C H A P T E R 15 TRA N SM I SSI O N C O N T RO L P RO T O C O L (T C P ) SUM M A RY

Size: px
Start display at page:

Download "C H A P T E R 15 TRA N SM I SSI O N C O N T RO L P RO T O C O L (T C P ) SUM M A RY"

Transcription

1 C H A P T E R 15 TRA N SM I SSI O N C O N T RO L P RO T O C O L (T C P ) SUM M A RY Transmission C ontrol Protocol (T C P) is one of the transport layer protocols in the T C P/IP protocol suite. T C P provides process-to-process, full-duplex, and connection-oriented service. T he unit of data transfer between two devices using T C P software is called a segment; it has 20 to 60 bytes of header, followed by data from the application program. A T C P connection consists of three phases: connection establishment, data transfer, and connection termination. C onnection establishment requires three-way handshaking; connection termination requires three- or four-way handshaking. T C P software is normally implemented as a finite state machine (FSM ). T C P uses flow control, implemented as a sliding window mechanism, to avoid overwhelming a receiver with data. T he T C P window size is determined by the receiver-advertised window size (rwnd) or the congestion window size (cwnd), whichever is smaller. T he window can be opened or closed by the receiver, but should not be shrunk. T he bytes of data being transferred in each connection are numbered by T C P. T he numbering starts with a randomly generated number. T CP uses error control to provide a reliable service. Error control is handled by checksums, acknowledgment, and time-outs. C orrupted and lost segments are eventually retransmitted and duplicate segments are discarded. Data may arrive out of order and temporarily stored by the receiving T CP, but T CP guarantees that no out-of-order segment is delivered to the process. In modern implementations, a retransmission occurs if the retransmission timer expires or three duplicate A CK segments have arrived. T C P uses congestion control to avoid and detect congestion in the network. T he slow start (exponential increase), congestion avoidance (additive increase), and congestion detection (multiplicative decrease) strategies are used for congestion control. I n the slow start algorithm the size of the congestion window increases exponentially until it reaches a threshold. I n the congestion avoidance algorithm the size of the congestion window increases additively until congestion is detected. D ifferent T C P implementations react differently to congestion detection. If detection is by time-out, a new slow start phase starts. If detection is by three duplicate A C K s, a new congestion avoidance phase starts. T C P uses four timers (retransmission, persistence, keepalive, and time-wait) in its operation. In T C P, there can be only be one RT T measurement in progress at any time. T C P does not consider the RT T of a retransmitted segment in its calculation of an RT T. T C P uses options to provide more services. T he maximum segment size option is used in connection setup to define the largest allowable T C P segment. T he value of M SS is determined during connection establishment and does not change during the connection. T he window scale factor is a multiplier that increases the window size. T he timestamp option shows how much time it takes for data to travel between sender and receiver. One application of the timestamp option is in the calculation of round-trip time (RT T ). A nother application is for PAW S. R ecent implementations of

2 498 PA R T 3 T RA N SP O R T L A Y E R T C P use two more options, SA C K -permitted option and SA C K option. T hese two options allow the selective acknowledgment of the received segments by the receiver PR A C T IC E SE T E xercises 1. C ompare the T C P header and the U D P header. L ist the fields in the T C P header that are not part of the U D P header. G ive the reason for each missing field. 2. A n IP datagram is carrying a T C P segment destined for address T he destination port address is corrupted and it arrives at destination H ow does the receiving T C P react to this error? 3. One IC M P message, discussed in C hapter 9, reports a destination port unreachable error. H ow can T C P detect the error in the destination port? 4. U D P is a message-oriented protocol. T C P is a byte-oriented protocol. If an application needs to protect the boundaries of its message, which protocol should be used, U D P or T C P? 5. W hat is the maximum size of the T C P header? W hat is the minimum size of the T C P header? 6. If the value of H L EN is 0111, how many bytes of option are included in the segment? 7. Show the entries for the header of a T C P segment that carries a message from an FT P client to an FT P server. Fill the checksum field with 0s. C hoose an appropriate ephemeral port number and the correct well-known port number. T he length of data is 40 bytes. 8. W hat can you say about the T C P segment in which the value of the control field is one of the following: a b c d e f T he following is a dump of a T C P header in hexadecimal format. ( FF ) 16 a. W hat is the source port number? b. W hat is the destination port number? c. W hat the sequence number? d. W hat is the acknowledgment number? e. W hat is the length of the header? f. W hat is the type of the segment? g. W hat is the window size?

3 C H A P T E R 15 TRA N SM I SSI O N C O N T RO L P RO T O C O L (T C P ) T he control field in a T C P segment is 6 bits. We can have 64 different combinations of bits. L ist some combinations that are valid. 11. To make the initial sequence number a random number, most systems start the counter at 1 during bootstrap and increment the counter by 64,000 every half second. H ow long does it take for the counter to wrap around? 12. In a T C P connection, the initial sequence number at the client site is 2,171. T he client opens the connection, sends only one segment carrying 1,000 bytes of data, and closes the connection. W hat is the value of the sequence number in each of the following segments sent by the client? a. T he SY N segment? b. T he data segment? c. T he FIN segment? 13. In a connection, the value of cwnd is 3000 and the value of rwnd is T he host has sent 2,000 bytes, which have not been acknowledged. H ow many more bytes can be sent? 14. T C P opens a connection using an initial sequence number (ISN ) of 14,534. T he other party opens the connection with an ISN of 21,732. a. Show the three T C P segments during the connection establishment. b. Show the contents of the segments during the data transmission if the initiator sends a segment containing the message H ello dear customer and the other party answers with a segment containing H i there seller. c. Show the contents of the segments during the connection termination. 15. A client uses T C P to send data to a server. T he data consist of 16 bytes. C alculate the efficiency of this transmission at the T C P level (ratio of useful bytes to total bytes). C alculate the efficiency of transmission at the IP level. A ssume no options for the I P header. C alculate the efficiency of transmission at the data link layer. A ssume no options for the IP header and use E thernet at the data link layer. 16. T C P is sending data at 1 megabyte per second. If the sequence number starts with 7,000, how long does it take before the sequence number goes back to zero? 17. A T C P connection is using a window size of 10,000 bytes and the previous acknowledgment number was 22,001. It receives a segment with acknowledgment number 24,001 and window size advertisement of 12,000. D raw a diagram to show the situation of the window before and after. 18. A window holds bytes 2001 to T he next byte to be sent is D raw a figure to show the situation of the window after the following two events. a. A n A C K segment with the acknowledgment number 2500 and window size advertisement 4000 is received. b. A segment carrying 1,000 bytes is sent. 19. A T C P connection is in the E STA BL ISH E D state. T he following events occur one after another: a. A FIN segment is received. b. T he application sends a close message. W hat is the state of the connection after each event? W hat is the action after each event?

4 500 PA R T 3 T RA N SP O R T L A Y E R 20. A T C P connection is in the E STA BL ISH E D state. T he following events occur one after another: a. T he application sends a close message. b. A n A C K segment is received. W hat is the state of the connection after each event? W hat is the action after each event? 21. A host has no data to send. It receives the following segments at the times shown (hour:minute:second:milliseconds after midnight). Show the acknowledgments sent by the host. a. Segment 1 received at 0:0:0:000. b. Segment 2 received at 0:0:0:027. c. Segment 3 received at 0:0:0:400. d. Segment 4 received at 0:0:1:200. e. Segment 5 received at 0:0:1: A host sends five packets and receives three acknowledgments. T he time is shown as hour:minute:seconds. a. Segment 1 was sent at 0:0:00. b. Segment 2 was sent at 0:0:05. c. A C K for segments 1 and 2 received at 0:0:07. d. Segment 3 was sent at 0:0:20. e. Segment 4 was sent at 0:0:22. f. Segment 5 was sent at 0:0:27. g. A C K for segments 1 and 2 received at 0:0:45. h. A C K for segment 3 received at 0:0:65. C alculate the values of RT T M, RT T S, RT T D, and RT O if the original RT O is 6 seconds. D id the sender miss the retransmission of any segment? Show which segments should have been retransmitted and when. R ewrite the events including the retransmission time. 23. Show the contents of a SA CK option to be sent if a host has received bytes 2001 to 3000 in order. Bytes 4001 to 6000 are out of order, and bytes 3501 to 4000 are duplicate. 24. Show a congestion control diagram like Figure using the following scenario. A ssume a maximum window size of 64 segments. a. T hree duplicate A C K s are received after the fourth RT T. b. A time-out occurs after the sixth RT T. 25. Show the transition diagrams (F SM s) for simultaneous-close scenario (See F igure 15.19). 26. Show the transition diagrams (FSM s) for denying-a-connection scenario (See Figure 15.20). 27. Show the transition diagrams (FSM s) for aborting-a-connection scenario (See Figure 15.21). 28. In a send window, S f = 401 and S n = 701. If window size is 1,000 bytes, show the send window before and after the station receives an A CK segment with ackn o = 601

5 C H A P T E R 15 TRA N SM I SSI O N C O N T RO L P RO T O C O L (T C P ) 501 and rwnd = 700. I gnore congestion control. D oes this situation means shrinking the window? 29. D raw a figure similar to Figure for the following scenario (ignore error control and congestion control): a. Time 1: T he client sends a SY N segment with seqn o = 301. b. Time 2: T he server sets its buffer size to 2,000 bytes. c. Time 3: T he server acknowledges the SY N segment. d. Time 4: T he client sends a segment of 300 bytes in the SY N + A C K segment. e. Time 5: T he client sends a segment of 400 bytes. f. Time 6: T he server process pulls 400 bytes. g. Time 7: T he server sends an A C K. h. Time 8: T he client sends a segment of 300 bytes. i. Time 9: T he server process pulls 300 bytes. j. Time 10: T he server sends an A C K. 30. Show time-line diagram for the following scenario (similar to Figure 15.29). a. T he client sends a segment carrying bytes 1401 to 1700, which arrives at the sender site. b. T he server sends a segment carrying bytes 2001 to 2100 and acknowledging the first segment from the client, which arrives. c. T he client sends a segment carrying bytes 1701 to 1900 and acknowledging the segment received, but the segment is lost. d. T he client sends a segment carrying bytes 1901 to 2100, but the segment is lost. e. Time out occurs at the client site. f. T he client resends a segment in response to time-out, this packet arrived. g. T he server sends an acknowledgment after A C K -delaying timer expires. h. A nother time-out occurs at the client site. i. T he client resends a segment in response to time-out, which arrives at the sender. j. T he server sends an acknowledgment after A C K -delaying timer expires. 31. R edraw the time-line diagram of Figure that allow the server to delay acknowledgements and send one A C K for each full cwnd window worth of data. R esearch A ctivities 32. We have not given all the rules about the transition diagram and T C P states. To be complete, we should show the next state for any state with the arrival of any type of segment. T C P should know what action to take if any of the segment types arrive when it is in any of the states. W hat are some of these rules? 33. W hat is the half-open case in T C P? 34. W hat is the half-duplex close case in T C P? 35. T he tcpdump command in U N IX or L IN U X can be used to print the headers of packets of a network interface. U se tcpdump to see the segments sent and received.

23-3 TCP. Topics discussed in this section: TCP Services TCP Features Segment A TCP Connection Flow Control Error Control 23.22

23-3 TCP. Topics discussed in this section: TCP Services TCP Features Segment A TCP Connection Flow Control Error Control 23.22 23-3 TCP 23.22 TCP is a connection-oriented protocol; it creates a virtual connection between two TCPs to send data. In addition, TCP uses flow and error control mechanisms at the transport level. Topics

More information

Chapter 24. Transport-Layer Protocols

Chapter 24. Transport-Layer Protocols Chapter 24. Transport-Layer Protocols 23.1 Introduction 23.2 User Datagram Protocol 23.3 Transmission Control Protocol 23.4 SCTP Computer Networks 24-1 Position of Transport-Layer Protocols UDP is an unreliable

More information

Chapter 23 Process-to-Process Delivery: UDP, TCP, and SCTP 23.1

Chapter 23 Process-to-Process Delivery: UDP, TCP, and SCTP 23.1 Chapter 23 Process-to-Process Delivery: UDP, TCP, and SCTP 23.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 23-1 PROCESS-TO-PROCESS DELIVERY 23.2 The transport

More information

IS370 Data Communications and Computer Networks. Chapter 5 : Transport Layer

IS370 Data Communications and Computer Networks. Chapter 5 : Transport Layer IS370 Data Communications and Computer Networks Chapter 5 : Transport Layer Instructor : Mr Mourad Benchikh Introduction Transport layer is responsible on process-to-process delivery of the entire message.

More information

Chapter 6. What happens at the Transport Layer? Services provided Transport protocols UDP TCP Flow control Congestion control

Chapter 6. What happens at the Transport Layer? Services provided Transport protocols UDP TCP Flow control Congestion control Chapter 6 What happens at the Transport Layer? Services provided Transport protocols UDP TCP Flow control Congestion control OSI Model Hybrid Model Software outside the operating system Software inside

More information

UNIT IV TRANSPORT LAYER

UNIT IV TRANSPORT LAYER Transport Layer UNIT IV TRANSPORT LAYER Congestion Control and Quality of Service Ref: Data Communication & Networking, 4 th edition, Forouzan IV-1 DATA TRAFFIC The main focus of congestion control and

More information

Computer Networks and Data Systems

Computer Networks and Data Systems Computer Networks and Data Systems Transport Layer TDC463 Winter 2011/12 John Kristoff - DePaul University 1 Why a transport layer? IP gives us end-to-end connectivity doesn't it? Why, or why not, more

More information

Network Protocols. Transmission Control Protocol (TCP) TDC375 Autumn 2009/10 John Kristoff DePaul University 1

Network Protocols. Transmission Control Protocol (TCP) TDC375 Autumn 2009/10 John Kristoff DePaul University 1 Network Protocols Transmission Control Protocol (TCP) TDC375 Autumn 2009/10 John Kristoff DePaul University 1 IP review IP provides just enough connected ness Global addressing Hop by hop routing IP over

More information

Chapter 23 Process-to-Process Delivery: UDP, TCP, and SCTP

Chapter 23 Process-to-Process Delivery: UDP, TCP, and SCTP Chapter 23 Process-to-Process Delivery: UDP, TCP, and SCTP 23.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 23-1 PROCESS-TO-PROCESS DELIVERY The transport

More information

Q23-5 In a network, the size of the receive window is 1 packet. Which of the follow-ing protocols is being used by the network?

Q23-5 In a network, the size of the receive window is 1 packet. Which of the follow-ing protocols is being used by the network? CS368: Exercise 5 Q23-5 In a network, the size of the receive window is 1 packet. Which of the follow-ing protocols is being used by the network? a) Stop_and_Wait b) Go-Back-N c) Selective-Repeat Q23-6.

More information

TCP and Congestion Control (Day 1) Yoshifumi Nishida Sony Computer Science Labs, Inc. Today's Lecture

TCP and Congestion Control (Day 1) Yoshifumi Nishida Sony Computer Science Labs, Inc. Today's Lecture TCP and Congestion Control (Day 1) Yoshifumi Nishida nishida@csl.sony.co.jp Sony Computer Science Labs, Inc 1 Today's Lecture Part1: TCP concept Part2: TCP detailed mechanisms Part3: Tools for TCP 2 1

More information

Lecture 20 Overview. Last Lecture. This Lecture. Next Lecture. Transport Control Protocol (1) Transport Control Protocol (2) Source: chapters 23, 24

Lecture 20 Overview. Last Lecture. This Lecture. Next Lecture. Transport Control Protocol (1) Transport Control Protocol (2) Source: chapters 23, 24 Lecture 20 Overview Last Lecture Transport Control Protocol (1) This Lecture Transport Control Protocol (2) Source: chapters 23, 24 Next Lecture Internet Applications Source: chapter 26 COSC244 & TELE202

More information

UNIT IV -- TRANSPORT LAYER

UNIT IV -- TRANSPORT LAYER UNIT IV -- TRANSPORT LAYER TABLE OF CONTENTS 4.1. Transport layer. 02 4.2. Reliable delivery service. 03 4.3. Congestion control. 05 4.4. Connection establishment.. 07 4.5. Flow control 09 4.6. Transmission

More information

Transport Protocols. Raj Jain. Washington University in St. Louis

Transport Protocols. Raj Jain. Washington University in St. Louis Transport Protocols Raj Jain Washington University Saint Louis, MO 63131 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse473-05/ 16-1 Overview q TCP q Key features

More information

TSIN02 - Internetworking

TSIN02 - Internetworking TSIN02 - Internetworking Literature: Lecture 4: Transport Layer Forouzan: ch 11-12 Transport layer responsibilities UDP TCP 2004 Image Coding Group, Linköpings Universitet 2 Transport layer in OSI model

More information

13 I ntroduction to. the Transport L ayer C H A P T E R OBJ E C T IVE

13 I ntroduction to. the Transport L ayer C H A P T E R OBJ E C T IVE C H A P T E R 13 I ntroduction to the L ayer T his chapter discusses general services that a transport- protocol can provide and the issues related to these services. T he chapter also describes the behavior

More information

TCP/IP Protocol Suite 1

TCP/IP Protocol Suite 1 TCP/IP Protocol Suite 1 Stream Control Transmission Protocol (SCTP) TCP/IP Protocol Suite 2 OBJECTIVES: To introduce SCTP as a new transport-layer protocol. To discuss SCTP services and compare them with

More information

TCP/IP-2. Transmission control protocol:

TCP/IP-2. Transmission control protocol: TCP/IP-2 Transmission control protocol: TCP and IP are the workhorses in the Internet. In this section we first discuss how TCP provides reliable, connectionoriented stream service over IP. To do so, TCP

More information

Transport Protocols and TCP: Review

Transport Protocols and TCP: Review Transport Protocols and TCP: Review CSE 6590 Fall 2010 Department of Computer Science & Engineering York University 1 19 September 2010 1 Connection Establishment and Termination 2 2 1 Connection Establishment

More information

Introduction to Protocols

Introduction to Protocols Chapter 6 Introduction to Protocols 1 Chapter 6 Introduction to Protocols What is a Network Protocol? A protocol is a set of rules that governs the communications between computers on a network. These

More information

Unit 2.

Unit 2. Unit 2 Unit 2 Topics Covered: 1. PROCESS-TO-PROCESS DELIVERY 1. Client-Server 2. Addressing 2. IANA Ranges 3. Socket Addresses 4. Multiplexing and Demultiplexing 5. Connectionless Versus Connection-Oriented

More information

05 Transmission Control Protocol (TCP)

05 Transmission Control Protocol (TCP) SE 4C03 Winter 2003 05 Transmission Control Protocol (TCP) Instructor: W. M. Farmer Revised: 06 February 2003 1 Interprocess Communication Problem: How can a process on one host access a service provided

More information

ECE697AA Lecture 3. Today s lecture

ECE697AA Lecture 3. Today s lecture ECE697AA Lecture 3 Transport Layer: TCP and UDP Tilman Wolf Department of Electrical and Computer Engineering 09/09/08 Today s lecture Transport layer User datagram protocol (UDP) Reliable data transfer

More information

ECE 435 Network Engineering Lecture 10

ECE 435 Network Engineering Lecture 10 ECE 435 Network Engineering Lecture 10 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 28 September 2017 Announcements HW#4 was due HW#5 will be posted. midterm/fall break You

More information

TSIN02 - Internetworking

TSIN02 - Internetworking Lecture 4: Transport Layer Literature: Forouzan: ch 11-12 2004 Image Coding Group, Linköpings Universitet Lecture 4: Outline Transport layer responsibilities UDP TCP 2 Transport layer in OSI model Figure

More information

Chapter 3 Review Questions

Chapter 3 Review Questions Chapter 3 Review Questions. 2. 3. Source port number 6 and destination port number 37. 4. TCP s congestion control can throttle an application s sending rate at times of congestion. Designers of applications

More information

Lecture 3: The Transport Layer: UDP and TCP

Lecture 3: The Transport Layer: UDP and TCP Lecture 3: The Transport Layer: UDP and TCP Prof. Shervin Shirmohammadi SITE, University of Ottawa Prof. Shervin Shirmohammadi CEG 4395 3-1 The Transport Layer Provides efficient and robust end-to-end

More information

CSC 4900 Computer Networks: TCP

CSC 4900 Computer Networks: TCP CSC 4900 Computer Networks: TCP Professor Henry Carter Fall 2017 Project 2: mymusic You will be building an application that allows you to synchronize your music across machines. The details of which are

More information

TSIN02 - Internetworking

TSIN02 - Internetworking Lecture 4: Outline Literature: Lecture 4: Transport Layer Forouzan: ch 11-12 RFC? Transport layer introduction UDP TCP 2004 Image Coding Group, Linköpings Universitet 2 The Transport Layer Transport layer

More information

TSIN02 - Internetworking

TSIN02 - Internetworking Lecture 4: Transport Layer Literature: Forouzan: ch 11-12 2004 Image Coding Group, Linköpings Universitet Lecture 4: Outline Transport layer responsibilities UDP TCP 2 Transport layer in OSI model Figure

More information

Outline. CS5984 Mobile Computing

Outline. CS5984 Mobile Computing CS5984 Mobile Computing Dr. Ayman Abdel-Hamid Computer Science Department Virginia Tech Outline Review Transmission Control Protocol (TCP) Based on Behrouz Forouzan, Data Communications and Networking,

More information

Transmission Control Protocol. ITS 413 Internet Technologies and Applications

Transmission Control Protocol. ITS 413 Internet Technologies and Applications Transmission Control Protocol ITS 413 Internet Technologies and Applications Contents Overview of TCP (Review) TCP and Congestion Control The Causes of Congestion Approaches to Congestion Control TCP Congestion

More information

Outline. Connecting to the access network: DHCP and mobile IP, LTE. Transport layer: UDP and TCP

Outline. Connecting to the access network: DHCP and mobile IP, LTE. Transport layer: UDP and TCP Outline Connecting to the access network: DHCP and mobile IP, LTE Transport layer: UDP and TCP IETF TCP/IP protocol suite User application, e.g., http with Mozilla Communication for each process on computer

More information

Intro to LAN/WAN. Transport Layer

Intro to LAN/WAN. Transport Layer Intro to LAN/WAN Transport Layer Transport Layer Topics Introduction (6.1) Elements of Transport Protocols (6.2) Internet Transport Protocols: TDP (6.5) Internet Transport Protocols: UDP (6.4) socket interface

More information

Transport Protocols & TCP TCP

Transport Protocols & TCP TCP Transport Protocols & TCP CSE 3213 Fall 2007 13 November 2007 1 TCP Services Flow control Connection establishment and termination Congestion control 2 1 TCP Services Transmission Control Protocol (RFC

More information

Stream Control Transmission Protocol

Stream Control Transmission Protocol Chapter 13 Stream Control Transmission Protocol Objectives Upon completion you will be able to: Be able to name and understand the services offered by SCTP Understand SCTP s flow and error control and

More information

ETSF05/ETSF10 Internet Protocols Transport Layer Protocols

ETSF05/ETSF10 Internet Protocols Transport Layer Protocols ETSF05/ETSF10 Internet Protocols Transport Layer Protocols 2016 Jens Andersson Transport Layer Communication between applications Process-to-process delivery Client/server concept Local host Normally initialiser

More information

INF4/MSc Computer Networking. Lectures 3-4 Transport layer protocols TCP/UDP automatic repeat request

INF4/MSc Computer Networking. Lectures 3-4 Transport layer protocols TCP/UDP automatic repeat request INF4/MSc omputer Networking Lectures 3-4 Transport layer protocols TP/UDP automatic repeat request Transport services and protocols provide logical communication between app processes running on different

More information

Sequence Number. Acknowledgment Number. Data

Sequence Number. Acknowledgment Number. Data CS 455 TCP, Page 1 Transport Layer, Part II Transmission Control Protocol These slides are created by Dr. Yih Huang of George Mason University. Students registered in Dr. Huang's courses at GMU can make

More information

Transport Layer. Application / Transport Interface. Transport Layer Services. Transport Layer Connections

Transport Layer. Application / Transport Interface. Transport Layer Services. Transport Layer Connections Application / Transport Interface Application requests service from transport layer Transport Layer Application Layer Prepare Transport service requirements Data for transport Local endpoint node address

More information

TCP Review. Carey Williamson Department of Computer Science University of Calgary Winter 2018

TCP Review. Carey Williamson Department of Computer Science University of Calgary Winter 2018 TCP Review Carey Williamson Department of Computer Science University of Calgary Winter 2018 Credit: Much of this content came courtesy of Erich Nahum (IBM Research) The TCP Protocol Connection-oriented,

More information

Applied Networks & Security

Applied Networks & Security Applied Networks & Security TCP/IP Protocol Suite http://condor.depaul.edu/~jkristof/it263/ John Kristoff jtk@depaul.edu IT 263 Spring 2006/2007 John Kristoff - DePaul University 1 ARP overview datalink

More information

COMP/ELEC 429/556 Introduction to Computer Networks

COMP/ELEC 429/556 Introduction to Computer Networks COMP/ELEC 429/556 Introduction to Computer Networks The TCP Protocol Some slides used with permissions from Edward W. Knightly, T. S. Eugene Ng, Ion Stoica, Hui Zhang T. S. Eugene Ng eugeneng at cs.rice.edu

More information

TCP based Receiver Assistant Congestion Control

TCP based Receiver Assistant Congestion Control International Conference on Multidisciplinary Research & Practice P a g e 219 TCP based Receiver Assistant Congestion Control Hardik K. Molia Master of Computer Engineering, Department of Computer Engineering

More information

Chapter 3: Transport Layer Part A

Chapter 3: Transport Layer Part A Chapter 3: Transport Layer Part A Course on Computer Communication and Networks, CTH/GU The slides are adaptation of the slides made available by the authors of the course s main textbook 3: Transport

More information

Problem 7. Problem 8. Problem 9

Problem 7. Problem 8. Problem 9 Problem 7 To best answer this question, consider why we needed sequence numbers in the first place. We saw that the sender needs sequence numbers so that the receiver can tell if a data packet is a duplicate

More information

file:///c:/users/hpguo/dropbox/website/teaching/fall 2017/CS4470/H...

file:///c:/users/hpguo/dropbox/website/teaching/fall 2017/CS4470/H... 1 of 9 11/26/2017, 11:28 AM Homework 3 solutions 1. A window holds bytes 2001 to 5000. The next byte to be sent is 3001. Draw a figure to show the situation of the window after the following two events:

More information

II. Principles of Computer Communications Network and Transport Layer

II. Principles of Computer Communications Network and Transport Layer II. Principles of Computer Communications Network and Transport Layer A. Internet Protocol (IP) IPv4 Header An IP datagram consists of a header part and a text part. The header has a 20-byte fixed part

More information

8. TCP Congestion Control

8. TCP Congestion Control 8. TCP Congestion Control 1 TCP Congestion Control Slow-start increase Multiplicative decrease Congestion avoidance Measurement of variation Exponential timer backoff 2002 Yanghee Choi 2 Congestion Control

More information

Reliable Transport I: Concepts and TCP Protocol

Reliable Transport I: Concepts and TCP Protocol Reliable Transport I: Concepts and TCP Protocol Stefano Vissicchio UCL Computer Science COMP0023 Today Transport Concepts Layering context Transport goals Transport mechanisms and design choices TCP Protocol

More information

The flow of data must not be allowed to overwhelm the receiver

The flow of data must not be allowed to overwhelm the receiver Data Link Layer: Flow Control and Error Control Lecture8 Flow Control Flow and Error Control Flow control refers to a set of procedures used to restrict the amount of data that the sender can send before

More information

CSC 401 Data and Computer Communications Networks

CSC 401 Data and Computer Communications Networks CSC 401 Data and Computer Communications Networks Transport Layer Connection Oriented Transport: TCP Sec 3.5 Prof. Lina Battestilli Fall 2017 Transport Layer Chapter 3 Outline 3.1 Transport-layer Services

More information

Computer Networks. Homework #4: No Grading

Computer Networks. Homework #4: No Grading Computer Networks Homework #4: No Grading Problem #1. Assume you need to write and test a client-server application program on two hosts you have at home. a. What is the range of port numbers you would

More information

NWEN 243. Networked Applications. Layer 4 TCP and UDP

NWEN 243. Networked Applications. Layer 4 TCP and UDP NWEN 243 Networked Applications Layer 4 TCP and UDP 1 About the second lecturer Aaron Chen Office: AM405 Phone: 463 5114 Email: aaron.chen@ecs.vuw.ac.nz Transport layer and application layer protocols

More information

CS321: Computer Networks Error and Flow Control in TCP

CS321: Computer Networks Error and Flow Control in TCP CS321: Computer Networks Error and Flow Control in TCP Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur E-mail: manaskhatua@iitj.ac.in SEQ and ACK numbers in TCP TCP views data as an unstructured,

More information

Transport Layer Protocols TCP

Transport Layer Protocols TCP Transport Layer Protocols TCP Gail Hopkins Introduction Features of TCP Packet loss and retransmission Adaptive retransmission Flow control Three way handshake Congestion control 1 Common Networking Issues

More information

Computer Networks & Security 2016/2017

Computer Networks & Security 2016/2017 Computer Networks & Security 2016/2017 Transport Layer (04) Dr. Tanir Ozcelebi Courtesy: Kurose & Ross Courtesy: Forouzan TU/e Computer Science Security and Embedded Networked Systems Transport Layer Our

More information

UNIT IV TCP, UNICAST AND MULTICAST ROUTING PROTOCOLS

UNIT IV TCP, UNICAST AND MULTICAST ROUTING PROTOCOLS UNIT IV TCP, UNICAST AND MULTICAST ROUTING PROTOCOLS Services flow, congestion and error control TCP package and operation state transition diagram unicast routing protocols RIP OSPF BGP multicast routing

More information

Programming Assignment 3: Transmission Control Protocol

Programming Assignment 3: Transmission Control Protocol CS 640 Introduction to Computer Networks Spring 2005 http://www.cs.wisc.edu/ suman/courses/640/s05 Programming Assignment 3: Transmission Control Protocol Assigned: March 28,2005 Due: April 15, 2005, 11:59pm

More information

Transport Layer PREPARED BY AHMED ABDEL-RAOUF

Transport Layer PREPARED BY AHMED ABDEL-RAOUF Transport Layer PREPARED BY AHMED ABDEL-RAOUF TCP Flow Control TCP Flow Control 32 bits source port # dest port # head len sequence number acknowledgement number not used U A P R S F checksum Receive window

More information

Transport Layer. -UDP (User Datagram Protocol) -TCP (Transport Control Protocol)

Transport Layer. -UDP (User Datagram Protocol) -TCP (Transport Control Protocol) Transport Layer -UDP (User Datagram Protocol) -TCP (Transport Control Protocol) 1 Transport Services The transport layer has the duty to set up logical connections between two applications running on remote

More information

TCP: Flow and Error Control

TCP: Flow and Error Control 1 TCP: Flow and Error Control Required reading: Kurose 3.5.3, 3.5.4, 3.5.5 CSE 4213, Fall 2006 Instructor: N. Vlajic TCP Stream Delivery 2 TCP Stream Delivery unlike UDP, TCP is a stream-oriented protocol

More information

Fall 2012: FCM 708 Bridge Foundation I

Fall 2012: FCM 708 Bridge Foundation I Fall 2012: FCM 708 Bridge Foundation I Prof. Shamik Sengupta Instructor s Website: http://jjcweb.jjay.cuny.edu/ssengupta/ Blackboard Website: https://bbhosted.cuny.edu/ Intro to Computer Networking Transport

More information

User Datagram Protocol (UDP):

User Datagram Protocol (UDP): SFWR 4C03: Computer Networks and Computer Security Feb 2-5 2004 Lecturer: Kartik Krishnan Lectures 13-15 User Datagram Protocol (UDP): UDP is a connectionless transport layer protocol: each output operation

More information

CSCD 330 Network Programming

CSCD 330 Network Programming CSCD 330 Network Programming Lecture 10 Transport Layer Continued Spring 2018 Reading: Chapter 3 Some Material in these slides from J.F Kurose and K.W. Ross All material copyright 1996-2007 1 Last Time.

More information

CS 640 Introduction to Computer Networks Spring 2009

CS 640 Introduction to Computer Networks Spring 2009 CS 640 Introduction to Computer Networks Spring 2009 http://pages.cs.wisc.edu/~suman/courses/wiki/doku.php?id=640-spring2009 Programming Assignment 3: Transmission Control Protocol Assigned: March 26,

More information

ERROR AND FLOW CONTROL. Lecture: 10 Instructor Mazhar Hussain

ERROR AND FLOW CONTROL. Lecture: 10 Instructor Mazhar Hussain ERROR AND FLOW CONTROL Lecture: 10 Instructor Mazhar Hussain 1 FLOW CONTROL Flow control coordinates the amount of data that can be sent before receiving acknowledgement It is one of the most important

More information

Answers to Sample Questions on Transport Layer

Answers to Sample Questions on Transport Layer Answers to Sample Questions on Transport Layer 1) Which protocol Go-Back-N or Selective-Repeat - makes more efficient use of network bandwidth? Why? Answer: Selective repeat makes more efficient use of

More information

User Datagram Protocol

User Datagram Protocol Topics Transport Layer TCP s three-way handshake TCP s connection termination sequence TCP s TIME_WAIT state TCP and UDP buffering by the socket layer 2 Introduction UDP is a simple, unreliable datagram

More information

Networking Technologies and Applications

Networking Technologies and Applications Networking Technologies and Applications Rolland Vida BME TMIT Transport Protocols UDP User Datagram Protocol TCP Transport Control Protocol and many others UDP One of the core transport protocols Used

More information

TCP/IP Networking. Part 4: Network and Transport Layer Protocols

TCP/IP Networking. Part 4: Network and Transport Layer Protocols TCP/IP Networking Part 4: Network and Transport Layer Protocols Orientation Application Application protocol Application TCP TCP protocol TCP IP IP protocol IP IP protocol IP IP protocol IP Network Access

More information

CS 716: Introduction to communication networks th class; 7 th Oct Instructor: Sridhar Iyer IIT Bombay

CS 716: Introduction to communication networks th class; 7 th Oct Instructor: Sridhar Iyer IIT Bombay CS 716: Introduction to communication networks - 18 th class; 7 th Oct 2011 Instructor: Sridhar Iyer IIT Bombay Reliable Transport We have already designed a reliable communication protocol for an analogy

More information

Outline. TCP: Overview RFCs: 793, 1122, 1323, 2018, Development of reliable protocol Sliding window protocols

Outline. TCP: Overview RFCs: 793, 1122, 1323, 2018, Development of reliable protocol Sliding window protocols Outline Development of reliable protocol Sliding window protocols Go-Back-N, Selective Repeat Protocol performance Sockets, UDP, TCP, and IP UDP operation TCP operation connection management flow control

More information

CMSC 417. Computer Networks Prof. Ashok K Agrawala Ashok Agrawala. October 25, 2018

CMSC 417. Computer Networks Prof. Ashok K Agrawala Ashok Agrawala. October 25, 2018 CMSC 417 Computer Networks Prof. Ashok K Agrawala 2018 Ashok Agrawala Message, Segment, Packet, and Frame host host HTTP HTTP message HTTP TCP TCP segment TCP router router IP IP packet IP IP packet IP

More information

Topics. TCP sliding window protocol TCP PUSH flag TCP slow start Bulk data throughput

Topics. TCP sliding window protocol TCP PUSH flag TCP slow start Bulk data throughput Topics TCP sliding window protocol TCP PUSH flag TCP slow start Bulk data throughput 2 Introduction In this chapter we will discuss TCP s form of flow control called a sliding window protocol It allows

More information

Suprakash Datta. Office: CSEB 3043 Phone: ext Course page:

Suprakash Datta. Office: CSEB 3043 Phone: ext Course page: CSE 3214: Computer Networks Protocols and Applications Suprakash Datta datta@cse.yorku.ca Office: CSEB 3043 Phone: 416-736-2100 ext 77875 Course page: http://www.cse.yorku.ca/course/3214 These slides are

More information

Computer Networking Introduction

Computer Networking Introduction Computer Networking Introduction Halgurd S. Maghdid Software Engineering Department Koya University-Koya, Kurdistan-Iraq Lecture No.11 Chapter 3 outline 3.1 transport-layer services 3.2 multiplexing and

More information

TCP/IP. Chapter 5: Transport Layer TCP/IP Protocols

TCP/IP. Chapter 5: Transport Layer TCP/IP Protocols TCP/IP Chapter 5: Transport Layer TCP/IP Protocols 1 Objectives Understand the key features and functions of the User Datagram Protocol Explain the mechanisms that drive segmentation, reassembly, and retransmission

More information

6.1 Internet Transport Layer Architecture 6.2 UDP (User Datagram Protocol) 6.3 TCP (Transmission Control Protocol) 6. Transport Layer 6-1

6.1 Internet Transport Layer Architecture 6.2 UDP (User Datagram Protocol) 6.3 TCP (Transmission Control Protocol) 6. Transport Layer 6-1 6. Transport Layer 6.1 Internet Transport Layer Architecture 6.2 UDP (User Datagram Protocol) 6.3 TCP (Transmission Control Protocol) 6. Transport Layer 6-1 6.1 Internet Transport Layer Architecture The

More information

Outline. TCP: Overview RFCs: 793, 1122, 1323, 2018, steam: r Development of reliable protocol r Sliding window protocols

Outline. TCP: Overview RFCs: 793, 1122, 1323, 2018, steam: r Development of reliable protocol r Sliding window protocols Outline r Development of reliable protocol r Sliding window protocols m Go-Back-N, Selective Repeat r Protocol performance r Sockets, UDP, TCP, and IP r UDP operation r TCP operation m connection management

More information

Internet and Intranet Protocols and Applications

Internet and Intranet Protocols and Applications Internet and Intranet Protocols and Applications Lecture 1b: The Transport Layer in the Internet January 17, 2006 Arthur Goldberg Computer Science Department New York University artg@cs.nyu.edu 01/17/06

More information

TCP Strategies. Keepalive Timer. implementations do not have it as it is occasionally regarded as controversial. between source and destination

TCP Strategies. Keepalive Timer. implementations do not have it as it is occasionally regarded as controversial. between source and destination Keepalive Timer! Yet another timer in TCP is the keepalive! This one is not required, and some implementations do not have it as it is occasionally regarded as controversial! When a TCP connection is idle

More information

CS4700/CS5700 Fundamentals of Computer Networks

CS4700/CS5700 Fundamentals of Computer Networks CS4700/CS5700 Fundamentals of Computer Networks Lecture 14: TCP Slides used with permissions from Edward W. Knightly, T. S. Eugene Ng, Ion Stoica, Hui Zhang Alan Mislove amislove at ccs.neu.edu Northeastern

More information

32 bits. source port # dest port # sequence number acknowledgement number not used. checksum. Options (variable length)

32 bits. source port # dest port # sequence number acknowledgement number not used. checksum. Options (variable length) Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connectionoriented transport: TCP segment

More information

Computer Networking: A Top Down Approach

Computer Networking: A Top Down Approach Computer Networking: A Top Down Approach Seventh Edition Chapter 3 Transport Layer Slides in this presentation contain hyperlinks. JAWS users should be able to get a list of links by using INSERT+F7 Transport

More information

Congestion / Flow Control in TCP

Congestion / Flow Control in TCP Congestion and Flow Control in 1 Flow Control and Congestion Control Flow control Sender avoids overflow of receiver buffer Congestion control All senders avoid overflow of intermediate network buffers

More information

Transport Over IP. CSCI 690 Michael Hutt New York Institute of Technology

Transport Over IP. CSCI 690 Michael Hutt New York Institute of Technology Transport Over IP CSCI 690 Michael Hutt New York Institute of Technology Transport Over IP What is a transport protocol? Choosing to use a transport protocol Ports and Addresses Datagrams UDP What is a

More information

CS419: Computer Networks. Lecture 10, Part 2: Apr 11, 2005 Transport: TCP mechanics (RFCs: 793, 1122, 1323, 2018, 2581)

CS419: Computer Networks. Lecture 10, Part 2: Apr 11, 2005 Transport: TCP mechanics (RFCs: 793, 1122, 1323, 2018, 2581) : Computer Networks Lecture 10, Part 2: Apr 11, 2005 Transport: TCP mechanics (RFCs: 793, 1122, 1323, 2018, 2581) TCP as seen from above the socket The TCP socket interface consists of: Commands to start

More information

CS 421: COMPUTER NETWORKS SPRING FINAL May 8, minutes

CS 421: COMPUTER NETWORKS SPRING FINAL May 8, minutes CS 421: COMPUTR NTWORKS SPRIN 2016 INL May 8, 2016 150 minutes Name: Student No: Q1 Q2 Q3 TOT 1) a) (6 pts) iven the following parameters for a datagram packet switching network: N: number of hops between

More information

Chapter 3: Transport Layer. Chapter 3 Transport Layer. Chapter 3 outline. Transport services and protocols

Chapter 3: Transport Layer. Chapter 3 Transport Layer. Chapter 3 outline. Transport services and protocols Chapter 3 Transport Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete

More information

Preview Test: HW3. Test Information Description Due:Nov. 3

Preview Test: HW3. Test Information Description Due:Nov. 3 Preview Test: HW3 Test Information Description Due:Nov. 3 Instructions Multiple Attempts Not allowed. This test can only be taken once. Force Completion This test can be saved and resumed later. Question

More information

Transport Layer: Outline

Transport Layer: Outline Transport Layer: Outline Transport-layer services Multiplexing and demultiplexing Connectionless transport: UDP Principles of reliable data transfer Connection-oriented transport: TCP Segment structure

More information

Transport Layer: outline

Transport Layer: outline Transport Layer: outline Transport-layer services Multiplexing and demultiplexing Connectionless transport: UDP Principles of reliable data transfer Connection-oriented transport: TCP Segment structure

More information

Guide To TCP/IP, Second Edition UDP Header Source Port Number (16 bits) IP HEADER Protocol Field = 17 Destination Port Number (16 bit) 15 16

Guide To TCP/IP, Second Edition UDP Header Source Port Number (16 bits) IP HEADER Protocol Field = 17 Destination Port Number (16 bit) 15 16 Guide To TCP/IP, Second Edition Chapter 5 Transport Layer TCP/IP Protocols Objectives Understand the key features and functions of the User Datagram Protocol (UDP) Explain the mechanisms that drive segmentation,

More information

Chapter 3- parte B outline

Chapter 3- parte B outline Chapter 3- parte B outline 3.1 transport-layer services 3.2 multiplexing and demultiplexing 3.3 connectionless transport: UDP 3.4 principles of reliable data transfer 3.5 connection-oriented transport:

More information

Reliable Transport II: TCP and Congestion Control

Reliable Transport II: TCP and Congestion Control Reliable Transport II: TCP and Congestion Control Brad Karp UCL Computer Science CS 3035/GZ01 31 st October 2013 Outline Slow Start AIMD Congestion control Throughput, loss, and RTT equation Connection

More information

Da t e: August 2 0 th a t 9: :00 SOLUTIONS

Da t e: August 2 0 th a t 9: :00 SOLUTIONS Interne t working, Examina tion 2G1 3 0 5 Da t e: August 2 0 th 2 0 0 3 a t 9: 0 0 1 3:00 SOLUTIONS 1. General (5p) a) Place each of the following protocols in the correct TCP/IP layer (Application, Transport,

More information

Lecture 4: Congestion Control

Lecture 4: Congestion Control Lecture 4: Congestion Control Overview Internet is a network of networks Narrow waist of IP: unreliable, best-effort datagram delivery Packet forwarding: input port to output port Routing protocols: computing

More information

Transport Protocols and TCP

Transport Protocols and TCP Transport Protocols and TCP Functions Connection establishment and termination Breaking message into packets Error recovery ARQ Flow control Multiplexing, de-multiplexing Transport service is end to end

More information

Lecture 15: Transport Layer Congestion Control

Lecture 15: Transport Layer Congestion Control Lecture 15: Transport Layer Congestion Control COMP 332, Spring 2018 Victoria Manfredi Acknowledgements: materials adapted from Computer Networking: A Top Down Approach 7 th edition: 1996-2016, J.F Kurose

More information