I2C and the TAS3001C. Introduction. The I2C Protocol. Digital Audio Group ABSTRACT

Size: px
Start display at page:

Download "I2C and the TAS3001C. Introduction. The I2C Protocol. Digital Audio Group ABSTRACT"

Transcription

1 Application Report SLEA001 February 2001 I2C and the TAS3001C Digital Audio Group ABSTRACT The TAS3001C stereo audio digital equalizer provides a serial control interface using the I2C protocol. Since the TAS3001C is more complex than the typical serial EEPROM often found on an I2C bus, designers must consider additional aspects of the I2C specification. Methods of interfacing to the TAS3001C, applicable to a wide variety of I2C masters, are discussed. Introduction The I2C Protocol An I2C bus consists of a serial data signal,, and a synchronous clock,. Both signals are open-drain wire-and, with passive pullups. An I2C master initiates and controls the bus transaction, while an I2C slave device responds to the transaction. I2C transactions are byte-oriented. A transaction begins with a slave address byte (actually 7 address bits plus a read/write bit), followed by a subaddress byte (for addressing registers within the slave), followed by one or more bytes either written to the slave device or read from it. During the transaction, the device that is actually sending a byte at any point in time is called a transmitter, while the other device is a receiver. When writing data to a slave, the master device is the transmitter. When the master is reading data bytes, the slave is the transmitter. At the end of each byte, the receiver asserts an acknowledgement by pulling down the for one clock cycle. During a transaction, changes only during the low state of. The start and stop of a transaction are signaled by violating this rule. When the I2C bus is idle, both and are pulled high by passive pullups. A start condition is signaled by transitioning from high to low while is still high. Likewise, a stop condition is signaled by transitioning from low to high while is high. 1

2 START OF I2C TRANSACTION DEVICE & R/W MASTER TRANSMITTING ACKNOWLEDGEMENT SLAVE TRANSMITTING START CONDITION A6 A5 A4 A3 A2 A1 A0 R/W ACK D7 D6 Figure 1. Start of I2C Transaction END OF I2C TRANSACTION STOP CONDITION ACK D7 D6 D5 D4 D3 D2 D1 D0 ACK Figure 2. End of I2C Transaction I2C Flow Control The I2C specification allows for devices that need flow control that is devices that cannot keep up with the transaction at full bus speed. This is often needed by a device in which an embedded processor is shared between managing the I2C interface and attending to real-time tasks. I2C accomplishes this by means of wait states for clock synchronization. A slave device inserts a wait state by holding the signal low. A fully compliant I2C master will detect this condition and synchronize its internal generator by waiting for to be released by the slave. 2 I2C and the TAS3001C

3 I2C WAIT STATE D5 D4 D3 D2 D1 D0 ACK D7 D6 SLAVE HOLDS DOWN Figure 3. I2C Wait State Any I2C master that supports wait states directly can manage the TAS3001C without any further work by the software programmer. However, if the application is real-time-critical, the designer should consider whether the selected master handles wait states by causing the software to stay in a polling loop during the wait state. This report will illustrate how to reduce, and sometimes eliminate, I2C wait states with the TAS3001C. The designer should also be aware that some I2C masters do not implement clock synchronization, and therefore cannot handle wait states directly. This report will illustrate some techniques for working around this limitation where flow control is needed. Structure of TAS3001C Commands Each command to the TAS3001C consists of the device address followed by a one-byte subaddress and one or more additional data bytes. The subaddress is an I2C data byte that addresses a particular control function inside the TAS3001C. For example, the volume control and the bass and treble controls each have their own subaddress. After the subaddress, there are six data bytes for the volume control, three for each stereo channel, while the tone controls each receive one data byte. See the TAS3001C data sheet for more detailed information. The command structure of the TAS3001C dictates that there is a fixed number of bytes for each subaddress. In the example above, volume control requires six bytes. If only five of the six volume control bytes are received and a stop condition is detected, the TAS3001C will use the next data byte that is sent to complete the volume transaction, regardless of the subaddress. Address Subaddress Next Data Byte 68h xx FC If the criteria for numbers of data bytes are not met, errors will occur. I2C and the TAS3001C 3

4 Understanding the TAS3001C Interface Command Delays DRC Internal processing of commands takes a certain amount of time in the TAS3001C. These times are predictable (see Calculating Command Delays, below). If the TAS is allowed time to process a command (by a delay programmed into the I2C master software), then it will be immediately ready to accept a new one. If a delay is not provided, then the TAS will generate wait states between the first and second data bytes (on the acknowledgement of the first byte) of the next command. There are several ways to implement command delays. The simplest is to write software that waits the required amount of time after each command. This method has the drawback that the master microcontroller is tied up waiting after each command. A better method, if processor time is at a premium, is to start a hardware timer at the end of each command. The timer will run while the software does other tasks. The timer is then checked by the software just prior to sending a new command. If the timer has expired, the new command is sent immediately; otherwise, the software must wait by polling the timer. Since the length of each wait state can be calculated, it is preferable to use this method and assign an optimal delay to each command given to the TAS3001C. If processor time is extremely critical, the software can instead place each new command on a queue to be serviced when the timer expires and generates an interrupt. Timing illustrations of command delays may be found below, in the section Programming Notes. The TAS3001C has an internal processor that manages on-chip peripherals. The processor selects one of two management modes, depending upon whether the dynamic range compression feature has been invoked. If DRC has been invoked, the mode is altered such that wait states will be generated during each I2C transaction. The wait states will appear between data bytes, and will be a maximum of two sample clocks. This mode persists until the next reset, even if DRC is turned off. Eliminating Wait States When DRC not Used A simplified I2C interface may be implemented by preventing wait states from occurring with the TAS3001C, which allows operation with even the simplest I2C master and minimal software. There are two steps to accomplish this. First, verify that dynamic range compression subaddress is never invoked. Second, ensure that the TAS is allowed sufficient time to completely process a command before a new command is sent. Sample code to handle command delays can be found in the zip file of code accompanying this application report. 4 I2C and the TAS3001C

5 Handling Wait States TAS3001C Wait States In general, the TAS3001C generates I2C wait states in two situations. First, if DRC is invoked, short wait states are generated after each data byte. Second, if command delays are not inserted between sending commands, the TAS3001C will generate a wait state after the first data byte of a command, until it is finished processing the previous command. When the TAS3001C generates a wait state, it will do so only on the I2C clock following an acknowledgement bit. If the master has I2C clock synchronization capability, then the software is in principle relieved of the responsibility for dealing with wait states or command delays. If processing time of I2C master is at a premium, then the software must still be designed with cognizance of command delays (see Command Delays, above), if the alternative is to lose processing time while waiting to send the next byte in a multibyte transaction. In any case, if it is anticipated that the TAS will sometimes generate wait states, then the master device must take steps to handle them in order to prevent loss of synchronization between master and slave, which could leave the slave in an indeterminate state. Example: Simple I2C Master Since the behavior of the TAS3001C is highly predictable, it is feasible to control it with many I2C masters that do not have internal support for I2C wait states. We will use for illustration the TUSB3200. The TUSB3200 contains an 8051-derivitive core and an I2C interface that does not handle clock synchronization. Despite this limitation, it is feasible to use the TUSB3200 to directly control a TAS3001C, access all features including dynamic range compression, and optimize real-time performance. We assume for this illustration that the software manages command delays, and that the TAS3001C only generates wait states due to DRC. The method to follow takes advantage of the fact that the TUSB3200 holds low after a byte is written, if the STPWR bit of the I2CCTL register is not set. (See TUSB3200 Data Manual.) In other words, as long as the TUSB3200 is not programmed to generate a stop condition on the I2C bus, it will hold the clock line down between data bytes. Since the I2C bus specification requires the slowest device to determine the low period of, the TAS3001 can generate a wait state, while the TUSB3200 is between data bytes, and not lose synchronization. Therefore, the software should delay for the equivalent of two sample clocks after each data byte. However, after the last data byte, the TAS may not see the TUSB3200-generated stop condition, which immediately follows the last data byte. Since the TAS may be in a wait state and holding low while the TUSB3200 sends the stop condition, it is likely that the TAS will miss the I2C stop. I2C and the TAS3001C 5

6 The TAS needs to see a stop condition before a new command is sent. A stop condition can be forced on the I2C bus by using an open-drain general-purpose I/O pin from the TUSB3200 to toggle while is high. After completing the I2C command, the software should wait for two sample clocks (allowing for any TAS wait state), and then use a GPIO pin to pull down and then release it. This will actually send a start condition followed by a stop condition, but the TAS will see the stop and be ready for the next command. Here is an illustration using a tone command: TUSB3200 holds down during these delays Stop condition generated by TUSB3200 hardware, and missed bytas3001c Forced stop generated by toggling GPIO pin TAS VALUE 0x6A 0x05 0x6B Points at which TAS3001C releases open-drain. Figure 4. I2C Stop Condition by TUSB3200 To sum up, an I2C master without clock synchronization capability can be used to control the TAS3001C and still access DRC. The method is to use short delays (greater than two sample clocks) after each data byte, and force a stop condition with a GPIO pin two sample clocks after the end of each transaction. Sample code that runs on the TUSB3200 and handles TAS3001C wait states as well as command delays is found in the zip file accompanying this application report. Programming Notes Internal Control Ramping Since the audio signal handled by the TAS3001C is represented digitally, and since all filtering and scaling is accomplished by mathematical operations, instantaneous changes to the filtering and scaling parameters would ordinarily cause audible artifacts (pops or thumps). For this reason, the volume, bass, and treble controls are automatically adjusted by the TAS according to internal algorithms. These algorithms have to be more sophisticated than a simple linear ramp in order to eliminate all audible artifacts, and are designed to work with each particular control. It is not necessary, or even desirable, for the designer to attempt control ramping in software, unless for special effects (such as fade-in or fade-out) that require especially long ramp times. 6 I2C and the TAS3001C

7 By the same token, the designer can utilize the volume control to mute and un-mute, simply by changing the setting with a single command, without concern for pops or clicks. Calculating Command Delays The command processing delays for volume, bass, and treble controls are calculated in terms of the sample frequency (LRCLK). All commands require a few sample clocks for overhead, but the volume and tone controls require substantially more for internal control ramping. The volume control requires 2048 sample clocks to process both left and right channels. The tone controls require 64 sample clocks per step. For example, if treble is changed to +3dB from 0dB, this represents 0x72-0x6B or 7 steps. (See the appendix of TAS3001C Stereo Audio Digital Equalizer data book, document number SLAS226.) This would take 448 sample clocks. At 44 KHz, it would represent 10.2mS. The command delay can be included by the software between commands: TAS VALUE 10.2mS DELAY TAS 0x6A 0x05 0x6B 0x6A Figure 5. I2C Software Delay Otherwise, it will appear as a wait state after the first data byte of the next command: TAS VALUE TAS BASS 10.2mS WAIT STATE BASS VALUE 0x6A 0x05 0x6B 0x6A 0x06 0x6B Figure 6. I2C Wait State of TAS3001 Note that the number of steps is the difference in the actual integers programmed, not the difference in decibel setting. The largest step change would be from 18 to +18dB, which represents 0x85 steps, or 8512 sample clocks. Using Fast Load Since the TAS3001C biquad filters can be programmed with arbitrary coefficients, there is no internal algorithm available to smoothly ramp from one filter implementation to another. Furthermore, it is likely that hundreds of samples must pass through the filter before it stabilizes mathematically. The best way to change the biquad coefficients is to use fast load mode. I2C and the TAS3001C 7

8 In fast load, audio processing ceases. I2C transfers to the TAS3001C proceed without wait states. In order to avoid clicks and pops associated with abruptly changing the state of audio processing, the designer can make use of internal control ramping and simply mute the TAS, enter Fast Load, reprogram the biquads, leave fast mode, and restore volume level. Aborted Transfers Aborted transfers are a part of I2C. However, the I2C specification only deals with what might be thought of as the datalink layer. What happens after the abort depends on the application. In the case of the TAS3001C, the correct method for handling an aborted transaction depends on whether it was a single- or multibyte transaction. In the case of a single-byte transaction (or a multibyte transaction that aborted before data bytes were sent), the I2C master should simply retry the command. However, if the abort occurred during a data byte of a multibyte read or write transaction, the master will have to flush the partial transaction out of the TAS before a retry. To accomplish this, the master should send sixteen null bytes to the same slave device and subaddress, and then retry. Conclusion The TAS3001C presents a more sophisticated I2C interface than the usual serial EEPROM. However, the behavior of the TAS is highly predictable, and this allows the designer to interface with virtually any I2C master. Definitions aborted transaction An I2C bus transaction that could not be completed because a byte was not followed by an acknowledgement. control ramping The process of changing the setting of a control in small steps to avoid audible clicks, pops, or other artifacts. controls Predefined variable audio functions provided by the TAS3001C, such as bass and treble. DRC Dynamic range compression. I2C clock The clock cycle that appears on the signal of the I2C interface. I2C clock synchronization The method employed by the I2C master to wait until a slave releases the low state of, before timing the high state of. master The I2C device that initiates and controls a transaction. master microcontroller The microprocessor associated with the I2C master. multibyte transaction An I2C transaction in which more than one data byte is read or written. Note that all I2C transactions involve more than one byte for addressing. It is the data bytes that make it a single-byte or multibyte transaction. See single-byte transaction. null byte Eight consecutive zero bits that are logically grouped together. 8 I2C and the TAS3001C

9 receiver The I2C device that is receiving data bytes (the slave device during a write command, or the master during a read). sample clock The clock that defines the PCM sampling period. The TAS3001C pin that receives the sampling clock is LRCLK. single-byte transaction An I2C transaction involving only one data byte. Note that all I2C transactions involve more than one byte for addressing. See multibyte transaction. slave The I2C device that responds is addressed by the master. software The software program running on the microprocessor that controls the master I2C interface, and presumably runs the application that programs the TAS3001C. start condition the beginning of an I2C transaction, signaled by transitioning from high to low while is high. stop condition the end of an I2C transaction, signaled by transitioning from low to high while is high. subaddress The I2C address of a register within the slave device. transaction An I2C bus transaction, consisting of a start condition, slave address, read/write bit, subaddress, one or more data bytes, and a stop condition. Each byte is followed by an acknowledgement bit from the receiver. transmitter The device that is sending a byte. wait state The low state of when extended by a slave device which holds it low after the master has released it. References 1. The I2C-Bus Specification, Version TAS3001C Stereo Audio Digital Equalizer (SLAS226), September TUSB3200 Data Manual - USB Streaming Controller (STC) (SLAS240), October 1999 I2C and the TAS3001C 9

10 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its products to the specifications applicable at the time of sale in accordance with TI s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. Customers are responsible for their applications using TI components. In order to minimize risks associated with the customer s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such products or services might be or are used. TI s publication of information regarding any third party s products or services does not constitute TI s approval, license, warranty or endorsement thereof. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation or reproduction of this information with alteration voids all warranties provided for an associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use. Resale of TI s products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use. Also see: Standard Terms and Conditions of Sale for Semiconductor Products. Mailing Address: Texas Instruments Post Office Box Dallas, Texas Copyright 2001, Texas Instruments Incorporated

Debugging Shared Memory Systems

Debugging Shared Memory Systems Application Report SPRA754 - May 2001 Debugging Shared Memory Systems Jeff Hunter Software Development Systems/Emulation Team ABSTRACT Multiple cores on a single processor often share a common block of

More information

Techniques for Profiling on ROM-Based Applications

Techniques for Profiling on ROM-Based Applications Application Report SPRA761 June 2001 Techniques for Profiling on ROM-Based Applications Harsh Sabikhi Code Composer Studio, Applications Engineering ABSTRACT This application report describes the methods

More information

Increase Current Drive Using LVDS

Increase Current Drive Using LVDS Application Report SLLA100 May 2001 Increase Current Drive Using LVDS Steve Corrigan DSBU LVDS ABSTRACT The most common configuration for an LVDS connection is the one-way transmission topology. A single

More information

Texas Instruments Voltage-Level-Translation Devices

Texas Instruments Voltage-Level-Translation Devices Application Report SCEA21 - February 21 Texas Instruments -Level-Translation Devices Nadira Sultana and Chris Cockrill Standard Linear & Logic ABSTRACT In electronic systems design, there is a need to

More information

EV Software Rev Evaluation System User Guide. Introduction. Contents. Hardware and Software Setup. Software Installation

EV Software Rev Evaluation System User Guide. Introduction. Contents. Hardware and Software Setup. Software Installation Contents Evaluation System User Guide Software Rev 2.0.1 Introduction Section Page No. Introduction 1 Kit Contents 1 Hardware and Software Setup 1 Software Installation 1 Hardware Connection 1 Operation

More information

C Fast RTS Library User Guide (Rev 1.0)

C Fast RTS Library User Guide (Rev 1.0) C Fast RTS Library User Guide (Rev 1.0) Revision History 22 Sep 2008 Initial Revision v. 1.0 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products

More information

This document describes the features of the GUI program used to control Power Line Modem with E-Meter Platform.

This document describes the features of the GUI program used to control Power Line Modem with E-Meter Platform. Overview This document describes the features of the GUI program used to control Power Line Modem with E-Meter Platform. Program Startup The first time the program is run, three menus will be displayed

More information

A DSP/BIOS AIC23 Codec Device Driver for the TMS320C5510 DSK

A DSP/BIOS AIC23 Codec Device Driver for the TMS320C5510 DSK Application Report SPRA856A June 2003 A DSP/BIOS AIC23 Codec Device for the TMS320C5510 DSK ABSTRACT Software Development Systems This document describes the implementation of a DSP/BIOS device driver

More information

Using the TMS320C5509 USB Bootloader

Using the TMS320C5509 USB Bootloader Application Report SPRA840 - October 2002 Using the TMS320C5509 USB Bootloader Mathew George, Jr. (Joe) Clay Turner ABSTRACT C5000 DSP Applications Boot loading the TMS320VC5509 digital signal processor

More information

OMAP SW. Release Notes. OMAP Software Tools OST version 2.5 Release. 16xx/1710/242x platforms. Document Revision: 2.5 Release

OMAP SW. Release Notes. OMAP Software Tools OST version 2.5 Release. 16xx/1710/242x platforms. Document Revision: 2.5 Release OMAP SW OST version 2.5 Release 16xx/1710/242x platforms Document Revision: 2.5 Release Issue Date: 29 th July 2005 Revision: 2.5 Release 13 th July 2005 Table of Contents Page i IMPORTANT NOTICE Texas

More information

TMS320C64x DSP Peripheral Component Interconnect (PCI) Performance

TMS320C64x DSP Peripheral Component Interconnect (PCI) Performance Application Report SPRA965 October 2003 TMS320C64x DSP Peripheral Component Interconnect (PCI) Performance Stéphane Smith C6x Device Applications ABSTRACT This application report describes the number of

More information

Using the TMS320 DSP Algorithm Standard in a Dynamic DSP System

Using the TMS320 DSP Algorithm Standard in a Dynamic DSP System Application Report SPRA580B Using the TMS320 DSP Algorithm Standard in a Dynamic DSP System Carl Bergman Digital Signal Processing Solutions Abstract This application note illustrates some techniques used

More information

SN5446A, 47A, 48, SN54LS47, LS48, LS49 SN7446A, 47A, 48, SN74LS47, LS48, LS49 BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS

SN5446A, 47A, 48, SN54LS47, LS48, LS49 SN7446A, 47A, 48, SN74LS47, LS48, LS49 BCD-TO-SEVEN-SEGMENT DECODERS/DRIVERS PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include

More information

TMS320C6000 DSP Expansion Bus: Multiple DSP Connection Using Asynchronous Host Mode

TMS320C6000 DSP Expansion Bus: Multiple DSP Connection Using Asynchronous Host Mode Application Report SPRA632A - August 2001 TMS320C6000 DSP Expansion Bus: Multiple DSP Connection Using Asynchronous Host Mode Kyle Castille DSP Applications ABSTRACT You can easily interface multiple TMS320C6000

More information

TFP101, TFP201, TFP401, TFP401A 2Pix/Clk Output Mode

TFP101, TFP201, TFP401, TFP401A 2Pix/Clk Output Mode Application Note SLLA137 March 2003 TFP101, TFP201, TFP401, TFP401A 2Pix/Clk Output Mode Digital Visual Interface ABSTRACT This document explains the recommended configuration to operate the TFP101/201/401(A)

More information

INVENTORY HISTORY REPORT EXTENSION. User Guide. User Guide Page 1

INVENTORY HISTORY REPORT EXTENSION. User Guide. User Guide Page 1 INVENTORY HISTORY REPORT EXTENSION User Guide User Guide Page 1 Important Notice JtechExtensions reserves the right to make corrections, modifications, enhancements, improvements, and other changes to

More information

Table 1. Proper Termination of Unused (Port) Pins in a Single-Port PSE System

Table 1. Proper Termination of Unused (Port) Pins in a Single-Port PSE System Application Report SLVA231A June 2006 Revised November 2006 Proper Termination of Unused Port Connections Dale Wellborn... PMP Systems Power The TPS2384 quad integrated power sourcing equipment (PSE) power

More information

Hardware UART for the TMS320C3x

Hardware UART for the TMS320C3x TMS320 DSP DESIGNER S NOTEBOOK Hardware UART for the TMS320C3x APPLICATION BRIEF: SPRA223 Contributed by Lawrence Wong Digital Signal Processing Products Semiconductor Group Texas Instruments June 1993

More information

TMS320C6000 DSP Software-Programmable Phase-Locked Loop (PLL) Controller Reference Guide

TMS320C6000 DSP Software-Programmable Phase-Locked Loop (PLL) Controller Reference Guide TMS320C6000 DSP Software-Programmable Phase-Locked Loop (PLL) Controller Reference Guide Literature Number: April 2003 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve

More information

PROGRAMMING THE MSC1210

PROGRAMMING THE MSC1210 Application Report SBAA076 - April 2002 PROGRAMMING THE MSC1210 By Russell Anderson SERIAL FLASH PROGRAMMING AUTOBAUD AND SETUP The BootROM start address is F800 H for User Application Mode (UAM), and

More information

UCC3917 Floating Hot Swap Power Manager Evaluation Board

UCC3917 Floating Hot Swap Power Manager Evaluation Board User s Guide SLUU03 - June 00 UCC397 Floating Hot Swap Power Manager Evaluation Board Power Distribution & Power Supply Contents Introduction.........................................................................

More information

TMS470R1x External Clock Prescale (ECP) Reference Guide

TMS470R1x External Clock Prescale (ECP) Reference Guide TMS470R1x External Clock Prescale (ECP) Reference Guide Literature Number: SPNU202B November 2004 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections,

More information

Protecting the TPS25810 from High Voltage DFPs

Protecting the TPS25810 from High Voltage DFPs Application Report Nick Smith... Power Interface ABSTRACT The TPS25810 is a USB Type-C Downstream Facing Port (DFP) controller that monitors the Type-C Configuration Channel (CC) lines to determine when

More information

Application Report. Low-Power Wireless. Shreharsha Rao... ABSTRACT

Application Report. Low-Power Wireless. Shreharsha Rao... ABSTRACT Application Report SWRA043B July 2005 Dolphin Frequency Hopping Spread Spectrum Chipset Host Interface Protocol Shreharsha Rao... Low-Power Wireless ABSTRACT The Dolphin is a FCC precertified reference

More information

Maximizing Endurance of MSC1210 Flash Memory

Maximizing Endurance of MSC1210 Flash Memory Application Report SBAA91 April 23 Maximizing Endurance of MSC121 Flash Memory Ramesh Saripalli saripalli_ramish@ti.com ABSTRACT Data Acquisition Products Microsystems The MSC121 embeds an 851 CPU, a high-performance,

More information

TMS320C6000 DSP 32-Bit Timer Reference Guide

TMS320C6000 DSP 32-Bit Timer Reference Guide TMS320C6000 DSP 32-Bit Timer Reference Guide Literature Number: SPRU582A July 2003 Revised October 2004 Contents TMS320C6000 DSP 32-Bit Timer... 2 Table of Contents... 2 Preface... 3 1 Overview... 5 2

More information

COMMUNICATIONS WITH THE MULTI- CHANNEL HOST P RT INTERFACE

COMMUNICATIONS WITH THE MULTI- CHANNEL HOST P RT INTERFACE Multiple Channels COMMUNICATIONS WITH THE MULTI- CHANNEL HOST P RT INTERFACE With the HPI and McHPI, applications can create a single physical channel and multiple virtual channels to provide communications

More information

A DSP/BIOS AIC23 Codec Device Driver for the TMS320C6416 DSK

A DSP/BIOS AIC23 Codec Device Driver for the TMS320C6416 DSK Application Report SPRA909A June 2003 A DSP/BIOS AIC23 Codec Device for the TMS320C6416 DSK ABSTRACT Software Development Systems This document describes the usage and design of a device driver for the

More information

Configuring Code Composer Studio for OMAP Debugging

Configuring Code Composer Studio for OMAP Debugging Application Report SPRA807 - November 2001 Configuring Code Composer Studio for OMAP Debugging Harry Thompson Software Development Systems/Customer Support ABSTRACT The OMAP Code Composer Studio (CCStudio)

More information

Stereo Dac Motherboard application information

Stereo Dac Motherboard application information Stereo Dac Motherboard application information 1 Introduction The "Stereo Dac Motherboard" is a high end solution to create a complete dac system. Just one board is needed to create a stereo system. Several

More information

PCIxx12 Single Socket CardBus Controller with Integrated 1394a-2000 OHCI Two-Port PHY/Link-Layer Controller

PCIxx12 Single Socket CardBus Controller with Integrated 1394a-2000 OHCI Two-Port PHY/Link-Layer Controller PCIxx12 Single Socket CardBus Controller with Integrated 1394a-2000 OHCI Two-Port PHY/Link-Layer Controller Data Manual Includes: PCI4512GHK, PCI4512ZHK, PCI6412GHK, PCI6412ZHK, PCI6612GHK, PCI6612ZHK,

More information

CUSTOM GOOGLE SEARCH. User Guide. User Guide Page 1

CUSTOM GOOGLE SEARCH. User Guide. User Guide Page 1 User Guide User Guide Page 1 Important Notice reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue

More information

INVENTORY REPORT EXTENSION. User Guide. User Guide Page 1

INVENTORY REPORT EXTENSION. User Guide. User Guide Page 1 INVENTORY REPORT EXTENSION User Guide User Guide Page 1 Important Notice JtechExtensions reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products

More information

Power Line Modem with E-Meter Platform Quick Start Guide

Power Line Modem with E-Meter Platform Quick Start Guide Purpose This document gives a quick summary of the steps to set up and run the platform. Preparation The setup configurations are shown in Figures 1 and 2, depending on whether a USB or RS232 (serial)

More information

SN54F38, SN74F38 QUADRUPLE 2-INPUT POSITIVE-NAND BUFFERS WITH OPEN-COLLECTOR OUTPUTS

SN54F38, SN74F38 QUADRUPLE 2-INPUT POSITIVE-NAND BUFFERS WITH OPEN-COLLECTOR OUTPUTS SNF, SN7F SDFS0A MARCH 7 REVISED OCTOBER Package Options Include Plastic Small-Outline Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 00-mil DIPs description These devices contain four

More information

December 2000 MSDS Speech SPSU020

December 2000 MSDS Speech SPSU020 User s Guide December 2000 MSDS Speech SPSU020 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service

More information

Dual Access into Single- Access RAM on a C5x Device

Dual Access into Single- Access RAM on a C5x Device TMS320 DSP DESIGNER S NOTEBOOK Dual Access into Single- Access RAM on a C5x Device APPLICATION BRIEF: SPRA215 Mansoor Chishtie Digital Signal Processing Products Semiconductor Group Texas Instruments February

More information

EV Evaluation System User Guide. Contents. Kit Contents. Introduction

EV Evaluation System User Guide. Contents. Kit Contents. Introduction Contents EV2200 40 Evaluation System User Guide Section Page No. Introduction 1 Kit Contents 1 Hardware and Software Setup 2 Software Installation 2 Hardware Connection 2 Operation 2 Starting the Program

More information

ADD RELATED PRODUCTS TO CART. User Guide. User Guide Page 1

ADD RELATED PRODUCTS TO CART. User Guide. User Guide Page 1 ADD RELATED PRODUCTS TO CART User Guide User Guide Page 1 Important Notice reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services

More information

Application Report. 1 Hardware Description. John Fahrenbruch... MSP430 Applications

Application Report. 1 Hardware Description. John Fahrenbruch... MSP430 Applications Application Report SLAA309 June 2006 Low-Power Tilt Sensor Using the MSP430F2012 John Fahrenbruch... MSP430 Applications ABSTRACT The MSP430 family of low-power microcontrollers are ideal for low-power

More information

Using LDOs and Power Managers in Systems With Redundant Power Supplies

Using LDOs and Power Managers in Systems With Redundant Power Supplies Application Report SLVA094 - November 000 Using LDOs and Power Managers in Systems With Redundant Power Supplies Ludovic de Graaf TI Germany ABSTRACT For reasons of continuity in some systems, independent

More information

TMS470R1VF334E TMS470 Microcontrollers Silicon Errata

TMS470R1VF334E TMS470 Microcontrollers Silicon Errata TMS470R1VF334E TMS470 Microcontrollers Silicon Errata Silicon Revision C August 2005 Copyright 2005, Texas Instruments Incorporated Contents 1 Known Design Marginality/Exceptions to Functional Specifications.....................................

More information

Stacking the REF50xx for High-Voltage References

Stacking the REF50xx for High-Voltage References Stacking the REF50xx for High-Voltage References Application Report Alexander Smolyakov and Mihail Gurevich ABSTRACT This application note describes the additional ways of using the REF50xx. The application

More information

System-on-Chip Battery Board User s Guide

System-on-Chip Battery Board User s Guide System-on-Chip Battery Board User s Guide swru241 Table of Contents 1 Introduction...3 2 About this Manual...3 3 Acronyms and Definitions...3 4 Kit Contents...4 5 Hardware Description...5 5.1 LED, Button

More information

February 2003 PMP EVMs SLVU081

February 2003 PMP EVMs SLVU081 User s Guide February 2003 PMP EVMs SLVU081 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and

More information

Application Report. 1 Introduction. MSP430 Applications. Keith Quiring... ABSTRACT

Application Report. 1 Introduction. MSP430 Applications. Keith Quiring... ABSTRACT Application Report SLAA325 July 2006 MSP430 Interface to CC1100/2500 Code Library Keith Quiring... MSP430 Applications ABSTRACT The MSP430 is an ideal microcontroller solution for low-cost, low-power wireless

More information

TMS320C620x/C670x DSP Boot Modes and Configuration Reference Guide

TMS320C620x/C670x DSP Boot Modes and Configuration Reference Guide TMS320C620x/C670x DSP Reference Guide Literature Number: July 2003 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,

More information

XIO1100 NAND-Tree Test

XIO1100 NAND-Tree Test Application Report June 15, 2007 XIO1100 NAND-Tree Test Mike Campbell DIBU ABSTRACT Checking the interconnections between integrated circuits (IC) once they have been assembled on a PCB is important in

More information

TMS320C6000 DSP Interrupt Selector Reference Guide

TMS320C6000 DSP Interrupt Selector Reference Guide TMS320C6000 DSP Interrupt Selector Reference Guide Literature Number: January 2004 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,

More information

Using the bq3285/7e in a Green or Portable Environment

Using the bq3285/7e in a Green or Portable Environment in a Green or Portable Environment Introduction The bq3285/7e Real-Time Clock is a PC/AT-compatible real-time clock that incorporates three enhanced features to facilitate power management in Green desktop

More information

TMS320C6000 DSP General-Purpose Input/Output (GPIO) Reference Guide

TMS320C6000 DSP General-Purpose Input/Output (GPIO) Reference Guide TMS320C6000 DSP General-Purpose Input/Output (GPIO) Reference Guide Literature Number: March 2004 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections,

More information

SN54BCT760, SN74BCT760 OCTAL BUFFERS/DRIVERS WITH OPEN-COLLECTOR OUTPUTS

SN54BCT760, SN74BCT760 OCTAL BUFFERS/DRIVERS WITH OPEN-COLLECTOR OUTPUTS SNBCT0, SNBCT0 SCBS0B JULY REVISED NOVEMBER Open-Collector Version of BCT Open-Collector Outputs Drive Bus Lines or Buffer Memory Address Registers ESD Protection Exceeds 000 V Per MIL-STD-C Method 0 Packages

More information

UCD3138 Responding to Multiple PMBus Slave Addresses

UCD3138 Responding to Multiple PMBus Slave Addresses Application Report SLUA758 October 2015 UCD3138 Responding to Multiple PMBus Slave Addresses Jack Tan, Ian Bower High Voltage Power Solution ABSTRACT The use of digital power controllers is becoming mainstream

More information

Using Endianess Conversion in the OMAP5910 Device

Using Endianess Conversion in the OMAP5910 Device Application Report SWPA027 May 2004 Using Endianess Conversion in the OMAP5910 Device Matthias Kassner ABSTRACT The OMAP5910 device features a new dual-core architecture from Texas Instruments (TI) that

More information

2001 Mixed-Signal Products SLOU091A

2001 Mixed-Signal Products SLOU091A User s Guide 2001 Mixed-Signal Products SLOU091A Preface How to Use This Manual This document contains the following chapters: Chapter 1 Introduction Chapter 2 Operation Related Documentation From Texas

More information

WM DS28-EV2-REV1 Schematic and Layout

WM DS28-EV2-REV1 Schematic and Layout DOC TYPE: BOARD REFERENCE: BOARD TYPE: WOLFSON DEVICE(S): SCHEMATIC AND LAYOUT WM8741-6060-DS28-EV2-REV1 Customer Standalone WM8741 DATE: October 2008 DOC REVISION: Rev 1.0 Customer Information 1 SCHEMATIC

More information

IndoTraq Development Kit 1: Command Reference

IndoTraq Development Kit 1: Command Reference IndoTraq Development Kit 1: Command Reference April 2016 Page 1 of 9 Copyright 2016, IndoTraq LLC DK1 Command Reference v1.0 Contents 1 Introduction... 3 1.1 Writing Conventions... 3 2 Basics... 3 2.1

More information

SN65DSI86 SW Examples

SN65DSI86 SW Examples Application Report December 30, 2013 SN65DSI86 SW Examples Mike Campbell CCI ABSTRACT The document contains examples of how to program the SN65DSI86 for different purposes. All examples in the document

More information

TMS320UC5409/TMS320VC5409 Digital Signal Processors Silicon Errata

TMS320UC5409/TMS320VC5409 Digital Signal Processors Silicon Errata TMS320UC5409/TMS320VC5409 Digital Signal Processors Silicon Errata January 2000 Revised October 2001 Copyright 2001, Texas Instruments Incorporated Contents 1 Introduction........................................................................................

More information

Digital Temperature Sensor with I 2 C Interface

Digital Temperature Sensor with I 2 C Interface TMP00 TMP0 Digital Temperature Sensor with I 2 C Interface SBOS23B JANUARY 2002 REVISED MAY 2002 FEATURES DIGITAL OUTPUT: I 2 C Serial 2-Wire RESOLUTION: 9- to 2-Bits, User-Selectable ACCURACY: ±2.0 C

More information

Wolverine - based microcontrollers. Slashing all MCU power consumption in half

Wolverine - based microcontrollers. Slashing all MCU power consumption in half Wolverine - based microcontrollers Slashing all MCU power consumption in half Wolverine: Industry s lowest power MCU platform Unique mixed signal ultra-low leakage process technology Enables variety of

More information

Application Report. 1 System Requirements. 2 Using the DM643x Pin Multiplexing Utility. Bernard Thompson...

Application Report. 1 System Requirements. 2 Using the DM643x Pin Multiplexing Utility. Bernard Thompson... Application Report SPRAAN3 July 2007 TMS320DM643x Pin Multiplexing Utility Bernard Thompson... ABSTRACT The DM643x devices use a great deal of internal pin multiplexing to allow the most functionality

More information

TMS320C672x DSP Software-Programmable Phase-Locked Loop (PLL) Controller. Reference Guide

TMS320C672x DSP Software-Programmable Phase-Locked Loop (PLL) Controller. Reference Guide TMS320C672x DSP Software-Programmable Phase-Locked Loop (PLL) Controller Reference Guide Literature Number: SPRU879A May 2005 2 SPRU879A May 2005 Contents Preface... 5 1 Overview... 7 2 Functional Description...

More information

DS25BR204 Evaluation Kit

DS25BR204 Evaluation Kit 3.125 Gbps 1:4 LVDS Buffer/Repeater with Transmit Pre-emphasis and Receive Equalization DS25BR204 Evaluation Kit USER MANUAL Part Number: DS25BR204EVK NOPB For the latest documents concerning these products

More information

TLK10081 EVM Quick Start Guide Texas Instruments Communications Interface Products

TLK10081 EVM Quick Start Guide Texas Instruments Communications Interface Products TLK10081 EVM Quick Start Guide Texas Instruments Communications Interface Products 1 Board Overview +5 V Adapter Input Connector for voltage monitor board Connector for SMA break-out or FPGA board. Allows

More information

January 2003 Digital Audio Products SLEU031

January 2003 Digital Audio Products SLEU031 User s Guide January 2003 Digital Audio Products SLEU031 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,

More information

Programming the TMS320VC5509 RTC Peripheral

Programming the TMS320VC5509 RTC Peripheral Application Report SPRA384A - September 2002 Programming the TMS320VC5509 RTC Peripheral Scott Tater ABSTRACT DSP Applications Semiconductor Group This application report demonstrates the procedure used

More information

TMS320VC5409A Digital Signal Processor Silicon Errata

TMS320VC5409A Digital Signal Processor Silicon Errata TMS320VC5409A Digital Signal Processor Silicon Errata June 2001 Revised May 2003 Copyright 2003, Texas Instruments Incorporated Literature Number REVISION HISTORY This revision history highlights the technical

More information

SN54ALS32, SN54AS32, SN74ALS32, SN74AS32 QUADRUPLE 2-INPUT POSITIVE-OR GATES

SN54ALS32, SN54AS32, SN74ALS32, SN74AS32 QUADRUPLE 2-INPUT POSITIVE-OR GATES Package Options Include Plastic Small-Outline (D) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) 00-mil DIPs description These devices contain four independent -input positive-or

More information

AC Induction Motor (ACIM) Control Board

AC Induction Motor (ACIM) Control Board AC Induction Motor (ACIM) Control Board Ordering Information Order No. MDL-ACIM RDK-ACIM Description Stellaris ACIM Control Board Only Stellaris ACIM Control Board Reference Design Kit (includes MDL-ACIM

More information

Implementation of a CELP Speech Coder for the TMS320C30 using SPOX

Implementation of a CELP Speech Coder for the TMS320C30 using SPOX Implementation of a CELP Speech Coder for the TMS320C30 using SPOX APPLICATION REPORT: SPRA401 Mark D. Grosen Spectron Microsystems, Inc Digital Signal Processing Solutions IMPORTANT NOTICE Texas Instruments

More information

DSP/BIOS Link. Platform Guide Published on 20 th JUNE Copyright 2009 Texas Instruments Incorporated.

DSP/BIOS Link. Platform Guide Published on 20 th JUNE Copyright 2009 Texas Instruments Incorporated. DSP/BIOS Link Platform Guide 1.63 Published on 20 th JUNE 2009 Copyright 2009 Texas Instruments Incorporated. 2 Platform Support Products Version 1.63 IMPORTANT NOTICE Texas Instruments Incorporated and

More information

NO P.O. BOXES ALLOWED AT CHECKOUT. User Guide. User Guide Page 1

NO P.O. BOXES ALLOWED AT CHECKOUT. User Guide. User Guide Page 1 NO P.O. BOXES ALLOWED AT CHECKOUT User Guide User Guide Page 1 Important Notice reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and

More information

TMS320C62x, TMS320C67x DSP Cache Performance on Vocoder Benchmarks

TMS320C62x, TMS320C67x DSP Cache Performance on Vocoder Benchmarks Application Report SPRA642 - March 2000 TMS320C62x, TMS320C67x DSP Cache Performance on Vocoder Benchmarks Philip Baltz C6000 DSP Applications ABSTRACT This application report discusses several multichannel

More information

Stereo Audio Volume Control

Stereo Audio Volume Control PGA2310 Stereo Audio Volume Control FEATURES DIGITALLY CONTROLLED ANALOG VOLUME CONTROL Two Independent Audio Channels Serial Control Interface Zero Crossing Detection Mute Function WIDE GAIN AND ATTENUATION

More information

IMPORT/EXPORT Newsletter Subscribers. User Guide. User Guide Page 1

IMPORT/EXPORT Newsletter Subscribers. User Guide. User Guide Page 1 IMPORT/EXPORT Newsletter Subscribers User Guide User Guide Page 1 Important Notice reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and

More information

FlashBurn: A DSK Flash Memory Programmer

FlashBurn: A DSK Flash Memory Programmer Application Report SPRA804 - October 2001 FlashBurn: A DSK Flash Memory Programmer Russ Heeschen SDS Productivity Tools Team ABSTRACT The FlashBurn utility is a Windows program that works along with Code

More information

C Routines for Setting Up the AIC on the TMS320C5x EVM

C Routines for Setting Up the AIC on the TMS320C5x EVM TMS320 DSP DESIGNER S NOTEBOOK C Routines for Setting Up the AIC on the TMS320C5x EVM APPLICATION BRIEF: SPRA251 Leor Brenman Digital Signal Processing Products Semiconductor Group Texas Instruments February

More information

SN54ALS04B, SN54AS04, SN74ALS04B, SN74AS04 HEX INVERTERS

SN54ALS04B, SN54AS04, SN74ALS04B, SN74AS04 HEX INVERTERS SNALS0B, SNAS0, SN7ALS0B, SN7AS0 Package Options Include Plastic Small-Outline (D) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) 00-mil DIPs description These devices contain

More information

The photograph below shows the PMP9730 Rev E prototype assembly. This circuit was built on a PMP9730 Rev D PCB.

The photograph below shows the PMP9730 Rev E prototype assembly. This circuit was built on a PMP9730 Rev D PCB. 1 Photos The photograph below shows the PMP9730 Rev E prototype assembly. This circuit was built on a PMP9730 Rev D PCB. 2 Standby Power No Load Pin AC (W) 120VAC/60Hz 0.187 230VAC/50Hz 0.238 Page 1 of

More information

Application Report. Mixed Signal Products SLOA028

Application Report. Mixed Signal Products SLOA028 Application Report July 1999 Mixed Signal Products SLOA028 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product

More information

Reading a 16-Bit Bus With the TMS320C5x Serial Port

Reading a 16-Bit Bus With the TMS320C5x Serial Port TMS320 DSP DESIGNER S NOTEBOOK Reading a 16-Bit Bus With the TMS320C5x Serial Port APPLICATION BRIEF: SPRA270 Manuel Rodrigues Digital Signal Processing Products Semiconductor Group Texas Instruments May

More information

CCD VERTICAL DRIVER FOR DIGITAL CAMERAS

CCD VERTICAL DRIVER FOR DIGITAL CAMERAS CCD VERTICAL DRIVER FOR DIGITAL CAMERAS FEATURES CCD Vertical Driver: Three Field CCD Support Two Field CCD Support Output Drivers: 3 Levels Driver (V-Transfer) x 5 2 Levels Driver (V-Transfer) x 3 2 Levels

More information

WM8805_6152_DS28_EV1_REV3 Schematic and Layout. WM8805_6152_DS28_EV1_REV3 Schematic and Layout. Customer Information 1 of 18 June 2007, Rev 3.

WM8805_6152_DS28_EV1_REV3 Schematic and Layout. WM8805_6152_DS28_EV1_REV3 Schematic and Layout. Customer Information 1 of 18 June 2007, Rev 3. Customer Information 1 of 18 June 2007, Rev 3.1 Top Level Customer Information 2 of 18 June 2007, Rev 3.1 S/PDIF Inputs Customer Information 3 of 18 June 2007, Rev 3.1 WM8805 Customer Information 4 of

More information

SavvyCube Ecommerce Analytics Connector by MageWorx. User Guide

SavvyCube Ecommerce Analytics Connector by MageWorx. User Guide SavvyCube Ecommerce Analytics Connector by MageWorx User Guide Getting started with SavvyCube A SavvyCube account is required in order to use this extension. You can sign up for an account here: https://appbeta.savvycube.com/account/register

More information

Quad-Channel TEC Controller Getting Started Guide. Contents. Introduction. Contents of Evaluation Kit

Quad-Channel TEC Controller Getting Started Guide. Contents. Introduction. Contents of Evaluation Kit Contents Introduction... 1 Contents of Evaluation Kit... 1 Quad-TEC Platform Overview... 2 Installing the Control Software... 2 Removing the Quad-TEC Platform from its Protective Packaging... 2 Connecting

More information

TMS320C6414T/15T/16T Power Consumption Summary

TMS320C6414T/15T/16T Power Consumption Summary Application Report SPRAA45A February 2008 TMS320C6414T/15T/16T Power Consumption Summary Todd Hiers Matthew Webster C6000 Hardware Applications ABSTRACT This document discusses the power consumption of

More information

HSKT TM Technology Specifications

HSKT TM Technology Specifications HSKT TM Technology Specifications September 2018 Page 1 of 6 Copyright 2018, IndoTraq LLC Datasheet v1.3 HSKT This high-speed technology combines 12 axes of information into a tiny package to give a precise

More information

SN54LVTH16374, SN74LVTH V ABT 16-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH 3-STATE OUTPUTS

SN54LVTH16374, SN74LVTH V ABT 16-BIT EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH 3-STATE OUTPUTS Members of the Texas Instruments Widebus Family State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V Operation and Low Static-Power Dissipation Support Mixed-Mode Signal Operation (5-V Input

More information

Logic Solutions for IEEE Std 1284

Logic Solutions for IEEE Std 1284 Logic Solutions for IEEE Std SCEA013 June 1999 1 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service

More information

October 2002 PMP Portable Power SLVU074

October 2002 PMP Portable Power SLVU074 User s Guide October 2002 PMP Portable Power SLVU074 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,

More information

WM DT16-EV1. Customer Standalone Board WOLFSON DEVICE(S): DATE: August 2009

WM DT16-EV1. Customer Standalone Board WOLFSON DEVICE(S): DATE: August 2009 DOC TYPE: BOARD REFERENCE: BOARD TYPE: WOLFSON DEVICE(S): WM8524-6228-DT16-EV1 Customer Standalone Board WM8524 DATE: August 2009 DOC REVISION: Rev 1.0 Customer Information 1 SCHEMATIC Sheet 1: Main Schematic

More information

WL1271 ini File Description and Parameters User's Guide

WL1271 ini File Description and Parameters User's Guide WL1271 ini File Description and Parameters User's Guide Literature Number: SPRUGT8 January 2010 Contents Contents... 2 Revision History... 4 Reference Documents... 4 About This Document... 4 Chapter 1...

More information

Memory Allocation Techniques in System with Dynamic Swapping of Application Codes

Memory Allocation Techniques in System with Dynamic Swapping of Application Codes Application Report SPRA824 June 2002 Memory Allocation Techniques in System with Dynamic Swapping of Application Codes Oh, Hong Lye SC Field Applications, Texas Instruments Singapore ABSTRACT This application

More information

27 - Line SCSI Terminator With Split Reverse Disconnect

27 - Line SCSI Terminator With Split Reverse Disconnect 27 - Line SCSI Terminator With Split Reverse Disconnect FEATURES Complies with SCSI, SCSI-2, SCSI-3, SPI and FAST-20 (Ultra) Standards 2.5pF Channel Capacitance During Disconnect 100µA Supply Current in

More information

TMS320C5x Memory Paging (Expanding its Address Reach)

TMS320C5x Memory Paging (Expanding its Address Reach) TMS320 DSP DESIGNER S NOTEBOOK TMS320C5x Memory Paging (Expanding its Address Reach) APPLICATION BRIEF: SPRA242 Contributed by Joe George Digital Signal Processing Products Semiconductor Group Texas Instruments

More information

WM DT20-EV1. Customer Standalone Board WOLFSON DEVICE(S): DATE: September 2009

WM DT20-EV1. Customer Standalone Board WOLFSON DEVICE(S): DATE: September 2009 DOC TYPE: BOARD REFERENCE: BOARD TYPE: WOLFSON DEVICE(S): SCHEMATIC AND LAYOUT WM8523-6228-DT20-EV1 Customer Standalone Board WM8523 DATE: September 2009 DOC REVISION: Rev 1.0 Customer Information 1 SCHEMATIC

More information

PMC to PCI Express Adapter with JN4 Connector Breakout

PMC to PCI Express Adapter with JN4 Connector Breakout Innovative Integration Real time solutions! Mar 2009, Rev 1.1 PMC to PCI Express Adapter with JN4 Connector Breakout FEATURES Adapt one PMC to a PCI Express slot 4 lane PCI Express Host Interface PCI 64

More information

12MHz XTAL USB DAC PCM2702E

12MHz XTAL USB DAC PCM2702E EVALUATION FIXTURE FEATURES COMPLETE EVALUATION FIXTURE FOR THE PCM70E USB DIGITAL-TO- ANALOG CONVERTER ON-BOARD OUTPUT FILTER USING OPA5UA DUAL CMOS OP AMP.5mm STEREO MINI JACK FOR LINE LEVEL OUTPUTS

More information

TIDA Test Report

TIDA Test Report Test Report October 2015 TIDA-00623 Test Report Jing Zou BMS/WLPC Abstract TI design TIDA-00623 wireless power supply transmitter is an application of the bq50002 and bq500511 devices in a 5W Qi compliant

More information