;

More information

Chapter 3: Transport Layer

Chapter 3: Transport Layer Chapter 3: Transport Layer Chapter goals: understand principles behind transport layer services: multiplexing/demultiplex ing reliable data transfer flow control congestion control instantiation and implementation

More information

Computer Communication Networks Midterm Review

Computer Communication Networks Midterm Review Computer Communication Networks Midterm Review ICEN/ICSI 416 Fall 2018 Prof. Aveek Dutta 1 Instructions The exam is closed book, notes, computers, phones. You can use calculator, but not one from your

More information

Chapter 1. Computer Networks and the Internet

Chapter 1. Computer Networks and the Internet Chapter 1 Computer Networks and the Internet Internet traffic What s the Internet? (hardware) PC server wireless laptop cellular handheld wired links millions of connected computing devices: hosts = end

More information

Chapter 2 part B: outline

Chapter 2 part B: outline Chapter 2 part B: outline 2.3 FTP 2.4 electronic, POP3, IMAP 2.5 DNS Application Layer 2-1 FTP: the file transfer protocol at host FTP interface FTP client local file system file transfer FTP remote file

More information

Distributed Systems. 5. Transport Protocols. Werner Nutt

Distributed Systems. 5. Transport Protocols. Werner Nutt Distributed Systems 5. Transport Protocols Werner Nutt 1 5. Transport Protocols 5.1 Transport-layer Services 5.1 Transport-layer Services 5.2 Multiplexing and Demultiplexing 5.3 Connectionless Transport:

More information

Chapter 3: Transport Layer Part A

Chapter 3: Transport Layer Part A Chapter 3: Transport Layer Part A Course on Computer Communication and Networks, CTH/GU The slides are adaptation of the slides made available by the authors of the course s main textbook 3: Transport

More information

Distributed Systems. 5. Transport Protocols

Distributed Systems. 5. Transport Protocols Distributed Systems 5. Transport Protocols Werner Nutt 1 5. Transport Protocols 5.1 Transport-layer Services 5.1 Transport-layer Services 5.2 Multiplexing and Demultiplexing 5.3 Connectionless Transport:

More information

Lecture 2 Communication services The Trasport Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Lecture 2 Communication services The Trasport Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Lecture 2 Communication services The Trasport Layer Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it The structure edge: applications and hosts core: routers of s access s, media:

More information

Electronic Mail. Three Components: SMTP SMTP. SMTP mail server. 1. User Agents. 2. Mail Servers. 3. SMTP protocol

Electronic Mail. Three Components: SMTP SMTP. SMTP mail server. 1. User Agents. 2. Mail Servers. 3. SMTP protocol SMTP Electronic Mail Three Components: 1. User Agents a.k.a. mail reader e.g., gmail, Outlook, yahoo 2. Mail Servers mailbox contains incoming messages for user message queue of outgoing (to be sent) mail

More information

CC451 Computer Networks

CC451 Computer Networks CC451 Computer Networks Lecture 4 Application Layer (cont d) Application Layer 1 Chapter 2: Application layer 2.1 Principles of network applications 2.2 Web and HTTP 2.3 FTP 2.4 Electronic Mail SMTP, POP3,

More information

Introduction to Computer Networking. Guy Leduc. Chapter 2 Application Layer. Chapter 2: outline

Introduction to Computer Networking. Guy Leduc. Chapter 2 Application Layer. Chapter 2: outline Introduction to Computer Networking Guy Leduc Chapter 2 Application Layer Computer Networking: A Top Down Approach, 6 th edition. Jim Kurose, Keith Ross Addison-Wesley, March 2012 2: Application Layer

More information

Lecture 6 Application Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Lecture 6 Application Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Lecture 6 Application Layer Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Application-layer protocols Application: communicating, distributed processes running in network hosts

More information

Chapter 2: Application Layer. Chapter 2 Application Layer. Some network apps. Application architectures. Chapter 2: Application layer

Chapter 2: Application Layer. Chapter 2 Application Layer. Some network apps. Application architectures. Chapter 2: Application layer Chapter 2 Application Layer Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009. Chapter 2: Application Layer Our goals: conceptual, implementation

More information

CSC 4900 Computer Networks: Transport Layer

CSC 4900 Computer Networks: Transport Layer CSC 4900 Computer Networks: Transport Layer Professor Henry Carter Fall 2017 Last Time... Sockets programming API TCP and UDP look different. Remember, there is no connect() in UDP - just start sending

More information

CSEN 404 Introduction to Networks. Mervat AbuElkheir Mohamed Abdelrazik. ** Slides are attributed to J. F. Kurose

CSEN 404 Introduction to Networks. Mervat AbuElkheir Mohamed Abdelrazik. ** Slides are attributed to J. F. Kurose CSEN 404 Introduction to Networks Mervat AbuElkheir Mohamed Abdelrazik ** Slides are attributed to J. F. Kurose HTTP Method Types HTTP/1.0 GET POST HEAD asks server to leave requested object out of response

More information

Chapter I: Introduction

Chapter I: Introduction Chapter I: Introduction UG3 Computer Communications & Networks (COMN) Myungjin Lee myungjin.lee@ed.ac.uk Slides copyright of Kurose and Ross The work core mesh of interconnected routers packet-switching:

More information

Input ports, switching fabric, output ports Switching via memory, bus, crossbar Queueing, head-of-line blocking

Input ports, switching fabric, output ports Switching via memory, bus, crossbar Queueing, head-of-line blocking Last time Router internals Input ports, switching fabric, output ports Switching via memory, bus, crossbar Queueing, head-of-line blocking Mobility Home, visited s Home, foreign agents Permanent, care-of

More information

Chapter 8 Security. Computer Networking: A Top Down Approach

Chapter 8 Security. Computer Networking: A Top Down Approach Chapter 8 Security A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations; and

More information

Review of Previous Lecture

Review of Previous Lecture Review of Previous Lecture Network access and physical media Internet structure and ISPs Delay & loss in packet-switched networks Protocol layers, service models Some slides are in courtesy of J. Kurose

More information

Application Layer: The Web and HTTP Sec 2.2 Prof Lina Battestilli Fall 2017

Application Layer: The Web and HTTP Sec 2.2 Prof Lina Battestilli Fall 2017 CSC 401 Data and Computer Communications Networks Application Layer: The Web and HTTP Sec 2.2 Prof Lina Battestilli Fall 2017 Outline Application Layer (ch 2) 2.1 principles of network applications 2.2

More information

CSC 401 Data and Computer Communications Networks

CSC 401 Data and Computer Communications Networks CSC 401 Data and Computer Communications Networks Transport Layer Intro, Mutliplexing/Demultiplexing, UDP Sec 3.1 3.4 Prof. Lina Battestilli Fall 2017 Chapter 3: Transport Layer our goals: understand principles

More information

Application Layer. Applications and application-layer protocols. Goals:

Application Layer. Applications and application-layer protocols. Goals: Application Layer Goals: Conceptual aspects of network application protocols Client paradigm Service models Learn about protocols by examining popular application-level protocols HTTP DNS 1 Applications

More information

EECS 3214: Computer Network Protocols and Applications

EECS 3214: Computer Network Protocols and Applications EECS 3214: Computer Network Protocols and Applications Suprakash Datta datta@cse.yorku.ca Office: LAS 3043 Phone: 416-736-2100 ext 77875 Course page: http://www.cse.yorku.ca/course/3214 These slides are

More information

Course on Computer Communication and Networks. Lecture 4 Chapter 3; Transport Layer, Part A

Course on Computer Communication and Networks. Lecture 4 Chapter 3; Transport Layer, Part A Course on Computer Communication and Networks Lecture 4 Chapter 3; Transport Layer, Part A EDA344/DIT 420, CTH/GU Based on the book Computer Networking: A Top Down Approach, Jim Kurose, Keith Ross, Addison-Wesley.

More information

Chapter 2. Application Layer. Chapter 2: Application Layer. Application layer - Overview. Some network apps. Creating a network appication

Chapter 2. Application Layer. Chapter 2: Application Layer. Application layer - Overview. Some network apps. Creating a network appication Mobile network Chapter 2 The Yanmin Zhu Department of Computer Science and Engineering Global ISP Home network Regional ISP Institutional network CSE Department 1 CSE Department 2 Application layer - Overview

More information

Part 1: Introduction. Goal: Review of how the Internet works Overview

Part 1: Introduction. Goal: Review of how the Internet works Overview Part 1: Introduction Goal: Review of how the Internet works Overview Get context Get overview, feel of the Internet Application layer protocols and addressing Network layer / Routing Link layer / Example

More information

Since enrollment is very small this semester, we have flexibilty. Traditional lecture Assigned reading, and then student(s) present during class time

Since enrollment is very small this semester, we have flexibilty. Traditional lecture Assigned reading, and then student(s) present during class time Syllabus You can go to cs.rpi.edu and then Faculty and my website from my profile Or you can go to www.cs.rpi.edu/~holzbh Or to be very direct, you can go to www.cs.rpi.edu/~holzbh/ccn18/index.php 1 Textbook

More information