Index. 2G mobile networks G mobile networks GPP network, see LTE networks

Size: px
Start display at page:

Download "Index. 2G mobile networks G mobile networks GPP network, see LTE networks"

Transcription

1 Index 2G mobile networks G mobile networks GPP network, see LTE networks ACK, TCP 56, 58 9, 61 acknowledgement, see ACK, TCP AUC (Authentication Center) 194 bandwidth limit definition 16 bandwidth limit token buckets 108 bandwidth, scheduling tool 124 bandwidth, VOIP 71 BHT 71 Bit Torrent 78 blocking, VOIP 71 borders, trust 47 8, 51 3 BSC (Base Station Controller) 195, 196 BTS (Base Transceiver Station) 194, 197 buffers, queue 19 20, 153 buffer size buffers queuing tool 123 scheduling tool 123 burst size limit, token bucket 108, Busy Hour Traffic, see BHT case studies IP RAN and mobile backhaul VPLS CEIR (Central Equipment Identity Register) 195 cellification CIR/PIR model 15 16, 149 class of service, see COS classes of service definition 33 5 maximum number 95, classified packet definition 14 classifiers bits in QOS field 90 chain 14 deep packet inspection 92 3 definition granularity, maximum 100 IF/THEN rule 90 6 inbound interfaces 91 2 packet QOS markings 90 1 PHB 94 7 class type (CT) 98 coloring definition QOS-Enabled Networks: Tools and Foundations Miguel Barreiros and Peter Lundqvist 2011 John Wiley & Sons, Ltd. ISBN:

2 216 Index committed information rate, see CIR/PIR model congestion, TCP 60 2 congestion points, network 44 7 congestion window, TCP 59, 60 control traffic 50 3 core-facing interfaces 48 COS definition with queuing 35 8 counting Erlangs 71 credits, token bucket customer-facing interfaces 48 cwnd, TCP 59, 60, 154 deep packet inspection 92 3 deficit weighted round robin, see DWRR delay between adjacent routers 39 contributing factors definition 8 inserting 26 30, 39 IPTV 76 ITU-T G processing 40 propagation 39 serialization 39 VOIP 73 delay buffer 116 delay buffer length 116 DF bit 63 5 Differentiated Services, see DiffServ Differentiated Services Code Point, see DSCP DiffServ 5 DiffServ-TE 97 9 DNS and SIP 69, 70 Don t Fragment bit, see DF bit dropper, queue DSCP 91 DWRR credits 136 deficit counter 136 quantum scheduling example weight 136 dynamic memory allocation 153 EBGP 71 EIR (Equipment Identity Register) 195 enodeb EPC (Evolved Packet Core) Erlangs, counting 71 Erlang number 71 Ethernet User Priority field 90 VLAN tag stacking 90 eutran (evolved UMTS Terrestrial Radio Access Network) external Border Gateway Protocol, see EBGP fair queuing (FQ) benefits 130 limitations 130 fast recovery, TCP 61 FIFO (first in, first out) queuing FIFO (first in, first out) queuing benefits 128 FIFO (first in, first out) queuing limitations 128 Fragmentation needed but DF set error 64 fragmentation, datagram 70 G.711 codec 82 3 GBR (Guaranteed Bit Rate) 205 GGSN (Gateway GPRS Support Node) Gnutella GPRS (Generic Packet Radio Service) 196

3 Index 217 granularity levels 91 GSM network GTP (GPRS Tunneling Protocol) 198 GTP-C 198 GTP-U 198 guaranteed rate, see CIR/PIR model hard policing 16, 107 hierarchical scheduling with broadband services router and DSLAMS with overprovisioning HLR (Home Location Register) 195, 196 HTTP 57 HTTP, with SIP 69 Hypertext Transfer Protocol, see HTTP ICMP Fragmentation needed but DF set message 64 PMTU 65 IF/THEN rule with classifiers 90 6 definition 14 IMSI (International Mobile Subscriber Identity) 194 in-contract traffic Integrated Services, see IntServ interfaces core-facing 48 customer-facing 48 inbound 91 2 Internet Control Message Protocol, see ICMP Internet radio Internet video IntServ 5 IP RAN and mobile backhaul case study IPSec IPTV 74 7 buffers 76 classifying packets 95 delay 76 DSCP field 91, 99 ISO/IEC (ITU-T H220.0) 74 MPEG-2 74 MPEG-4 74 with MPLS Packed ID (PID) 74 packet sizes 76 precedence field 91 re-ordering of packets 76 RTP header 74 Streaming TV 75 TOS field 90 1 Transport Stream (TS) 74 VLAN 75 ISO/IEC ITU-T G ITU-T H jitter definition 8 inserting VOIP 73 Kazaa 82 L2TP wholesale 63 label-switched paths, see LSPs latency, see delay Layer 2 VPNs 169 Layer 3 VPNs 169 leaky buckets delay buffer 116 delay buffer length 116 LFI 41 Link Fragmentation and Interleaving, see LFI 4 local operation, QOS 30 1

4 218 Index loss, packet 7 LSPs 21 class type (CT) 98 establishing 98 LTE networks LTE traffic classes 207 MAD 153 maximum admissible rates, see CIR/PIR model Maximum Segment Size, see MSS Maximum Transmission Unit, see MTU ME (Mobile Equipment) 194 MED definition 6 metering MME (Mobility Management Entity) mobile backhaul 66 MP3 79 MPEG-2 74 MPEG-4 74 MPLS class type (CT) 98 classifying packets 95 6 DiffServ-TE 97 9 EXP field 90, 99 labels, stacking 90 LSPs, establishing 98 in VPLS case study 173 VPN-based 63 with IPv with Traffic Engineering (TE) 7, 97 8 MS (Mobile System) 194 MSC (Mobile Switching Center) 195, 196 MSS, TCP 59, 62 5 MTU 43 multi-exit discriminator, see MED Napster 82 NodeB 197, 201 non-real-time traffic 8, 10, 66 burst size limit and SIP 70 NTP 71 Nykvist theory out-of-contract traffic overprovisioning oversubscription 78 P2P applications 80 3 centralized model 82 Gnutella hybrid model 82 Kazaa 82 Napster 82 traffic 81 traffic, discovering 83 4 packet aging TCP 65 Packet ID, see PID packets, dropping voice 73 packets, dropping data 73 packets, dropping 8, 9, 10, 30 1 packet loss 90 1 packet QOS markings 59 path MTU, see PMTU PB-DWRR PB-DWRR benefits 145 limitations 146 scheduling examples in VPLS case study 181 PDN-GW (Packet Data Network Gateway) PDNs (Packet Data Networks) 198 PDP (Packet Data Protocol) context 198

5 Index 219 peak information rate, see CIR/PIR model peer-to-peer file sharing, see P2P per-hop behavior, see PHB PHB x, 5 6 with classifiers 94 7 PID 74, 150 playback buffering determining 66 PMTU 62 5 PMTU RFC policing tool 16 17, 18 19, 24, , packet loss 30 1 hard 16, 107 soft 16 token buckets token buckets, bandwidth limit 108 token buckets, burst size limit 108, token buckets, credits 108 token buckets, dual rate token buckets, queue length 113 traffic bursts precedence field 91 priority-based deficit weighted round robin, see PB-DWRR priority queuing (PQ) benefits 132 limitations 132 priority, strict, see PB-DWRR processing delay 30 propagation delay 70 PSTN calculating bandwidth 70 counting Erlangs 71 Public Switched Telephone Network, see PSTN 135 QCI (QOS Class Identifier) 205 QOS policy, end to end quantum, DWRR definition queue buffers 19 20, 153 queue length queues buffers dropper 20 6 size 26 9 FIFO queuing and scheduling mechanisms deficit weighted round robin (DWRR) fair queuing (FQ) hierarchical scheduling priority-based deficit weighted round robin priority queuing (PQ) RED 155 7, weighted fair queuing (WFQ) weighted round robin WRED queuing tool bandwidth 124 buffers 123 cellification with classes of service 35 8 committed information congestion inserting delay inserting jitter packet aging 125 packet loss 30 1 tail drops 125 Radio Access Networks 193 Random Early Discard, see RED RANs 193 rates peak information guaranteed maximum admissible traffic bandwidth limit 16 shaping 17, 116 Real Time Protocol, see RTP

6 220 Index RTP 67 8 real-time traffic 8, 60 1, 66 8 burst size limit 113 streamed video encapsulated into IP 66 voice encapsulated into IP 66 RED description 154 TCP sessions head tail drops segmented profiles interpolated profiles reliability, TCP 55 Resource Reservation Protocol, see RSVP 30 resources, definition 4 resource signaling, QOS definition 21 2 rewrite tool 64 RFC RFC RFC RFC RFC RFC RFC RFC RFC RFC RFC RNC (Radio Network Controller) 197 RSVP 67 8 RTP IPTV 74 packet sizes 68 RFC RTPC 67 Sequence Number 67 Synchronization Source Identifier 67 Timestamp 67 Type 67 RTP Control Protocol, see RTCP RTPC RTT, see real-time traffic SACK, TCP 20 1, 123 6, 161 scheduling tool bandwidth 124 buffers 123 congestion hierarchical scheduling inserting delay inserting jitter jumps 29 packet aging 125 servicing queues 26 8 tail drops 125 SCP 58 SDP Second Generation mobile networks, see 2G mobile networks Secure Shell Copy, see SCP segment, TCP 56 Select Acknowledgement, see SACK sequence number, TCP 30 Session Description Protocol, see SDP Session Initiation Protocol, see SIP sessions, TCP 17 19, duration 77 8 establishing Internet radio Internet Video long-lasting 77 8 playback buffering 79 RED short-lived 77 8 synchronization 155 three-way handshake 58 9 SGSN (Serving GPRS Support Node) 196 8

7 Index 221 S-GW (Serving Gateway) shaping tool inserting jitter inserting delay leaky buckets packet loss 30 1 oversubscription SIM (Subscriber Identity Module) 194 SIP 58 9 DNS 69, 70 G.711 codec 70 HTTP 69 NTP 70 RFC SDP slow start, TCP 16 soft policing 66 streamed video encapsulated into IP real-time traffic 75 streaming TV 58 9 strict-high priority, see PB-DWRR SYN, TCP 60 1 SYN-ACK, TCP Tahoe implementation, TCP 20, 37, 125 tail drops 10, 55 65, 154 TCP ACK 56, 58 9, 61 characteristics 56 congestion 60 2 congestion window (cwnd) 59, 60 fast recovery 61 MSS 59 MTU 59, 62 5 PMTU 62 5 reliability 57 Renu implementation 60 1 SACK 62 segment 56 sequence number 56 sessions slow start 60 SYN 58 9 SYN-ACK 58 9 Tahoe implementation 60 1 window size 59 TE, see MPLS with Traffic Engineering three-way handshake, TCP token buckets aggregate bucket 115 bandwidth limit 108 burst size limit 108, classifier credits dual rate premium bucket 115 queue length 113 tools coloring metering policer 16 17, queue scheduler shaper rewrite in contract traffic control 50 3 out of contract oversubscription traffic bursts, policing traffic classes LTE 207 UMTS 206 Traffic Engineering, see MPLS with Traffic Engineering Transmission Control Protocol, see TCP Transport Stream, see TS trust borders 47 8, 51 3, TS 74 TS specification 205 TS specification 205 Type of Service field, see TOS field

8 222 Index UDP 9, 10 UE (User Equipment) 205 UMTS (Universal Mobile Telecommunications System) 197 UMTS traffic classes 206 User Datagram Protocol, see UDP User Priority field 90 user sessions, see sessions, TCP 9 Video on Demand, see IPTV Virtual Private Networks, see VPNs VLAN User Priority field 75 VLAN-tagged Ethernet VLAN tags, stacking 90 VLAN-tagged Ethernet 90 VLR (Visitor Location Register) 195, 196 VOD, see IPTV voice applications 9 voice encapsulated into IP real-time traffic 66 Voice over IP, see VOIP 8, VOIP bandwidth 71 bandwidth, calculating 71 4 BHT 71 blocking 71 delay 73 Erlang number 71 jitter 73 SIP VPLS case study bandwidth reservations classes of service 168, mesh groups MPLS-TE 173 multicast traffic packet classification queuing and scheduling mechanisms 181 rewrite rules topology 170 tracing packets trust borders VPNs weighted fair queuing, see WFQ Weighted Random Early Discard, see WRED weighted round robin, see WRR WFQ benefits 133 limitations 133 wholesale L2TP 59 window size, TCP 62 5 World Wide Web, see WWW WRED WRR benefits 135 limitations 135 WWW 77

Multicast and Quality of Service. Internet Technologies and Applications

Multicast and Quality of Service. Internet Technologies and Applications Multicast and Quality of Service Internet Technologies and Applications Aims and Contents Aims Introduce the multicast and the benefits it offers Explain quality of service and basic techniques for delivering

More information

Architectur and QoS Model in Convergence 2G - 3G and 4G In IP Access Network

Architectur and QoS Model in Convergence 2G - 3G and 4G In IP Access Network Architectur and QoS Model in Convergence 2G - 3G and 4G In IP Access Network Mr GOUGIL Lhoussaine Télécommunication Engineer And Doctoral student Laboratoire LSIS ; ENSA Fès ; Université USMBA lgougil@hotmail.com

More information

H3C S9500 QoS Technology White Paper

H3C S9500 QoS Technology White Paper H3C Key words: QoS, quality of service Abstract: The Ethernet technology is widely applied currently. At present, Ethernet is the leading technology in various independent local area networks (LANs), and

More information

"Charting the Course... Implementing Cisco Quality of Service (QOS) Course Summary

Charting the Course... Implementing Cisco Quality of Service (QOS) Course Summary Course Summary Description v2.5 provides learners with in-depth knowledge of QoS requirements, conceptual models such as best effort, IntServ, and DiffServ, and the implementation of QoS on Cisco platforms.

More information

Basics (cont.) Characteristics of data communication technologies OSI-Model

Basics (cont.) Characteristics of data communication technologies OSI-Model 48 Basics (cont.) Characteristics of data communication technologies OSI-Model Topologies Packet switching / Circuit switching Medium Access Control (MAC) mechanisms Coding Quality of Service (QoS) 49

More information

Quality of Service Monitoring and Delivery Part 01. ICT Technical Update Module

Quality of Service Monitoring and Delivery Part 01. ICT Technical Update Module Quality of Service Monitoring and Delivery Part 01 ICT Technical Update Module Presentation Outline Introduction to IP-QoS IntServ Architecture DiffServ Architecture Post Graduate Certificate in Professional

More information

A Flow Label Based QoS Scheme for End-to-End Mobile Services

A Flow Label Based QoS Scheme for End-to-End Mobile Services A Flow Label Based QoS Scheme for End-to-End Mobile Services Tao Zheng, Lan Wang, Daqing Gu Orange Labs Beijing France Telecom Group Beijing, China e-mail: {tao.zheng; lan.wang; daqing.gu}@orange.com Abstract

More information

QoS Technology White Paper

QoS Technology White Paper QoS Technology White Paper Keywords: QoS, service model, IntServ, DiffServ, congestion management, congestion avoidance, queuing technology, traffic policing, traffic shaping, link efficiency mechanism.

More information

QOS IN PACKET NETWORKS

QOS IN PACKET NETWORKS QOS IN PACKET NETWORKS THE KLUWER INTERNATIONAL SERIES IN ENGINEERING AND COMPUTER SCIENCE QOS IN PACKET NETWORKS by Kun I. Park, Ph.D. The MITRE Corporation USA Springer ebook ISBN: 0-387-23390-3 Print

More information

Presentation Outline. Evolution of QoS Architectures. Quality of Service Monitoring and Delivery Part 01. ICT Technical Update Module

Presentation Outline. Evolution of QoS Architectures. Quality of Service Monitoring and Delivery Part 01. ICT Technical Update Module Quality of Service Monitoring and Delivery Part 01 ICT Technical Update Module Presentation Outline Introduction to IP-QoS IntServ Architecture DiffServ Architecture Post Graduate Certificate in Professional

More information

ETSF10 Internet Protocols Transport Layer Protocols

ETSF10 Internet Protocols Transport Layer Protocols ETSF10 Internet Protocols Transport Layer Protocols 2012, Part 2, Lecture 2.2 Kaan Bür, Jens Andersson Transport Layer Protocols Special Topic: Quality of Service (QoS) [ed.4 ch.24.1+5-6] [ed.5 ch.30.1-2]

More information

Advanced Lab in Computer Communications Meeting 6 QoS. Instructor: Tom Mahler

Advanced Lab in Computer Communications Meeting 6 QoS. Instructor: Tom Mahler Advanced Lab in Computer Communications Meeting 6 QoS Instructor: Tom Mahler Motivation Internet provides only single class of best-effort service. Some applications can be elastic. Tolerate delays and

More information

IP QOS Theory and Practice. eng. Nikolay Milovanov CCIE SP# 20094

IP QOS Theory and Practice. eng. Nikolay Milovanov CCIE SP# 20094 IP QOS Theory and Practice eng. Nikolay Milovanov CCIE SP# 20094 QoS Architectures QoS Architecture Models Best Effort Service Integrated Service Differentiated Service 3 Best Effort Service What exactly

More information

5. QoS Functions in Core and Backbone Networks

5. QoS Functions in Core and Backbone Networks 5. QoS Functions in Core and Backbone Networks Dr. David Soldani (david.soldani@nokia.com, tel. +358.50.3633527) S-38.3215 Special Course on Networking Technology for Ph.D. students at TKK Outline IP QoS

More information

QoS Technology White Paper

QoS Technology White Paper QoS Technology White Paper Keywords: Traffic classification, congestion management, congestion avoidance, precedence, differentiated services Abstract: This document describes the QoS features and related

More information

Real-Time Protocol (RTP)

Real-Time Protocol (RTP) Real-Time Protocol (RTP) Provides standard packet format for real-time application Typically runs over UDP Specifies header fields below Payload Type: 7 bits, providing 128 possible different types of

More information

Real-Time Control Protocol (RTCP)

Real-Time Control Protocol (RTCP) Real-Time Control Protocol (RTCP) works in conjunction with RTP each participant in RTP session periodically sends RTCP control packets to all other participants each RTCP packet contains sender and/or

More information

Implementing Cisco Quality of Service 2.5 (QOS)

Implementing Cisco Quality of Service 2.5 (QOS) Implementing Cisco Quality of Service 2.5 (QOS) COURSE OVERVIEW: Implementing Cisco Quality of Service (QOS) v2.5 provides learners with in-depth knowledge of QoS requirements, conceptual models such as

More information

Part1: Lecture 4 QoS

Part1: Lecture 4 QoS Part1: Lecture 4 QoS Last time Multi stream TCP: SCTP Multi path TCP RTP and RTCP SIP H.323 VoIP Router architectures Overview two key router functions: run routing algorithms/protocol (RIP, OSPF, BGP)

More information

Last time! Overview! 14/04/15. Part1: Lecture 4! QoS! Router architectures! How to improve TCP? SYN attacks SCTP. SIP and H.

Last time! Overview! 14/04/15. Part1: Lecture 4! QoS! Router architectures! How to improve TCP? SYN attacks SCTP. SIP and H. Last time Part1: Lecture 4 QoS How to improve TCP? SYN attacks SCTP SIP and H.323 RTP and RTCP Router architectures Overview two key router functions: run routing algorithms/protocol (RIP, OSPF, BGP) forwarding

More information

Internet Services & Protocols. Quality of Service Architecture

Internet Services & Protocols. Quality of Service Architecture Department of Computer Science Institute for System Architecture, Chair for Computer Networks Internet Services & Protocols Quality of Service Architecture Dr.-Ing. Stephan Groß Room: INF 3099 E-Mail:

More information

Principles. IP QoS DiffServ. Agenda. Principles. L74 - IP QoS Differentiated Services Model. L74 - IP QoS Differentiated Services Model

Principles. IP QoS DiffServ. Agenda. Principles. L74 - IP QoS Differentiated Services Model. L74 - IP QoS Differentiated Services Model Principles IP QoS DiffServ Differentiated Services Architecture DSCP, CAR Integrated Services Model does not scale well flow based traffic overhead (RSVP messages) routers must maintain state information

More information

SIMULATION FRAMEWORK MODELING

SIMULATION FRAMEWORK MODELING CHAPTER 5 SIMULATION FRAMEWORK MODELING 5.1 INTRODUCTION This chapter starts with the design and development of the universal mobile communication system network and implementation of the TCP congestion

More information

Advanced Computer Networks

Advanced Computer Networks Advanced Computer Networks QoS in IP networks Prof. Andrzej Duda duda@imag.fr Contents QoS principles Traffic shaping leaky bucket token bucket Scheduling FIFO Fair queueing RED IntServ DiffServ http://duda.imag.fr

More information

Mohammad Hossein Manshaei 1393

Mohammad Hossein Manshaei 1393 Mohammad Hossein Manshaei manshaei@gmail.com 1393 Voice and Video over IP Slides derived from those available on the Web site of the book Computer Networking, by Kurose and Ross, PEARSON 2 Multimedia networking:

More information

A Preferred Service Architecture for Payload Data Flows. Ray Gilstrap, Thom Stone, Ken Freeman

A Preferred Service Architecture for Payload Data Flows. Ray Gilstrap, Thom Stone, Ken Freeman A Preferred Service Architecture for Payload Data Flows Ray Gilstrap, Thom Stone, Ken Freeman NASA Research and Engineering Network NASA Advanced Supercomputing Division NASA Ames Research Center Outline

More information

Multimedia Networking

Multimedia Networking CMPT765/408 08-1 Multimedia Networking 1 Overview Multimedia Networking The note is mainly based on Chapter 7, Computer Networking, A Top-Down Approach Featuring the Internet (4th edition), by J.F. Kurose

More information

VoIP Protocols and QoS

VoIP Protocols and QoS Announcements I. Times have been posted for demo slots VoIP Protocols and QoS II. HW5 and HW6 solutions have been posted HW6 being graded Internet Protocols CSC / ECE 573 Fall, 2005 N. C. State University

More information

Converged Networks. Objectives. References

Converged Networks. Objectives. References Converged Networks Professor Richard Harris Objectives You will be able to: Discuss what is meant by convergence in the context of current telecommunications terminology Provide a network architecture

More information

Cisco ASR 1000 Series Aggregation Services Routers: QoS Architecture and Solutions

Cisco ASR 1000 Series Aggregation Services Routers: QoS Architecture and Solutions Cisco ASR 1000 Series Aggregation Services Routers: QoS Architecture and Solutions Introduction Much more bandwidth is available now than during the times of 300-bps modems, but the same business principles

More information

Quality of Service. Ib Hansen TECRST-2500_c Cisco Systems, Inc. All rights reserved. Cisco Public 1

Quality of Service. Ib Hansen TECRST-2500_c Cisco Systems, Inc. All rights reserved. Cisco Public 1 Quality of Service Ib Hansen ibhansen@cisco.com 1 Why Enable QoS? Security Quality of Service High Availability QoS: Enables UC and other collaborative applications Drives productivity by enhancing service

More information

Module objectives. Integrated services. Support for real-time applications. Real-time flows and the current Internet protocols

Module objectives. Integrated services. Support for real-time applications. Real-time flows and the current Internet protocols Integrated services Reading: S. Keshav, An Engineering Approach to Computer Networking, chapters 6, 9 and 4 Module objectives Learn and understand about: Support for real-time applications: network-layer

More information

Multimedia networking: outline

Multimedia networking: outline Multimedia networking: outline 7.1 multimedia networking applications 7.2 streaming stored video 7.3 voice-over-ip 7.4 protocols for real-time conversational applications: RTP, SIP 7.5 network support

More information

HUAWEI NetEngine5000E Core Router V800R002C01. Feature Description - QoS. Issue 01 Date HUAWEI TECHNOLOGIES CO., LTD.

HUAWEI NetEngine5000E Core Router V800R002C01. Feature Description - QoS. Issue 01 Date HUAWEI TECHNOLOGIES CO., LTD. V800R002C01 Issue 01 Date 2011-10-15 HUAWEI TECHNOLOGIES CO., LTD. 2011. All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written

More information

Quality of Service (QoS)

Quality of Service (QoS) Quality of Service (QoS) What you will learn Techniques for QoS Integrated Service (IntServ) Differentiated Services (DiffServ) MPLS QoS Design Principles 1/49 QoS in the Internet Paradigm IP over everything

More information

PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of Computer Science & Engineering

PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of Computer Science & Engineering INTERNAL ASSESSMENT TEST 2 Date : 01/04/2015 Max Marks : 50 Subject & Code : Computer Networks-II/10CS64 Section : VI- A & VI-C Name of faculty : Ravi Dixit Time : 8:30-10:00am Note: Answer ALL Questions

More information

Technology Overview. Frequently Asked Questions: MX Series 3D Universal Edge Routers Quality of Service. Published:

Technology Overview. Frequently Asked Questions: MX Series 3D Universal Edge Routers Quality of Service. Published: Technology Overview Frequently Asked Questions: MX Series 3D Universal Edge Routers Quality of Service Published: 2014-01-10 Juniper Networks, Inc. 1194 North Mathilda Avenue Sunnyvale, California 94089

More information

CSE 461 Quality of Service. David Wetherall

CSE 461 Quality of Service. David Wetherall CSE 461 Quality of Service David Wetherall djw@cs.washington.edu QOS Focus: How to provide better than best effort Fair queueing Application Application needs Transport Traffic shaping Guarantees IntServ

More information

Configuring Quality of Service

Configuring Quality of Service CHAPTER 25 QoS refers to the ability of a network to provide improved service to selected network traffic over various underlying technologies including Frame Relay, ATM, Ethernet and 802.1 networks, SONET,

More information

Improving QOS in IP Networks. Principles for QOS Guarantees

Improving QOS in IP Networks. Principles for QOS Guarantees Improving QOS in IP Networks Thus far: making the best of best effort Future: next generation Internet with QoS guarantees RSVP: signaling for resource reservations Differentiated Services: differential

More information

Marking Traffic CHAPTER

Marking Traffic CHAPTER CHAPTER 7 To service the growing numbers of customers and their needs, service provider networks have become more complex and often include both Layer 2 and Layer 3 network devices. With this continued

More information

Introduction to IP QoS

Introduction to IP QoS Introduction to IP QoS Primer to IP Quality of Service Aspects Queuing, Shaping, Classification Agenda IP QoS Introduction Queue Management Congestion Avoidance Traffic Rate Management Classification and

More information

IP & DCN Planning for Microwave Networks

IP & DCN Planning for Microwave Networks IP & DCN Planning for Microwave Networks 2016 IP & DCN Planning for Microwave Networks To equip trainees with in-depth understandings and practical knowledge of IP / MPLS & DCN Planning and its Implementation

More information

Lecture Outline. Bag of Tricks

Lecture Outline. Bag of Tricks Lecture Outline TELE302 Network Design Lecture 3 - Quality of Service Design 1 Jeremiah Deng Information Science / Telecommunications Programme University of Otago July 15, 2013 2 Jeremiah Deng (Information

More information

Real-Time Applications. Delay-adaptive: applications that can adjust their playback point (delay or advance over time).

Real-Time Applications. Delay-adaptive: applications that can adjust their playback point (delay or advance over time). Real-Time Applications Tolerant: can tolerate occasional loss of data. Intolerant: cannot tolerate such losses. Delay-adaptive: applications that can adjust their playback point (delay or advance over

More information

Implementing a Session Aware Policy Based Mechanism for QoS Control in LTE

Implementing a Session Aware Policy Based Mechanism for QoS Control in LTE RESEARCH ARTICLE OPEN ACCESS Implementing a Session Aware Policy Based Mechanism for QoS Control in LTE Zouhair Bazzal, AbdelMehsen Ahmad, Ibrahim El Bitar, Ali Ghouwayel, and Hussein Hijazi School of

More information

Master Course Computer Networks IN2097

Master Course Computer Networks IN2097 Chair for Network Architectures and Services Prof. Carle Department for Computer Science TU München Chair for Network Architectures and Services Prof. Carle Department for Computer Science TU München Master

More information

Topic 4b: QoS Principles. Chapter 9 Multimedia Networking. Computer Networking: A Top Down Approach

Topic 4b: QoS Principles. Chapter 9 Multimedia Networking. Computer Networking: A Top Down Approach Topic 4b: QoS Principles Chapter 9 Computer Networking: A Top Down Approach 7 th edition Jim Kurose, Keith Ross Pearson/Addison Wesley April 2016 9-1 Providing multiple classes of service thus far: making

More information

Master Course Computer Networks IN2097

Master Course Computer Networks IN2097 Chair for Network Architectures and Services Prof. Carle Department for Computer Science TU München Master Course Computer Networks IN2097 Prof. Dr.-Ing. Georg Carle Christian Grothoff, Ph.D. Chair for

More information

Lesson 14: QoS in IP Networks: IntServ and DiffServ

Lesson 14: QoS in IP Networks: IntServ and DiffServ Slide supporting material Lesson 14: QoS in IP Networks: IntServ and DiffServ Giovanni Giambene Queuing Theory and Telecommunications: Networks and Applications 2nd edition, Springer All rights reserved

More information

EE 122: Differentiated Services

EE 122: Differentiated Services What is the Problem? EE 122: Differentiated Services Ion Stoica Nov 18, 2002 Goal: provide support for wide variety of applications: - Interactive TV, IP telephony, on-line gamming (distributed simulations),

More information

Sharing Bandwidth Fairly During Congestion

Sharing Bandwidth Fairly During Congestion CHAPTER 12 When no QoS policies exist, the router serves traffic with best effort service. The router makes no distinction between high and low priority traffic and makes no allowances for the needs of

More information

Configuring QoS on the GGSN

Configuring QoS on the GGSN CHAPTER 9 This chapter describes how to configure Quality of Service (QoS) functions to differentiate traffic flow through the GGSN. For a complete description of the GGSN commands in this chapter, refer

More information

Abbreviations. Coding Scheme

Abbreviations. Coding Scheme Managing Service Level Quality: Across Wireless And Fixed Networks. Peter Massam Copyright 2003 John Wiley & Sons, Ltd. ISBN: 0-470-84848-0 Abbreviations 3GPP AF AGCH ARM AS ASK ASN AuC 3rd Generation

More information

Cisco Optimizing Converged Cisco Networks. Practice Test. Version 2.6. https://certkill.com

Cisco Optimizing Converged Cisco Networks. Practice Test. Version 2.6. https://certkill.com Cisco 642-845 642-845 Optimizing Converged Cisco Networks Practice Test Version 2.6 QUESTION NO: 1 Cisco 642-845: Practice Exam Refer to the exhibit. NBAR is to be configured on router R1 to limit outgoing

More information

Network Support for Multimedia

Network Support for Multimedia Network Support for Multimedia Daniel Zappala CS 460 Computer Networking Brigham Young University Network Support for Multimedia 2/33 make the best of best effort use application-level techniques use CDNs

More information

Configuring QoS CHAPTER

Configuring QoS CHAPTER CHAPTER 34 This chapter describes how to use different methods to configure quality of service (QoS) on the Catalyst 3750 Metro switch. With QoS, you can provide preferential treatment to certain types

More information

Exam: Title : Quality of Service (QOS) Ver :

Exam: Title : Quality of Service (QOS) Ver : Exam: 642-642 Title : Quality of Service (QOS) Ver : 08.10.04 Section A contains 115 questions. Section B contains 70 questions. Section C contains 76 questions. The total number of questions is 261. Missing

More information

ActualTests.4A q. Alcatel-Lucent 4A0-107 Alcatel-Lucent Quality of Service

ActualTests.4A q. Alcatel-Lucent 4A0-107 Alcatel-Lucent Quality of Service ActualTests.4A0-107.110q Number: 4A0-107 Passing Score: 800 Time Limit: 120 min File Version: 5.3 http://www.gratisexam.com/ Alcatel-Lucent 4A0-107 Alcatel-Lucent Quality of Service I wanted to thank this

More information

Kommunikationssysteme [KS]

Kommunikationssysteme [KS] Kommunikationssysteme [KS] Dr.-Ing. Falko Dressler Computer Networks and Communication Systems Department of Computer Sciences University of Erlangen-Nürnberg http://www7.informatik.uni-erlangen.de/~dressler/

More information

CCVP QOS Quick Reference Sheets

CCVP QOS Quick Reference Sheets Why You Need Quality of Service (QoS)...3 QoS Basics...5 QoS Deployment...6 QoS Components...6 CCVP QOS Quick Reference Sheets Basic QoS Configuration...11 Traffic Classification and Marking...15 Queuing...26

More information

Fundamental Questions to Answer About Computer Networking, Jan 2009 Prof. Ying-Dar Lin,

Fundamental Questions to Answer About Computer Networking, Jan 2009 Prof. Ying-Dar Lin, Fundamental Questions to Answer About Computer Networking, Jan 2009 Prof. Ying-Dar Lin, ydlin@cs.nctu.edu.tw Chapter 1: Introduction 1. How does Internet scale to billions of hosts? (Describe what structure

More information

Lecture 14: Performance Architecture

Lecture 14: Performance Architecture Lecture 14: Performance Architecture Prof. Shervin Shirmohammadi SITE, University of Ottawa Prof. Shervin Shirmohammadi CEG 4185 14-1 Background Performance: levels for capacity, delay, and RMA. Performance

More information

Router 6000 R17 Training Programs. Catalog of Course Descriptions

Router 6000 R17 Training Programs. Catalog of Course Descriptions Router 6000 R7 Training Programs Catalog of Course Descriptions Catalog of Course Descriptions INTRODUCTION... 3 IP NETWORKING... 4 IP OVERVIEW & FUNDAMENTALS... 8 IP ROUTING OVERVIEW & FUNDAMENTALS...0

More information

Configuring Modular QoS Congestion Management on Cisco IOS XR Software

Configuring Modular QoS Congestion Management on Cisco IOS XR Software Configuring Modular QoS Congestion Management on Cisco IOS XR Software Congestion management controls congestion after it has occurred on a network. Congestion can be managed on Cisco IOS XR software by

More information

Quality of Service II

Quality of Service II Quality of Service II Patrick J. Stockreisser p.j.stockreisser@cs.cardiff.ac.uk Lecture Outline Common QoS Approaches Best Effort Integrated Services Differentiated Services Integrated Services Integrated

More information

QoS Configuration. Overview. Introduction to QoS. QoS Policy. Class. Traffic behavior

QoS Configuration. Overview. Introduction to QoS. QoS Policy. Class. Traffic behavior Table of Contents QoS Configuration 1 Overview 1 Introduction to QoS 1 QoS Policy 1 Traffic Policing 2 Congestion Management 3 Line Rate 9 Configuring a QoS Policy 9 Configuration Task List 9 Configuring

More information

Configuring Quality of Service

Configuring Quality of Service This chapter describes the Quality of Service and procedures to configure Quality of Service. Introduction to Quality of Service, page 1 CPT System QoS, page 4 Ingress QoS Functions, page 7 Egress QoS

More information

Multimedia Applications over Packet Networks

Multimedia Applications over Packet Networks Multimedia Networking and Quality of Service Mario Baldi Technical Univeristy of Torino Computer Engineering Department mario.baldi@polito.it +39 011 564 7067 staff.polito.it/mario.baldi Nota di Copyright

More information

Quality of Service in the Internet. QoS Parameters. Keeping the QoS. Leaky Bucket Algorithm

Quality of Service in the Internet. QoS Parameters. Keeping the QoS. Leaky Bucket Algorithm Quality of Service in the Internet Problem today: IP is packet switched, therefore no guarantees on a transmission is given (throughput, transmission delay, ): the Internet transmits data Best Effort But:

More information

Differentiated Services

Differentiated Services Diff-Serv 1 Differentiated Services QoS Problem Diffserv Architecture Per hop behaviors Diff-Serv 2 Problem: QoS Need a mechanism for QoS in the Internet Issues to be resolved: Indication of desired service

More information

A common issue that affects the QoS of packetized audio is jitter. Voice data requires a constant packet interarrival rate at receivers to convert

A common issue that affects the QoS of packetized audio is jitter. Voice data requires a constant packet interarrival rate at receivers to convert A common issue that affects the QoS of packetized audio is jitter. Voice data requires a constant packet interarrival rate at receivers to convert data into a proper analog signal for playback. The variations

More information

The Quickest Way To Get Certified. Cisco (QOS) Quality of Service. Version 2.0

The Quickest Way To Get Certified. Cisco (QOS) Quality of Service. Version 2.0 WWW.REAL-EXAMS.NET The Quickest Way To Get Certified Cisco 642-642 (QOS) Quality of Service Version 2.0 Please Read Carefully This Study Guide has been carefully written and compiled by Real-Exams experts.

More information

Internet. 1) Internet basic technology (overview) 3) Quality of Service (QoS) aspects

Internet. 1) Internet basic technology (overview) 3) Quality of Service (QoS) aspects Internet 1) Internet basic technology (overview) 2) Mobility aspects 3) Quality of Service (QoS) aspects Relevant information: these slides (overview) course textbook (Part H) www.ietf.org (details) IP

More information

IT Certification Exams Provider! Weofferfreeupdateserviceforoneyear! h ps://www.certqueen.com

IT Certification Exams Provider! Weofferfreeupdateserviceforoneyear! h ps://www.certqueen.com IT Certification Exams Provider! Weofferfreeupdateserviceforoneyear! h ps://www.certqueen.com Exam : 4A0-107 Title : Alcatel-Lucent Quality of Service Version : Demo 1 / 6 1.The IP ToS field consists of

More information

Multimedia networking: outline

Multimedia networking: outline Multimedia networking: outline 9.1 multimedia networking applications 9.2 streaming stored video 9.3 voice-over-ip 9.4 protocols for real-time conversational applications: SIP Skip RTP, RTCP 9.5 network

More information

Contents. QoS overview 1

Contents. QoS overview 1 Contents QoS overview 1 QoS service models 1 Best-effort service model 1 IntServ model 1 DiffServ model 1 QoS techniques overview 1 Deploying QoS in a network 2 QoS processing flow in a device 2 Configuring

More information

Multimedia Networking and Quality of Service

Multimedia Networking and Quality of Service Multimedia Networking and Quality of Service Mario Baldi Politecnico di Torino (Technical Univeristy of Torino) Department of Computer Engineering mario.baldi [at] polito.it +39 011 564 7067 staff.polito.it/mario.baldi

More information

GPRS and UMTS T

GPRS and UMTS T GPRS and UMTS T-110.2100 Global Packet Radio Service GPRS uses the time slots not used for circuit switched services Data rate depends on the availability of free time slots GPRS uses the multislot technique,

More information

DiffServ over MPLS: Tuning QOS parameters for Converged Traffic using Linux Traffic Control

DiffServ over MPLS: Tuning QOS parameters for Converged Traffic using Linux Traffic Control 1 DiffServ over MPLS: Tuning QOS parameters for Converged Traffic using Linux Traffic Control Sundeep.B.Singh, Girish.P.Saraph, Chetan.P.Bhadricha and Girish.K.Dadhich Indian Institute of Technology Bombay,

More information

AlcatelLucent.Selftestengine.4A0-107.v by.Ele.56q. Exam Code: 4A Exam Name: Alcatel-Lucent Quality of Service

AlcatelLucent.Selftestengine.4A0-107.v by.Ele.56q. Exam Code: 4A Exam Name: Alcatel-Lucent Quality of Service AlcatelLucent.Selftestengine.4A0-107.v2013-12-14.by.Ele.56q Number: 4a0-107 Passing Score: 800 Time Limit: 120 min File Version: 16.5 http://www.gratisexam.com/ Exam Code: 4A0-107 Exam Name: Alcatel-Lucent

More information

Improve the QoS by Applying Differentiated Service over MPLS Network

Improve the QoS by Applying Differentiated Service over MPLS Network Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 4, Issue. 9, September 2015,

More information

Understanding How Routing Updates and Layer 2 Control Packets Are Queued on an Interface with a QoS Service Policy

Understanding How Routing Updates and Layer 2 Control Packets Are Queued on an Interface with a QoS Service Policy Understanding How Routing Updates and Layer 2 Control Packets Are Queued on an Interface with a QoS Service Policy Document ID: 18664 Contents Introduction Prerequisites Requirements Components Used Conventions

More information

Quality of Service in the Internet

Quality of Service in the Internet Quality of Service in the Internet Problem today: IP is packet switched, therefore no guarantees on a transmission is given (throughput, transmission delay, ): the Internet transmits data Best Effort But:

More information

DiffServ over MPLS: Tuning QOS parameters for Converged Traffic using Linux Traffic Control

DiffServ over MPLS: Tuning QOS parameters for Converged Traffic using Linux Traffic Control 1 DiffServ over MPLS: Tuning QOS parameters for Converged Traffic using Linux Traffic Control Sundeep.B.Singh and Girish.P.Saraph Indian Institute of Technology Bombay, Powai, Mumbai-400076, India Abstract

More information

RSVP 1. Resource Control and Reservation

RSVP 1. Resource Control and Reservation RSVP 1 Resource Control and Reservation RSVP 2 Resource Control and Reservation policing: hold sources to committed resources scheduling: isolate flows, guarantees resource reservation: establish flows

More information

Defining QoS for Multiple Policy Levels

Defining QoS for Multiple Policy Levels CHAPTER 13 In releases prior to Cisco IOS Release 12.0(22)S, you can specify QoS behavior at only one level. For example, to shape two outbound queues of an interface, you must configure each queue separately,

More information

Differentiated Services

Differentiated Services 1 Differentiated Services QoS Problem Diffserv Architecture Per hop behaviors 2 Problem: QoS Need a mechanism for QoS in the Internet Issues to be resolved: Indication of desired service Definition of

More information

Configuring priority marking 63 Priority marking overview 63 Configuring priority marking 63 Priority marking configuration example 64

Configuring priority marking 63 Priority marking overview 63 Configuring priority marking 63 Priority marking configuration example 64 Contents QoS overview 1 Introduction to QoS 1 QoS service models 1 Best-effort service model 1 IntServ model 1 DiffServ model 2 QoS techniques overview 2 Deploying QoS in a network 2 QoS processing flow

More information

Resource Control and Reservation

Resource Control and Reservation 1 Resource Control and Reservation Resource Control and Reservation policing: hold sources to committed resources scheduling: isolate flows, guarantees resource reservation: establish flows 2 Usage parameter

More information

CSE398: Network Systems Design

CSE398: Network Systems Design CSE398: Network Systems Design Instructor: Dr. Liang Cheng Department of Computer Science and Engineering P.C. Rossin College of Engineering & Applied Science Lehigh University February 21, 2005 Outline

More information

Resource allocation in networks. Resource Allocation in Networks. Resource allocation

Resource allocation in networks. Resource Allocation in Networks. Resource allocation Resource allocation in networks Resource Allocation in Networks Very much like a resource allocation problem in operating systems How is it different? Resources and jobs are different Resources are buffers

More information

Quality of Service (QoS)

Quality of Service (QoS) Quality of Service (QoS) A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete

More information

Course Outline & Schedule

Course Outline & Schedule Mobile Backhaul & the Role of Carrier Ethernet Course Code Duration PDN048 5 Day Course Price 3,385 Course Description The mobile environment is evolving rapidly with ever increasing demands for greater

More information

Modular Quality of Service Overview on Cisco IOS XR Software

Modular Quality of Service Overview on Cisco IOS XR Software Modular Quality of Service Overview on Cisco IOS XR Software Quality of Service (QoS) is the technique of prioritizing traffic flows and providing preferential forwarding for higher-priority packets. The

More information

Multimedia Networking

Multimedia Networking Multimedia Networking Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@wustl.edu Audio/Video recordings of this lecture are available on-line at: http://www.cse.wustl.edu/~jain/cse473-09/

More information

Configuring Modular Quality of Service Congestion Management on Cisco IOS XR Software

Configuring Modular Quality of Service Congestion Management on Cisco IOS XR Software Configuring Modular Quality of Service Congestion Management on Cisco IOS XR Software Congestion management controls congestion after it has occurred on a network. Congestion can be managed on Cisco IOS

More information

Configuring PFC QoS CHAPTER

Configuring PFC QoS CHAPTER 38 CHAPTER This chapter describes how to configure quality of service (QoS) as implemented on the Policy Feature Card 3B (PFC3B) on the Supervisor Engine 32 PISA. Note For complete syntax and usage information

More information

Week 7: Traffic Models and QoS

Week 7: Traffic Models and QoS Week 7: Traffic Models and QoS Acknowledgement: Some slides are adapted from Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition, J.F Kurose and K.W. Ross All Rights Reserved,

More information

Network-Based Application Recognition

Network-Based Application Recognition Network-Based Application Recognition Last updated: September 2008 Common questions and answers regarding Cisco Network-Based Application Recognition (NBAR) follow. Q. What is NBAR? A. NBAR, an important

More information