Addressing and Routing

Size: px
Start display at page:

Download "Addressing and Routing"

Transcription

1 Addressing and Routing Andrew Scott

2 Physical/ Hardware Addresses Aka MAC* or link(-layer) address Can only talk to things on same link Unique ID given to every network interface card (NIC) on manufacture Generally written in form: f0:1c:d:f5:a5:41 Flat addressing scheme IDs allocated sequentially as devices manufactured Cannot tell anything about ID by knowing of ID1 * From Medium Access Control function in networks

3 Internet Protocol Connectionless network protocol No attempt to build path prior to transmission Best-effort packets may be: Lost Delivered out of order Duplicated Delayed

4 Transmit : encapsulate Receive : de-capsulate Protocol Encapsulation IP packets sit within link-layer frames Data Application Transport layer Application header Data Network layer Transport header Application header Data Link-layer IP header Transport header Application header Data Data-link header IP header Transport header Application header Data

5 IP Addresses Hierarchical Not flat like Ethernet/ MAC address Topological Reflects network structure Not geographic Though topology might be constrained by geography

6 IPv4 Addresses 3 bit/ 4 byte identifier Identify network interfaces not hosts/ devices * A device will have multiple addresses At least one per virtual or physical network interface Notice all devices use same loopback address: * Physical interfaces can have multiple IP addresses but not generally useful

7 IPv4 Addresses Typically written as 4 bytes, e.g., Often treated as a 3 bit long, i.e., 0x Split into network and host parts Split can be made at different positions Network Identifier Host Identifier

8 IPv4 Addresses Interfaces on same link share network part Network Identifier Host

9 Private Addresses Available for (organisation) internal/ test networks Must not be made externally visible Free for use, but check your organisation isn t already using part of range, for example, University makes extensive use of 10.xxx addresses RFC1918

10 Private Addresses Allow autonomy from any numbering authority Note that private addresses are not globally unique Therefore meaningless outside of organisation Internet Service Provider (ISP) Private Internal Network Home Network A Home Network B

11 Special Addresses Multicast Packets delivered to a group of interested devices Hosts subscribe to group in order to receive packets Can be useful for media or data distribution services RFC5771 Broadcast For delivery to all devices on local network RFC919

12 IPv Address Representation Addresses 18 bits long Prefix/ length notation prefix /n Written in hexadecimal, in following format XXXX : XXXX : XXXX : XXXX : XXXX : XXXX : XXXX : XXXX/ n Leading zeros in group can be omitted, for example 1080:0:0:0:8:800:00C:417A/4 At most one set of contiguous zeros can be dropped 1080::8:800:00C:417A/4

13 Sending a Network (IP) Packet We must tell our link-layer to send packet to hardware (MAC) address of gateway router Packet is addressed to IP address of server and sent by link-layer to MAC address of gateway router IP: MAC: 08:00:7:00:34:ca Gateway Router IP: MAC: 08:00:0:11:4a:e9 Internet IP: MAC: unknown

14 Looking Hop-by-Hop Client Gateway Router Server Interface A Interface B Interface C Interface D :00:7:00:34:ca :00:0:11:4a:e :00:0:79:a: :00:7:33:7b:a9 Ethernet Ethernet IP src: A IP dst: D Eth src: A Eth dst: B IP src: A IP dst: D Eth src: C Eth dst: D

15 Mapping Addresses Names IP Addresses Domain Name Service (DNS) IP Addresses Hardware/ Link-Layer Addr Address Resolution Protocol (ARP) Link-Layer Address IP Address Reverse Address Resolution Protocol (RARP) Hardware addresses more commonly known as Medium Access Control (MAC) addresses See the IEEE LAN/RM in first lecture to see why

16 Cached mappings : Windows C:\> arp -a Interface: xc Internet Address Physical Address Type c-4-f8-b-e dynamic ff-ff-ff-ff-ff-ff static e static e fc static e-7f-ff-fa static ff-ff-ff-ff-ff-ff static Linux acs:~$ arp -a? ( ) at 00:07:b4:00:5:0 [ether] on eth0

17 and Cisco IOS wallace# show ip arp Protocol Address Age(min) Hardware Addr Type Interface Internet b ARPA GigE0/1.70 Internet c.99f.9e80 ARPA GigE0/1.70 Internet b4 ARPA GigE0/1.70 Internet d1.541f ARPA GigE0/1.70 Internet c.9a8.39e ARPA GigE0/1.70 Internet cf ARPA GigE0/1.70 Internet c.9c.75b9 ARPA GigE0/1.70

18 Getting from A to B Given a packet destined for host B Is B on same physical link? send direct Is B on a remote network? send to router local network destination A router B

19 More Generally PC A may have many interfaces, thus options If we send to a gateway router what next? How should packet be forwarded toward B? local network destination network A Internet B

20 Getting from A to B Internet formed from a set of routers No global view (at IP level) Routers conspire to deliver packets to destination Each pushing packets closer to their destination A B

21 Internet Routing Two distinct parts to process Routing Application level process to determine routes Forwarding System level process directing packets according to learned routes

22 Routing and Forwarding User Space : applications System Space : OS Kernel Send Packet Queue Routing Process Forwarding Process Routing Table Periodic update Forwarding Table Network Interface Cards (NICs) eth0 eth1

23 IP Forwarding Network layer IP Data-link layer IP Ether IP Wi-Fi Ethernet link-layer Wi-Fi link-layer

24 IPv4 Address Format 3 bit address Typically represented in dotted-quad form Each part represents 8 bit (byte), thus 0 55 Network Part Host Part

25 Internet Address Allocation Internet Corporation for Assigned Names and Numbers (ICANN) Internet Assigned Numbers Authority (IANA) European Internet Service Providers (ISPs)

26 IP Addresses Network addresses allocated to organisations by their Internet Service Provider (ISP) Used to correctly forward traffic how we know destination Fixed and cannot be changed by organisation Host addresses belong to organisation Allocate/ change them at will Network Host

27 Internal IP Sub-netting Within organisation Borrow host bits to form internal (sub-)networks Network part is fixed what ISP allocated to org. 8 bits s bits 4 - s bits Network Subnet Host 1 bits (allocated by ISP) s bits 1 - s bits Network Subnet Host 4 bits (allocated by ISP) Network s bits SN 8 - s Host

28 Sub-netting Notice we can t determine network-host boundary Subnet address only makes sense within organisation We need some more information ISP will still treat this as 1bit network address The network address it allocated to organisation 1 bits s bits 1 - s bits Network Subnet Host Network part now

29 Subnet Masks Network Host Address Subnet mask Result Network Host Address Subnet mask Result

30 Variable Length Subnet Masking (VLSM) Subnet mask is used to split (sub-)net and host parts Mask must have set of ones followed by set of zeros Once a zero bit appears, all remaining bits must be zero OK illegal Any IP address AND d with its subnet mask gives network address on which it resides

31 Subnet Masks Mask: Network-host boundary

32 Masks and Subnets Address Mask Subnet mask Single available subnet

33 Masks and Subnets Address X Mask Host bits Subnet mask bit unset in address bit set in address

34 Masks and Subnets Address X X Mask Host bits Subnet mask (18 + 4)

35 Masks and Subnets Address X X X Mask Host bits

36 Prefix Notation Address Mask bytes, 4 bits +3 = 7 bits Address: Mask: Prefix: / = = /4 /5 / /7

37 Addresses are bound to Interfaces Addresses belong to interfaces not machines Note: Can have multiple virtual interfaces on single physical interface Share same link layer Loopback Interface lo0: /8 Virtual Interface gre0: /3 eth0: /4 eth1: /4 Router

38 One Hop at a Time IP depends on underlying data-link protocol Data-link protocol can only address devices on same physical link/ network segment IP header holds endpoint addresses Original source and final destination Data-link frames holding packet sent hop-by-hop Always sent to next-hop router, until last subnet Data sent on wire Ethernet (Layer ) header IP (Layer 3) header UDP (Layer 4) header Payload/ Application data

39 Forwarding Table Each device maintains a forwarding table This is one of the device s network interfaces - can be interface name or address Net. Address/ Prefix Subnet Mask Next Hop Router Interface Metric ( cost ) eth is router that can get our packets to network This router MUST be on same (virtual) link/ subnet as eth0

40 Forwarding Table Many nodes have a default route prefix: /0 Route of last resort, when no other route available Default route typically toward our ISP s router Net. Address/ Prefix Subnet Mask Next Hop Router Interface Metric ( cost ) eth eth0 0

41 Checking Host Table route Kernel IP routing table U route up G gateway route H host route Destination Gateway Genmask Flags Metric Ref Use Iface default UG eth0 link-local * U eth * U eth0 root@acs:~# C:\> route print Network Destination Netmask Gateway Interface Metric On-link On-link On-link On-link On-link On-link On-link On-link

42 Updating Routing Table: Linux route Kernel IP routing table Destination Gateway Genmask Flags Metric Ref Use Iface default UG eth0 link-local * U eth * U eth0 root@as:~# root@as:~# route add -net netmask gw root@as:~# root@as:~# route Kernel IP routing table Destination Gateway Genmask Flags Metric Ref Use Iface default UG eth U eth0 link-local * U eth * U eth0 root@as:~# root@as:~# route del -net netmask

43 Multiple Next Hop Matches Likely to be more than one matching entry If only due to default route Which always matches Always select longest matching prefix Most specific entry Should be best path to destination

44 Longest Prefix Match Apply mask to address and compare with prefix Destination Address = Prefix Mask Masked Address =? Options are: shortest of two longest of two we select this = Prefix?

45 Why Multiple Matches? Two equivalent scenarios : 1. Fully enumerated table / / /4 All addresses bar one / / /4 A B Network Address N.H /4 A /4 A /4 A /4 B /4 B /4 B

46 Why Multiple Matches? Two equivalent scenarios : /1 with exception for / / / / / / /4 A B Simpler routing table (fewer to check = faster) Network Address N.H /1 A /4 B /4 B /4 B If we always select Longest Prefix Match we ll always get to correct destination

47 Building Tables Forwarding Table Subnet Nxt Hop / A / A / B / B A B

48 Route Summarisation Looking at that last example: We can combine these routes Two routes differ only in last bit Each pair has the same next hop * aka. Route Aggregation though this is really a specific wide area mechanism Initial Forwarding Table Subnet Nxt Hop A A B B New Forwarding Table Subnet Nxt Hop A B

49 Route Summarisation Notice we change mask as we combine routes R A /5 B / R /4 A W / X / B Y / Z / W X Y Z

50 Completing the tables A /5 B /5 A W / X / B /5 B Y / Z / A /5 W X Y Z

51 Question A router supporting variable length subnet masks and classless inter-domain routing (CIDR) has the following forwarding entries: Showing full details of your working identify: Which next hop entries would match each of the following destination IP addresses, and In each case, which next hop would the router select? i ii iii iv Address/ Prefix Length Next Hop /0 A /17 B /18 C /1 D / E

52 First WHICH ADDRESSES MATCH?

53 / matches to 17 bits doesn t match to 17 bits

54 / matches to 18 bits doesn t match to 18 bits

55 / matches to 1 bits doesn t match to 1 bits

56 / doesn t match to bits does match to bits

57 So WHAT CHOICES DO WE HAVE?

58 Choice is at 0 bits at 17 bits at 18 bits Select longest prefix (18 bits): C Address Prefix Length Next Hop Matches A Yes, always! B Yes C Yes D Obviously not E Obviously not

59 Choice is at 0 bits Select longest prefix (0 bits): A We use the default route Address Prefix Length Next Hop Matches A Yes, always! B No C No D Obviously not E Obviously not

60 Choice is at 0 bits at 1 bits Longest prefix is (1 bits): D Address Prefix Length Next Hop Matches A Yes, always! B Obviously not C Obviously not D Yes E No

61 Choice is at 0 bits at bits Longest prefix is ( bits): E Address Prefix Length Next Hop Matches A Yes, always! B Obviously not C Obviously not D No E Yes

62 Summary Destination Valid next hops Next hop A, B, C C A A A, D D A, E E

Internet Protocol Addressing and Routing. Redes TCP/IP

Internet Protocol Addressing and Routing. Redes TCP/IP Internet Protocol Addressing and Routing Redes TCP/IP Internet Topology Internet - WAN Gateway or router Physical Network (LAN) internet LAN LAN LAN Dotted Decimal Notation 2 7 2 6 2 5 2 4 2 3 2 2 2 1

More information

Vorlesung Kommunikationsnetze

Vorlesung Kommunikationsnetze Picture 15 13 Vorlesung Kommunikationsnetze Prof. Dr. H. P. Großmann mit B. Wiegel sowie A. Schmeiser und M. Rabel Sommersemester 2009 Institut für Organisation und Management von Informationssystemen

More information

EITF25 Internet Techniques and Applications L7: Internet. Stefan Höst

EITF25 Internet Techniques and Applications L7: Internet. Stefan Höst EITF25 Internet Techniques and Applications L7: Internet Stefan Höst What is Internet? Internet consists of a number of networks that exchange data according to traffic agreements. All networks in Internet

More information

The Interconnection Structure of. The Internet. EECC694 - Shaaban

The Interconnection Structure of. The Internet. EECC694 - Shaaban The Internet Evolved from the ARPANET (the Advanced Research Projects Agency Network), a project funded by The U.S. Department of Defense (DOD) in 1969. ARPANET's purpose was to provide the U.S. Defense

More information

TCP/IP Network Essentials

TCP/IP Network Essentials TCP/IP Network Essentials Linux System Administration and IP Services AfNOG 2012 Layers Complex problems can be solved using the common divide and conquer principle. In this case the internals of the Internet

More information

ROUTING INTRODUCTION TO IP, IP ROUTING PROTOCOLS AND PROXY ARP

ROUTING INTRODUCTION TO IP, IP ROUTING PROTOCOLS AND PROXY ARP IP ROUTING INTRODUCTION TO IP, IP ROUTING PROTOCOLS AND PROXY ARP Peter R. Egli 1/37 Contents 1. IP Routing 2. Routing Protocols 3. Fragmentation in the IP Layer 4. Proxy ARP 5. Routing and IP forwarding

More information

IP Basics Unix/IP Preparation Course June 29, 2010 Pago Pago, American Samoa

IP Basics Unix/IP Preparation Course June 29, 2010 Pago Pago, American Samoa IP Basics Unix/IP Preparation Course June 29, 2010 Layers Complex problems can be solved using the common divide and conquer principle. In this case the internals of the Internet are divided into separate

More information

Networking Fundamentals

Networking Fundamentals Networking Fundamentals Network Startup Resource Center www.nsrc.org These materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International license (http://creativecommons.org/licenses/by-nc/4.0/)

More information

Networks. an overview. dr. C. P. J. Koymans. Informatics Institute University of Amsterdam. February 4, 2008

Networks. an overview. dr. C. P. J. Koymans. Informatics Institute University of Amsterdam. February 4, 2008 Networks an overview dr. C. P. J. Koymans Informatics Institute University of Amsterdam February 4, 2008 dr. C. P. J. Koymans (UvA) Networks February 4, 2008 1 / 53 1 Network modeling Layered networks

More information

TCP/IP and the OSI Model

TCP/IP and the OSI Model TCP/IP BASICS TCP/IP and the OSI Model TCP/IP BASICS The network protocol of the Internet Composed of six main protocols IP Internet Protocol UDP User Datagram Protocol TCP Transmission Control Protocol

More information

CSCI-1680 Network Layer: IP & Forwarding Rodrigo Fonseca

CSCI-1680 Network Layer: IP & Forwarding Rodrigo Fonseca CSCI-1680 Network Layer: IP & Forwarding Rodrigo Fonseca Based partly on lecture notes by David Mazières, Phil Levis, John Jannotti Today Network layer: Internet Protocol (v4) Forwarding Next 2 classes:

More information

OSI Data Link & Network Layer

OSI Data Link & Network Layer OSI Data Link & Network Layer Erkki Kukk 1 Layers with TCP/IP and OSI Model Compare OSI and TCP/IP model 2 Layers with TCP/IP and OSI Model Explain protocol data units (PDU) and encapsulation 3 Addressing

More information

Datagram. Source IP address. Destination IP address. Options. Data

Datagram. Source IP address. Destination IP address. Options. Data Datagram Version H. len Service Datagram length Datagram identifier FR-FR FR-FR-FR-FR Time-to-live Transp. prot. H. Checksum Source IP address Destination IP address Options Data Each line represents a

More information

IP - The Internet Protocol

IP - The Internet Protocol IP - The Internet Protocol 1 Orientation IP s current version is Version 4 (IPv4). It is specified in RFC 891. TCP UDP Transport Layer ICMP IP IGMP Network Layer ARP Network Access Link Layer Media 2 IP:

More information

Network Protocols - Revision

Network Protocols - Revision Network Protocols - Revision Luke Anderson luke@lukeanderson.com.au 18 th May 2018 University Of Sydney Overview 1. The Layers 1.1 OSI Model 1.2 Layer 1: Physical 1.3 Layer 2: Data Link MAC Addresses 1.4

More information

Lecture 8. Basic Internetworking (IP) Outline. Basic Internetworking (IP) Basic Internetworking (IP) Service Model

Lecture 8. Basic Internetworking (IP) Outline. Basic Internetworking (IP) Basic Internetworking (IP) Service Model Lecture 8 Basic Internetworking (IP) Reminder: Homework 3, Programming Project 2 due on Tuesday. An example internet is shown at right. Routers or gateways are used to connect different physical networks.

More information

ECPE / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition

ECPE / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition ECPE / COMP 177 Fall 2016 Some slides from Kurose and Ross, Computer Networking, 5 th Edition Course Organization Top-Down! Starting with Applications / App programming Then Transport Layer (TCP/UDP) Then

More information

Lecture 8. Reminder: Homework 3, Programming Project 2 due on Thursday. Questions? Tuesday, September 20 CS 475 Networks - Lecture 8 1

Lecture 8. Reminder: Homework 3, Programming Project 2 due on Thursday. Questions? Tuesday, September 20 CS 475 Networks - Lecture 8 1 Lecture 8 Reminder: Homework 3, Programming Project 2 due on Thursday. Questions? Tuesday, September 20 CS 475 Networks - Lecture 8 1 Outline Chapter 3 - Internetworking 3.1 Switching and Bridging 3.2

More information

Chapter 18 and 22. IPv4 Address. Data Communications and Networking

Chapter 18 and 22. IPv4 Address. Data Communications and Networking University of Human Development College of Science and Technology Department of Information Technology Chapter 18 and 22 Data Communications and Networking IPv4 Address 1 Lecture Outline IPv4 Addressing

More information

IP - The Internet Protocol. Based on the slides of Dr. Jorg Liebeherr, University of Virginia

IP - The Internet Protocol. Based on the slides of Dr. Jorg Liebeherr, University of Virginia IP - The Internet Protocol Based on the slides of Dr. Jorg Liebeherr, University of Virginia Orientation IP (Internet Protocol) is a Network Layer Protocol. IP: The waist of the hourglass IP is the waist

More information

OSI Data Link & Network Layer

OSI Data Link & Network Layer OSI Data Link & Network Layer Erkki Kukk 1 Layers with TCP/IP and OSI Model Compare OSI and TCP/IP model 2 Layers with TCP/IP and OSI Model Explain protocol data units (PDU) and encapsulation 3 Addressing

More information

The Internet Protocol. IP Addresses Address Resolution Protocol: IP datagram format and forwarding: IP fragmentation and reassembly

The Internet Protocol. IP Addresses Address Resolution Protocol: IP datagram format and forwarding: IP fragmentation and reassembly The Internet Protocol IP Addresses Address Resolution Protocol: IP datagram format and forwarding: IP fragmentation and reassembly IP Addresses IP Addresses are 32 bit. Written in dotted decimal format:

More information

ELEC / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition

ELEC / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition ELEC / COMP 177 Fall 2016 Some slides from Kurose and Ross, Computer Networking, 5 th Edition Presentation 2 Security/Privacy Presentations Nov 3 rd, Nov 10 th, Nov 15 th Upload slides to Canvas by midnight

More information

Setting Up a Multihomed System

Setting Up a Multihomed System CHAPTER 4 By default, the installation of the Cisco Configuration Engine software offers a single-homed system setup. If you require a multihomed system setup, you must manually customize the network parameters

More information

Communication Networks ( ) / Fall 2013 The Blavatnik School of Computer Science, Tel-Aviv University. Allon Wagner

Communication Networks ( ) / Fall 2013 The Blavatnik School of Computer Science, Tel-Aviv University. Allon Wagner Communication Networks (0368-3030) / Fall 2013 The Blavatnik School of Computer Science, Tel-Aviv University Allon Wagner Kurose & Ross, Chapter 4 (5 th ed.) Many slides adapted from: J. Kurose & K. Ross

More information

Internet Protocol (IP)

Internet Protocol (IP) CPSC 360 - Network Programming Internet Protocol (IP) Michele Weigle Department of Computer Science Clemson University mweigle@cs.clemson.edu March 14, 2005 http://www.cs.clemson.edu/~mweigle/courses/cpsc360

More information

IP: Addressing, ARP, Routing

IP: Addressing, ARP, Routing IP: Addressing, ARP, Routing Network Protocols and Standards Autumn 2004-2005 Oct 21, 2004 CS573: Network Protocols and Standards 1 IPv4 IP Datagram Format IPv4 Addressing ARP and RARP IP Routing Basics

More information

ECE 4450:427/527 - Computer Networks Spring 2017

ECE 4450:427/527 - Computer Networks Spring 2017 ECE 4450:427/527 - Computer Networks Spring 2017 Dr. Nghi Tran Department of Electrical & Computer Engineering Lecture 6.2: IP Dr. Nghi Tran (ECE-University of Akron) ECE 4450:427/527 Computer Networks

More information

Outline. IP Address. IP Address. The Internet Protocol. o Hostname & IP Address. o The Address

Outline. IP Address. IP Address. The Internet Protocol. o Hostname & IP Address. o The Address Outline IP The Internet Protocol o IP Address IP subnetting CIDR o ARP Protocol o IP Function o Fragmentation o NAT o IPv6 2 IP Address o Hostname & IP Address IP Address o The Address ping www.nu.ac.th

More information

Guide to TCP/IP Fourth Edition. Chapter 2: IP Addressing and Related Topics

Guide to TCP/IP Fourth Edition. Chapter 2: IP Addressing and Related Topics Guide to TCP/IP Fourth Edition Chapter 2: IP Addressing and Related Topics Objectives Describe IP addressing, anatomy and structures, and addresses from a computer s point of view Recognize and describe

More information

TCP/IP Protocol Suite

TCP/IP Protocol Suite TCP/IP Protocol Suite Computer Networks Lecture 5 http://goo.gl/pze5o8 TCP/IP Network protocols used in the Internet also used in today's intranets TCP layer 4 protocol Together with UDP IP - layer 3 protocol

More information

THE INTERNET PROTOCOL INTERFACES

THE INTERNET PROTOCOL INTERFACES THE INTERNET PROTOCOL The Internet Protocol Stefan D. Bruda Winter 2018 A (connectionless) network protocol Designed for use in interconnected systems of packet-switched computer communication networks

More information

IP Addresses. IP Addresses

IP Addresses. IP Addresses IP Addresses Introductory material. IP Addressing Structure of an IP address Classful IP addresses Limitations and problems with classful IP addresses ting CIDR IP Version 6 addresses An entire module

More information

Lecture 12: Addressing. CSE 123: Computer Networks Alex C. Snoeren

Lecture 12: Addressing. CSE 123: Computer Networks Alex C. Snoeren Lecture 12: Addressing CSE 123: Computer Networks Alex C. Snoeren Lecture 12 Overview IP Addresses Class-based addressing Subnetting Classless addressing Route aggregation 2 Addressing Considerations Fixed

More information

CS 43: Computer Networks. 21: The Network Layer & IP November 7, 2018

CS 43: Computer Networks. 21: The Network Layer & IP November 7, 2018 CS 43: Computer Networks 21: The Network Layer & IP November 7, 2018 The Network Layer! Application: the application (e.g., the Web, Email) Transport: end-to-end connections, reliability Network: routing

More information

1. IPv6 is the latest version of the TCP/IP protocol. What are some of the important IPv6 requirements?

1. IPv6 is the latest version of the TCP/IP protocol. What are some of the important IPv6 requirements? 95 Chapter 7 TCP/IP Protocol Suite and IP Addressing This chapter presents an overview of the TCP/IP Protocol Suite. It starts with the history and future of TCP/IP, compares the TCP/IP protocol model

More information

The Internet Protocol

The Internet Protocol The Internet Protocol Stefan D. Bruda Winter 2018 THE INTERNET PROTOCOL A (connectionless) network layer protocol Designed for use in interconnected systems of packet-switched computer communication networks

More information

Ref: A. Leon Garcia and I. Widjaja, Communication Networks, 2 nd Ed. McGraw Hill, 2006 Latest update of this lecture was on

Ref: A. Leon Garcia and I. Widjaja, Communication Networks, 2 nd Ed. McGraw Hill, 2006 Latest update of this lecture was on IP Routing Routing is the process performed by routers to transfer packets from the source machine to the destination. Unlike switches, routers are configured by a network administrator. Routers share

More information

Chapter 6 Delivery and Routing of IP Packets

Chapter 6 Delivery and Routing of IP Packets Chapter 6 Delivery and Routing of IP Packets Outline Delivery Forwarding Routing Structure of a Router Delivery v.s. Routing Delivery The way a packet is handled by the underlying networks under the control

More information

Lecture 12: Aggregation. CSE 123: Computer Networks Alex C. Snoeren

Lecture 12: Aggregation. CSE 123: Computer Networks Alex C. Snoeren Lecture 12: Aggregation CSE 123: Computer Networks Alex C. Snoeren Lecture 12 Overview Subnetting Classless addressing Route aggregation 2 Class-based Addressing Most significant bits determines class

More information

THE INTERNET PROTOCOL/1

THE INTERNET PROTOCOL/1 THE INTERNET PROTOCOL a (connectionless) network layer protocol designed for use in interconnected systems of packet-switched computer communication networks (store-and-forward paradigm) provides for transmitting

More information

CS475 Networks Lecture 8 Chapter 3 Internetworking. Ethernet or Wi-Fi).

CS475 Networks Lecture 8 Chapter 3 Internetworking. Ethernet or Wi-Fi). Assignments Reading for Lecture 9: Section 3.3 3.2 Basic Internetworking (IP) Bridges and LAN switches from last section have limited ability CS475 Networks Lecture 8 Chapter 3 Internetworking is a logical

More information

RMIT University. Data Communication and Net-Centric Computing COSC 1111/2061. Lecture 2. Internetworking IPv4, IPv6

RMIT University. Data Communication and Net-Centric Computing COSC 1111/2061. Lecture 2. Internetworking IPv4, IPv6 RMIT University Data Communication and Net-Centric Computing COSC 1111/2061 Internetworking IPv4, IPv6 Technology Slide 1 Lecture Overview During this lecture, we will understand The principles of Internetworking

More information

OSI Data Link & Network Layer

OSI Data Link & Network Layer OSI Data Link & Network Layer Erkki Kukk 1 Layers with TCP/IP and OSI Model Compare OSI and TCP/IP model 2 Layers with TCP/IP and OSI Model Explain protocol data units (PDU) and encapsulation 3 Addressing

More information

PUCPR. Internet Protocol. Edgard Jamhour E N G L I S H S E M E S T E R

PUCPR. Internet Protocol. Edgard Jamhour E N G L I S H S E M E S T E R PUCPR Internet Protocol Address Resolution and Routing Edgard Jamhour 2014 E N G L I S H S E M E S T E R 1. Address Resolution The IP address does not identify, indeed, a computer, but a network interface.

More information

Planning for Information Network

Planning for Information Network Planning for Information Network Lecture 7: Introduction to IPv6 Assistant Teacher Samraa Adnan Al-Asadi 1 IPv6 Features The ability to scale networks for future demands requires a limitless supply of

More information

Subnet Masks. Address Boundaries. Address Assignment. Host. Net. Host. Subnet Mask. Non-contiguous masks. To Administrator. Outside the network

Subnet Masks. Address Boundaries. Address Assignment. Host. Net. Host. Subnet Mask. Non-contiguous masks. To Administrator. Outside the network Subnet Masks RFCs 917 922 925 (1984) 932 936 940 950 (1985) First major change to IP after RFC791 Net Host Subnet Mask 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Net Bits set indicate net number Bits clear indicate

More information

2/22/2008. Outline Computer Networking Lecture 9 IP Protocol. Hop-by-Hop Packet Forwarding in the Internet. Internetworking.

2/22/2008. Outline Computer Networking Lecture 9 IP Protocol. Hop-by-Hop Packet Forwarding in the Internet. Internetworking. Outline 5-44 Computer Networking Lecture 9 Protocol Traditional addressing CIDR addressing Peter Steenkiste Departments of Computer Science and Electrical and Computer Engineering Forwarding examples 5-44

More information

Network Layer: Logical Addressing

Network Layer: Logical Addressing Network Layer: Logical Addressing Introduction The network layer is responsible for the delivery of individual packets from source to the destination host Logical Addressing A universal addressing system

More information

Full file at

Full file at ch02 True/False Indicate whether the statement is true or false. 1. IP addresses have links to domain names to make it possible for users to identify and access resources on a network. 2. As a frame moves

More information

Computer Network Fundamentals Spring Week 4 Network Layer Andreas Terzis

Computer Network Fundamentals Spring Week 4 Network Layer Andreas Terzis Computer Network Fundamentals Spring 2008 Week 4 Network Layer Andreas Terzis Outline Internet Protocol Service Model Addressing Original addressing scheme Subnetting CIDR Fragmentation ICMP Address Shortage

More information

Aside: Interaction with Link Layer Computer Networking. Caching ARP Entries. ARP Cache Example

Aside: Interaction with Link Layer Computer Networking. Caching ARP Entries. ARP Cache Example Aside: Interaction with Link Layer 15-441 Computer Networking Lecture 8 Addressing & Packets How does one find the Ethernet address of a? ARP Broadcast search for address E.g., who-has 128.2.184.45 tell

More information

Exercise Sheet 4. Exercise 1 (Routers, Layer-3-Switches, Gateways)

Exercise Sheet 4. Exercise 1 (Routers, Layer-3-Switches, Gateways) Exercise Sheet 4 Exercise 1 (Routers, Layer-3-Switches, Gateways) 1. What is the purpose of Routers in computer networks? (Also explain the difference to Layer-3-Switches.) 2. What is the purpose of Layer-3-Switches

More information

Network Layer: Control/data plane, addressing, routers

Network Layer: Control/data plane, addressing, routers Network Layer: Control/data plane, addressing, routers CS 352, Lecture 10 http://www.cs.rutgers.edu/~sn624/352-s19 Srinivas Narayana (heavily adapted from slides by Prof. Badri Nath and the textbook authors)

More information

Lecture 2: Basic routing, ARP, and basic IP

Lecture 2: Basic routing, ARP, and basic IP Internetworking Lecture 2: Basic routing, ARP, and basic IP Literature: Forouzan, TCP/IP Protocol Suite: Ch 6-8 Basic Routing Delivery, Forwarding, and Routing of IP packets Connection-oriented vs Connectionless

More information

ECPE / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition

ECPE / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition ECPE / COMP 177 Fall 2012 Some slides from Kurose and Ross, Computer Networking, 5 th Edition Application Layer Transport Layer Network Layer Link Layer Physical Layer 2 Application Layer HTTP DNS IMAP

More information

Lecture 1: Introduction

Lecture 1: Introduction Int ernet w orking Lecture 1: Introduction The Internet, underlying link layer, and IP addressing Literature: Forouzan: TCP/IP Protocol Suite: Ch 1-5 The Internet today 250 million hosts 580 million users

More information

TSIN02 - Internetworking

TSIN02 - Internetworking Lecture 2: The Internet Protocol Literature: Forouzan: ch 4-9 and ch 27 2004 Image Coding Group, Linköpings Universitet Outline About the network layer Tasks Addressing Routing Protocols 2 Tasks of the

More information

IP Addressing Week 6. Module : Computer Networks Lecturer: Lucy White Office : 324

IP Addressing Week 6. Module : Computer Networks Lecturer: Lucy White Office : 324 IP Addressing Week 6 Module : Computer Networks Lecturer: Lucy White lbwhite@wit.ie Office : 324 1 Addressing: Network & Host Network address help to identify route through the network cloud Network address

More information

Introduction to Internetworking

Introduction to Internetworking Introduction to Internetworking Stefano Vissicchio UCL Computer Science COMP0023 Internetworking Goal: Connect many networks together into one Internet. Any computer can send to any other computer on any

More information

Network layer: Overview. Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing

Network layer: Overview. Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing Network layer: Overview Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing 1 Network Layer Functions Transport packet from sending to receiving hosts Network layer protocols in every

More information

Internet Addresses (You should read Chapter 4 in Forouzan)

Internet Addresses (You should read Chapter 4 in Forouzan) Internet Addresses (You should read Chapter 4 in Forouzan) IP Address is 32 Bits Long Conceptually the address is the pair (NETID, HOSTID) Addresses are assigned by the internet company for assignment

More information

ECE 158A: Lecture 7. Fall 2015

ECE 158A: Lecture 7. Fall 2015 ECE 158A: Lecture 7 Fall 2015 Outline We have discussed IP shortest path routing Now we have a closer look at the IP addressing mechanism We are still at the networking layer, we will examine: IP Headers

More information

The Network Layer. Internet solutions. Nixu Oy PL 21. (Mäkelänkatu 91) Helsinki, Finland. tel fax.

The Network Layer. Internet solutions. Nixu Oy PL 21. (Mäkelänkatu 91) Helsinki, Finland. tel fax. The Network Layer Nixu Oy PL 21 (Mäkelänkatu 91) 00601 Helsinki, Finland tel. +358 9 478 1011 fax. +358 9 478 1030 info@nixu.fi http://www.nixu.fi OVERVIEW The Internet Protocol IP addresses, address resolution

More information

Network layer: Overview. Network Layer Functions

Network layer: Overview. Network Layer Functions Network layer: Overview Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing 1 Network Layer Functions Transport packet from sending to receiving hosts Network layer protocols in every

More information

IPv4 addressing, NAT. Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley.

IPv4 addressing, NAT. Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley. IPv4 addressing, NAT http://xkcd.com/195/ Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley Some materials copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights

More information

TCP/IP Protocol Suite and IP Addressing

TCP/IP Protocol Suite and IP Addressing TCP/IP Protocol Suite and IP Addressing CCNA 1 v3 Module 9 10/11/2005 NESCOT CATC 1 Introduction to TCP/IP U.S. DoD created the TCP/IP model. Provides reliable data transmission to any destination under

More information

CIS 632 / EEC 687 Mobile Computing

CIS 632 / EEC 687 Mobile Computing CIS 63 / EEC 687 Mobile Computing IP Software: Routing Prof. Chansu Yu Network Protocols for Wired Network: Ethernet Ethernet address 48-bit, also called hardware/physical/mac/layer address Globally unique:

More information

5. Providing a narrower address space is the primary design goal for IPv6.

5. Providing a narrower address space is the primary design goal for IPv6. Chapter 2: IP Addressing and Related Topics TRUE/FALSE 1. IP addresses can be represented as domain names to make it possible for users to identify and access resources on a network. T PTS: 1 REF: 59 2.

More information

Chapter Motivation For Internetworking

Chapter Motivation For Internetworking Chapter 17-20 Internetworking Part 1 (Concept, IP Addressing, IP Routing, IP Datagrams, Address Resolution 1 Motivation For Internetworking LANs Low cost Limited distance WANs High cost Unlimited distance

More information

Data Communication & Computer Networks Week # 13

Data Communication & Computer Networks Week # 13 Data Communication & Computer Networks Week # 13 M.Nadeem Akhtar CS & IT Department The University of Lahore Email: nadeem.akhtar@cs.uol.edu.pk URL-https://sites.google.com/site/nadeemuolcsccn/home Powerpoint

More information

EP2120 Internetworking/Internetteknik IK2218 Internets Protokoll och Principer

EP2120 Internetworking/Internetteknik IK2218 Internets Protokoll och Principer EP2120 Internetworking/Internetteknik IK2218 Internets Protokoll och Principer Homework Assignment 1 (Solutions due 20:00, Mon., 10 Sept. 2018) (Review due 20:00, Wed., 12 Sept. 2018) 1. IPv4 Addressing

More information

CSCI-1680 Network Layer: IP & Forwarding Rodrigo Fonseca

CSCI-1680 Network Layer: IP & Forwarding Rodrigo Fonseca CSCI-1680 Network Layer: IP & Forwarding Rodrigo Fonseca Based partly on lecture notes by David Mazières, Phil Levis, John Janno< Administrivia IP out today. Your job: Find partners and tell us Implement

More information

IP Address Assignment

IP Address Assignment IP Address Assignment An IP address does not identify a specific computer. Instead, each IP address identifies a connection between a computer and a network. A computer with multiple network connections

More information

IPv4. Christian Grothoff.

IPv4. Christian Grothoff. IPv4 christian@grothoff.org http://grothoff.org/christian/ Sites need to be able to interact in one single, universal space. Tim Berners-Lee 1 The Network Layer Transports datagrams from sending to receiving

More information

CSCI-1680 Network Layer: IP & Forwarding Rodrigo Fonseca Instructor: Nicholas DeMarinis

CSCI-1680 Network Layer: IP & Forwarding Rodrigo Fonseca Instructor: Nicholas DeMarinis CSCI-1680 Network Layer: IP & Forwarding Rodrigo Fonseca Instructor: Nicholas DeMarinis Based partly on lecture notes by David Mazières, Phil Levis, John Jannotti Administrivia IP out today. Your job:

More information

Internet Protocol (IP) Computer Networking. What is an Internetwork? Designing an Internetwork. Lecture 8 IP Addressing and Forwarding

Internet Protocol (IP) Computer Networking. What is an Internetwork? Designing an Internetwork. Lecture 8 IP Addressing and Forwarding Internet Protocol (IP) 5- Computer Networking Lecture 8 IP Addressing and Forwarding Hour Glass Model Create abstraction layer that hides underlying technology from network application software Make as

More information

ELEC / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition

ELEC / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition ELEC / COMP 177 Fall 2011 Some slides from Kurose and Ross, Computer Networking, 5 th Edition Topics This week: Network layer (IP, ARP, ICMP) Next week: More network layer (Routers and routing protocols)

More information

Chapter 06 IP Address

Chapter 06 IP Address Chapter 06 IP Address IP Address Internet address Identifier used at IP layer 32 bit binary address The address space of IPv4 is 2 32 or 4,294,967,296 Consists of netid and hosted IP Address Structure

More information

Unit C - Network Addressing Objectives Purpose of an IP Address and Subnet Mask Purpose of an IP Address and Subnet Mask

Unit C - Network Addressing Objectives Purpose of an IP Address and Subnet Mask Purpose of an IP Address and Subnet Mask 1 2 3 4 5 6 7 8 9 10 Unit C - Network Addressing Objectives Describe the purpose of an IP address and Subnet Mask and how they are used on the Internet. Describe the types of IP Addresses available. Describe

More information

End-to-End Communication

End-to-End Communication End-to-End Communication Goal: Interconnect multiple LANs. Why? Diverse LANs speak different languages need to make them talk to each other Management flexibility global vs. local Internet Problems: How

More information

Donato Ba*aglino Lorenzo Bracciale

Donato Ba*aglino Lorenzo Bracciale IP Donato Ba*aglino Lorenzo Bracciale Outline why IP (mo:va:on) IP architecture (router, LAN) IP addressing Sta:c IP (CIDR, host + net) DHCP Rou:ng IP ARP Why IP? There are many different LAN technologies

More information

EC441 Fall 2018 Introduction to Computer Networking Chapter4: Network Layer Data Plane

EC441 Fall 2018 Introduction to Computer Networking Chapter4: Network Layer Data Plane EC441 Fall 2018 Introduction to Computer Networking Chapter4: Network Layer Data Plane This presentation is adapted from slides produced by Jim Kurose and Keith Ross for their book, Computer Networking:

More information

VLSM and CIDR. Routing Protocols and Concepts Chapter 6. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1

VLSM and CIDR. Routing Protocols and Concepts Chapter 6. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1 VLSM and CIDR Routing Protocols and Concepts Chapter 6 Version 4.0 1 Objectives Compare and contrast classful and classless IP addressing. Review VLSM and explain the benefits of classless IP addressing.

More information

Chapter 4 Network Layer: The Data Plane

Chapter 4 Network Layer: The Data Plane Chapter 4 Network Layer: The Data Plane A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see

More information

Lecture 10: Addressing

Lecture 10: Addressing Lecture 10: Addressing CSE 123: Computer Networks Alex C. Snoeren HW 2 due WEDNESDAY Lecture 10 Overview ICMP The other network-layer protocol IP Addresses Class-based addressing Subnetting Classless addressing

More information

C14a: Internetworks and The Internet

C14a: Internetworks and The Internet CISC 7332X T6 C14a: Internetworks and The Internet Hui Chen Department of Computer & Information Science CUNY Brooklyn College 11/27/2018 CUNY Brooklyn College 1 Acknowledgements Some pictures used in

More information

The Internet Protocol (IP)

The Internet Protocol (IP) The Internet Protocol (IP) The Blood of the Internet (C) Herbert Haas 2005/03/11 "Information Superhighway is really an acronym for 'Interactive Network For Organizing, Retrieving, Manipulating, Accessing

More information

Network Layer/IP Protocols

Network Layer/IP Protocols Network Layer/IP Protocols 1 Outline IP Datagram (IPv4) NAT Connection less and connection oriented service 2 IPv4 packet header 3 IPv4 Datagram Header Format version of the IP protocol (4 BIts) IP header

More information

6 Chapter 6. Figure 1 Required Unique Addresses

6 Chapter 6. Figure 1 Required Unique Addresses 6 Chapter 6 6.1 Public and Private IP Addresses The stability of the Internet depends directly on the uniqueness of publicly used network addresses. In Figure 1 Required Unique Addresses, there is an issue

More information

COMP211 Chapter 4 Network Layer: The Data Plane

COMP211 Chapter 4 Network Layer: The Data Plane COMP211 Chapter 4 Network Layer: The Data Plane All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down Approach 7 th edition Jim Kurose, Keith Ross

More information

Exercise 1 INTERNET. x.x.x.254. net /24. net /24. x.x.x.33. x.x.x.254. x.x.x.52. x.x.x.254. x.x.x.254. x.x.x.

Exercise 1 INTERNET. x.x.x.254. net /24. net /24. x.x.x.33. x.x.x.254. x.x.x.52. x.x.x.254. x.x.x.254. x.x.x. Exercise 1 Given the IP network below: Assign feasible IP addresses to the interfaces and write down a feasible routing table for routers A and B guaranteeing full connectivity x.x.x.33 x.x.x.254 net 131.175.16.0/24

More information

IP Addresses McGraw-Hill The McGraw-Hill Companies, Inc., 2000

IP Addresses McGraw-Hill The McGraw-Hill Companies, Inc., 2000 IP Addresses The IP addresses are unique. An IPv4 address is a 32-bit address. An IPv6 address is a 128-bit address. The address space of IPv4 is 2 32 or 4,294,967,296. The address space of IPv6 is 2 128

More information

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 12

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 12 CMPE 150/L : Introduction to Computer Networks Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 12 1 Chapter 4: outline 4.1 introduction 4.2 virtual circuit and datagram networks 4.3 what

More information

Lecture 8 Network Layer: Logical addressing

Lecture 8 Network Layer: Logical addressing Data Communications ACOE412 Lecture 8 Network Layer: Logical addressing Spring 2009 1 0. Overview In this lecture we will cover the following topics: 14.Network Layer: Logical addressing 14.1 IPv4 Addresses

More information

CSC 4900 Computer Networks: Network Layer

CSC 4900 Computer Networks: Network Layer CSC 4900 Computer Networks: Network Layer Professor Henry Carter Fall 2017 Chapter 4: Network Layer 4. 1 Introduction 4.2 What s inside a router 4.3 IP: Internet Protocol Datagram format 4.4 Generalized

More information

Lecture 3: Packet Forwarding

Lecture 3: Packet Forwarding Lecture 3: Packet Forwarding CSE 222A: Computer Communication Networks Alex C. Snoeren Thanks: Mike Freedman & Amin Vahdat Lecture 3 Overview Paper reviews Packet Forwarding IP Addressing Subnetting/CIDR

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Chapter 4 Network Layer Computer Networking A Top-Down Approach These slides are based on the slides made available by Kurose and Ross. All material copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights

More information

CS 348 Computer Networks. IP and Routing. Indian Institute of Technology, Bombay

CS 348 Computer Networks. IP and Routing. Indian Institute of Technology, Bombay Computer Networks IP and Routing Network Interconnections Data Link Layer Delivery of frames on the same LAN Extend reach using switches/bridges and hubs Limitations Solution? Cannot address heterogeniety

More information

Building the Routing Table. Introducing the Routing Table Directly Connected Networks Static Routing Dynamic Routing Routing Table Principles

Building the Routing Table. Introducing the Routing Table Directly Connected Networks Static Routing Dynamic Routing Routing Table Principles Building the Routing Table Introducing the Routing Table Directly Connected Networks Static Routing Dynamic Routing Routing Table Principles Introducing the Routing Table R1# show ip route Codes: C - connected,

More information