Middleware in Context: 2016 David E. Bakken. Cpt. S 464/564 Lecture Auxiliary Material (not from text) January 30, 2019

Size: px
Start display at page:

Download "Middleware in Context: 2016 David E. Bakken. Cpt. S 464/564 Lecture Auxiliary Material (not from text) January 30, 2019"

Transcription

1 Middleware in Context Prof. Dave Bakken Cpt. S 464/564 Lecture Auxiliary Material (not from text) January 30, 2019

2 Sources of Info D. Bakken, Middleware, unpublished article (from an Encyclopedia of Distributed Systems that was cancelled) from ca. 2000, Some of the example systems are a bit dated, but the first page describes the benefits of middleware very concisely. David E. Bakken, Washington State University, Pullman WA, Richard E. Schantz, BBN Technologies, Cambridge MA, Richard D. Tucker, Tucker Engineering Associates, Locust NC Smart Grid Communications:QoS Stovepipes or QoS Interoperability?.. Technical Report TR-GS-013, School of Electrical Engineering and Computer Science, Washington State University, November, TR-GS-013.pdf Won a best paper award REQUIRED READING FOR BOTH 464,564 Explains what middleware is, ways in which it is standardized, etc.

3 Context: (Most) Technology Marches On Hardware technology s progress phenomenal in last few decades Moore s Law Metcalf s Law Graphics processing power Software technology s progress is much more spotty Software crisis Yet SW is a large and increasing part of complex apps/systems! Apps and systems are rapidly becoming (more) networked Oops, distributed software is much harder yet to get right Middleware a promising technology for programability of distributed systems Also fertile grounds for adaptivity and dependability.

4 Why Middleware? Middleware == A layer of software above the operating system but below the application program that provides a common programming abstraction across a distributed system Middleware exists to help manage the complexity and heterogeneity inherent in distributed systems Middleware provides higher-level building blocks ( abstractions ) for programmers than the OS provides Can make code much more portable Can make them much more productive Can make the resulting code have fewer errors Analogy MW:sockets HOL:assembler Middleware sometimes is informally called plumbing Connects parts of a distributed application with data pipes and passes data between them

5 Middleware in Context Host 1 Host 2 Distributed Application Client Distributed Application Server Middleware API Middleware Middleware API Middleware Operating System API OS Comm. Processing Storage Operating System API OS Comm. Processing Storage Network

6 Middleware Benefit: Masking Heterogeneity Middleware s programming building blocks mask heterogeneity Makes programmer s life much easier!! Kinds of heterogeneity masked by middleware (MW) frameworks All MW masks heterogeneity in network technology All MW masks heterogeneity in host CPU Almost all MW masks heterogeneity in operating system (or family thereof) Notable exception: Microsoft middleware (de facto; not de jure or de fiat) Almost all MW masks heterogeneity in programming language Noteable exception: Java RMI Some MW masks heterogeneity in vendor implementations CORBA best here

7 Middleware Benefit: Transparency Middleware can provide useful transparencies: Access Transparency Location transparency Concurrency transparency Replication transparency Failure transparency Mobility transparency Masking heterogeneity and providing transparency makes programming distributed systems much easier to do!

8 Programming with Middleware Programming with Middleware Do not have to learn a new programming language! (Usually) Use an existing one already familiar with: C++, Java, C#, Ada, (yuk) Visual Basic, (yuk) COBOL Ways to Program with Middleware 1. Middleware system provides library of functions (Linda, others) 2. Support directly in language from beginning (Java and JVM s RMI) 3. External Interface Definition Language (IDL) that maps to the language and generates local proxy IDL looks a lot like C++ class definitions with a few other keywords, and no object state Run an IDL compiler that generates proxy files (source and header) for any languages supported

9 9 Middleware vs. Sockets Middleware is much easier to program! Example interface from CORBA (OMG) IDL: module HelloApp { interface Hello { bool MyFunction(in float a, in string b, in int c, in string d, in float e, out double ret); }; };

10 10 Middleware vs. Sockets(2) Calling that interface in C++ with CORBA boolean success = helloimpl.myfunction(3.3, hello, 2345, bakken!, 67.34, doublebox);

11 11 Middleware vs. Sockets (3) float a; char b[5]; int c;char d[7]; float e; double rval; int success //Ignore read errors. Hardcode field size, assume //all systems are same CPU arch. and bit size read(socket, &a, sizeof(float)); read(socket, b, sizeof(char) * 5); read(socket, &c, sizeof(int)); read(socket, d, sizeof(char)*7); read(socket, &e, sizeof(float)); // continued on next slide

12 12 Middleware vs. Sockets (4) // continued from previous slide calculating return values etc goes here //send back return value write(socket, &rval, sizeof(double)); //cant tell if it actually was recieved, or if socket is broken write(socket, &success, sizeof(int)); //again, no error checking

13 13 Middleware vs. Sockets (5) This socket code ignored all of the following: Errors with the socket Differences in system architecture Differences in CPU endianness Differences in representation of data types between languages I/O errors All of the above (and much more) are handled by middleware Middleware s programming building blocks (abstractions) mask heterogeneity Makes programmer s life much easier!!

14 Kinds of Middleware Distributed Tuples: (a, b, c, d, e) Relational databases, SQL, relational algebra Linda and tuple spaces JavaSpaces (used by Java Jini) Remote procedure call (RPC) make a function call look local even if non-local Message-Oriented Middleware (MOM) messages and message queues Data/topic-based publish-subscribe (quite popular) Distributed Object Middleware Make an object method look local even if non-local CORBA DCOM/SOAP/.NET Java RMI

15 Middleware Category Kinds of Middlware (cont.) Different middleware systems encapsulate and integrate the different kinds of resources with varying degrees: Distributed Tuples Remote Procedure Call Message- Oriented MW Data/Topic Based Distributed Objects Communication Processing Storage Yes Limited Yes Yes Yes No Yes No Limited Yes No Limited Yes Yes Yes For many (non-database) applications, and supporting adaptation, distributed object middleware is better because it is more general But pub sub and tuples are more decoupled which can help

16 Middleware and Legacy Systems Legacy systems are a huge problem (and asset) in industry and military domains! Middleware often called a glue technology: integrated legacy components Much distributed programming involves integrating components, not building them from scratch! Middleware s abstractions are general enough to allow legacy systems to be wrapped Distributed objects are best here because more general End result: a very high-level lowest common denominator of interoperability

17 Multi-Layered Middleware

18 One Middleware Layering Taxonomy (BBN/Schantz) Domain-Specific Services Services and APIs tailored to (and reusable only within) certain domains (health care, telecommunications, etc) Examples: CORBA Domain Interfaces, Boeing Bold Stroke architecture Common MW Services Adds high-level, domain-independent reusable services for events, fault tolerance, security, Examples: CORBAServices, Eternal Distribution MW Provides rich distributed object model that supports much heterogeneity and transparency Examples: CORBA,.NET., Java RMI Infrastructure MW Encapsulates core OS Comm. and concurrency services (sometimes enhances them too) Examples: JVM (and other VMs), ACE, group comm. (Figure courtesy of D. Schmidt)

19 CORBA and System Builders Hooks Interface Implementation IDL Compiler Repository Repository Client Servant Smart Stub Stub/proxy (SII) DII ORB Interface ORB Interface Skeleton DSI Object Adaptor Interceptor Interceptor ORB core ORB core Interceptor Interceptor Standard Interfaces IDL-generated ORB-Specific

20 CORBA DOC MODEL QUO/CORBA DOC MODEL Quality Objects (QuO) Dave Bakken QuO Adds Specification, Measurement, and Adaptation into the Distributed Object Model CLIENT IDL STUBS OBJ REF in args operation() out args + return value Network OBJECT (SERVANT) IDL SKELETON ORB IIOP IIOP ORB OBJECT ADAPTER Application Developer Mechanism Developer CLIENT OBJ REF in args operation() out args + return value OBJECT (SERVANT) Application Developer Delegate IDL STUBS SysCond Contract SysCond MECHANISM/PROPERTY MANAGER Network SysCond Contract SysCond IDL SKELETON Delegate ORB IIOP IIOP ORB OBJECT ADAPTER QuO Developer Mechanism Developer

21 CORBA DOC MODEL QUO/CORBA DOC MODEL Quality Objects (QuO) Dave Bakken QuO Adds Specification, Measurement, and Adaptation into the Distributed Object Model CLIENT IDL STUBS OBJ REF in args operation() out args + return value Network OBJECT (SERVANT) IDL SKELETON ORB IIOP IIOP ORB OBJECT ADAPTER Application Developer Mechanism Developer CLIENT OBJ REF in args operation() out args + return value OBJECT (SERVANT) Application Developer Delegate IDL STUBS SysCond Contract SysCond MECHANISM/PROPERTY MANAGER Network SysCond Contract SysCond IDL SKELETON Delegate ORB IIOP IIOP ORB OBJECT ADAPTER QuO Developer Mechanism Developer

Cpt. S 464/564 Lecture Auxiliary Material (not from text) January 29-31, Middleware in Context: 2016 David E. Bakken

Cpt. S 464/564 Lecture Auxiliary Material (not from text) January 29-31, Middleware in Context: 2016 David E. Bakken Middleware in Context Prof. Dave Bakken Cpt. S 464/564 Lecture Auxiliary Material (not from text) January 29-31, 2017 1 Sources of Info D. Bakken, Middleware, unpublished article (from an Encyclopedia

More information

Middleware What it is, and How it Enables Adapdivity and Dependability

Middleware What it is, and How it Enables Adapdivity and Dependability Middleware What it is, and How it Enables Adapdivity and Dependability David E. Bakken School of Electrical Engineering and Computer Science Washington State University Pullman, Washington USA 43 rd Meeting

More information

DS 2009: middleware. David Evans

DS 2009: middleware. David Evans DS 2009: middleware David Evans de239@cl.cam.ac.uk What is middleware? distributed applications middleware remote calls, method invocations, messages,... OS comms. interface sockets, IP,... layer between

More information

Distributed Objects. Object-Oriented Application Development

Distributed Objects. Object-Oriented Application Development Distributed s -Oriented Application Development Procedural (non-object oriented) development Data: variables Behavior: procedures, subroutines, functions Languages: C, COBOL, Pascal Structured Programming

More information

Using Quality Objects (QuO) Middleware for QoS Control of Video Streams

Using Quality Objects (QuO) Middleware for QoS Control of Video Streams Using Quality Objects (QuO) Middleware for QoS Control of Streams BBN Technologies Cambridge, MA http://www.dist-systems.bbn.com/tech/quo/ Craig Rodrigues crodrigu@bbn.com OMG s Third Workshop on Real-Time

More information

A QoS-aware CORBA Component Model for Distributed Real-time and Embedded System Development

A QoS-aware CORBA Component Model for Distributed Real-time and Embedded System Development A -aware CORBA Model for Distributed Real-time and Embedded System Development Nanbor Wang and Chris Gill {nanbor,cdgill}@cse.wustl.edu Department of Computer Science and Engineering Washington University

More information

Quality Objects (QuO): Adaptive Management and Control Middleware for End-to-End QoS

Quality Objects (QuO): Adaptive Management and Control Middleware for End-to-End QoS Quality Objects (QuO): Adaptive Management and Control Middleware for End-to-End QoS Craig Rodrigues, Joseph P. Loyall, Richard E. Schantz BBN Technologies/GTE Technology Organization Cambridge, Massachusetts,

More information

Distributed Systems Middleware

Distributed Systems Middleware Distributed Systems Middleware David Andersson, 810817-7539, (D) Rickard Sandell, 810131-1952, (D) EDA 390 - Computer Communication and Distributed Systems Chalmers University of Technology 2005-04-30

More information

What is CORBA? CORBA (Common Object Request Broker Architecture) is a distributed object-oriented client/server platform.

What is CORBA? CORBA (Common Object Request Broker Architecture) is a distributed object-oriented client/server platform. CORBA What is CORBA? CORBA (Common Object Request Broker Architecture) is a distributed object-oriented client/server platform. It includes: an object-oriented Remote Procedure Call (RPC) mechanism object

More information

Adaptive Middleware. Self-Healing Systems. Guest Lecture. Prof. Priya Narasimhan. Assistant Professor of ECE and ISRI Carnegie Mellon University

Adaptive Middleware. Self-Healing Systems. Guest Lecture. Prof. Priya Narasimhan. Assistant Professor of ECE and ISRI Carnegie Mellon University Adaptive Middleware Self-Healing Systems Guest Lecture Prof. Priya Narasimhan Assistant Professor of ECE and ISRI Carnegie Mellon University Recommended readings and these lecture slides are available

More information

RPC flow. 4.3 Remote procedure calls IDL. RPC components. Procedure. Program. sum (j,k) int j,k; {return j+k;} i = sum (3,7); Local procedure call

RPC flow. 4.3 Remote procedure calls IDL. RPC components. Procedure. Program. sum (j,k) int j,k; {return j+k;} i = sum (3,7); Local procedure call 4.3 Remote procedure calls RPC flow Client process Server process Program i = sum (3,7); Procedure sum (j,k) int j,k; {return j+k; Client stub Program Return Call Unpack Pack result para s Invisible to

More information

Slides for Chapter 5: Remote Invocation

Slides for Chapter 5: Remote Invocation Slides for Chapter 5: Remote Invocation From Coulouris, Dollimore, Kindberg and Blair Distributed Systems: Concepts and Design Edition 5, Addison-Wesley 2012 Text extensions to slides David E. Bakken,

More information

Distributed Object-based Systems CORBA

Distributed Object-based Systems CORBA CprE 450/550x Distributed Systems and Middleware Distributed Object-based Systems CORBA Yong Guan 3216 Coover Tel: (515) 294-8378 Email: guan@ee.iastate.edu March 30, 2004 2 Readings for Today s Lecture!

More information

DISTRIBUTED SYSTEMS [COMP9243] Distributed Object based: Lecture 7: Middleware. Slide 1. Slide 3. Message-oriented: MIDDLEWARE

DISTRIBUTED SYSTEMS [COMP9243] Distributed Object based: Lecture 7: Middleware. Slide 1. Slide 3. Message-oriented: MIDDLEWARE DISTRIBUTED SYSTEMS [COMP9243] Distributed Object based: KINDS OF MIDDLEWARE Lecture 7: Middleware Objects invoke each other s methods Slide 1 ➀ Introduction ➁ Publish/Subscribe Middleware ➂ Map-Reduce

More information

AQUILA. Project Defense. Sandeep Misra. (IST ) Development of C++ Client for a Java QoS API based on CORBA

AQUILA. Project Defense. Sandeep Misra.  (IST ) Development of C++ Client for a Java QoS API based on CORBA AQUILA (IST-1999-10077) Adaptive Resource Control for QoS Using an IP-based Layered Architecture Project Defense Development of C++ Client for a Java QoS API based on CORBA http://www-st st.inf..inf.tu-dresden.de/aquila/

More information

MTAT Enterprise System Integration. Lecture 2: Middleware & Web Services

MTAT Enterprise System Integration. Lecture 2: Middleware & Web Services MTAT.03.229 Enterprise System Integration Lecture 2: Middleware & Web Services Luciano García-Bañuelos Slides by Prof. M. Dumas Overall view 2 Enterprise Java 2 Entity classes (Data layer) 3 Enterprise

More information

Today: Distributed Objects. Distributed Objects

Today: Distributed Objects. Distributed Objects Today: Distributed Objects Case study: EJBs (Enterprise Java Beans) Case study: CORBA Lecture 23, page 1 Distributed Objects Figure 10-1. Common organization of a remote object with client-side proxy.

More information

DISTRIBUTED SYSTEMS [COMP9243] Lecture 7: Middleware MIDDLEWARE. Distributed Object based: Slide 1. Slide 3. Message-oriented: Slide 4

DISTRIBUTED SYSTEMS [COMP9243] Lecture 7: Middleware MIDDLEWARE. Distributed Object based: Slide 1. Slide 3. Message-oriented: Slide 4 KINDS OF MIDDLEWARE DISTRIBUTED SYSTEMS [COMP9243] Lecture 7: Middleware Distributed Object based: Objects invoke each other s methods Server Slide 1 ➀ Introduction ➁ Distributed Object Middleware Remote

More information

Implementing Real-time CORBA with Real-time Java

Implementing Real-time CORBA with Real-time Java Implementing Real-time CORBA with Real-time Java Ray Klefstad, Mayur Deshpande, Carlos O Ryan, & Doug Schmidt {coryan,schmidt}@uci.edu {klefstad,mayur}@ics.uci.edu Elec. & Comp. Eng. Dept Info. & Comp.

More information

CORBA (Common Object Request Broker Architecture)

CORBA (Common Object Request Broker Architecture) CORBA (Common Object Request Broker Architecture) René de Vries (rgv@cs.ru.nl) Based on slides by M.L. Liu 1 Overview Introduction / context Genealogical of CORBA CORBA architecture Implementations Corba

More information

Overview. Distributed Systems. Distributed Software Architecture Using Middleware. Components of a system are not always held on the same host

Overview. Distributed Systems. Distributed Software Architecture Using Middleware. Components of a system are not always held on the same host Distributed Software Architecture Using Middleware Mitul Patel 1 Overview Distributed Systems Middleware What is it? Why do we need it? Types of Middleware Example Summary 2 Distributed Systems Components

More information

OBJECT ADAPTER ORB CORE I/O SUBSYSTEM. struct RT_Info { wc_exec_time_; period_; importance_; dependencies_; }; 1: CONSTRUCT CALL 6: SUPPLY RUN-TIME

OBJECT ADAPTER ORB CORE I/O SUBSYSTEM. struct RT_Info { wc_exec_time_; period_; importance_; dependencies_; }; 1: CONSTRUCT CALL 6: SUPPLY RUN-TIME L. Levine David University, St. Louis Washington Simplify distribution automating by Object location activation and Parameter marshaling Demultiplexing Error handling Provide foundation higher-level for

More information

Integrating Fragmented Objects into a CORBA Environment

Integrating Fragmented Objects into a CORBA Environment Integrating ed Objects into a CORBA Environment Hans P. Reiser 1, Franz J. Hauck 2, Rüdiger Kapitza 1, and Andreas I. Schmied 2 1 Dept. of Distributed Systems and Operating System, University of Erlangen-

More information

Agent and Object Technology Lab Dipartimento di Ingegneria dell Informazione Università degli Studi di Parma. Distributed and Agent Systems

Agent and Object Technology Lab Dipartimento di Ingegneria dell Informazione Università degli Studi di Parma. Distributed and Agent Systems Agent and Object Technology Lab Dipartimento di Ingegneria dell Informazione Università degli Studi di Parma Distributed and Agent Systems Prof. Agostino Poggi What is CORBA? CORBA (Common Object Request

More information

Middleware Support for. Voting and Data Fusion. Chris Jones David Karr. Zhiyuan Troy Zhan. Dave Bakken. Cambridge, Mass.

Middleware Support for. Voting and Data Fusion. Chris Jones David Karr. Zhiyuan Troy Zhan. Dave Bakken.   Cambridge, Mass. Middleware Support for Voting and Data Fusion Dave Bakken Zhiyuan Troy Zhan School of Electrical Engineering and Computer Science Washington State University Pullman, Wash. USA www.eecs.wsu.edu Chris Jones

More information

MicroQoSCORBA A QoS-Enabled, Reflective, and Configurable Middleware Framework for Embedded Systems

MicroQoSCORBA A QoS-Enabled, Reflective, and Configurable Middleware Framework for Embedded Systems School of Electrical Engineering and Computer Science MicroQoSCORBA A QoS-Enabled, Reflective, and Configurable Middleware Framework for Embedded Systems A. David McKinnon, Tarana R. Damania, David E.

More information

Distributed Middleware. Distributed Objects

Distributed Middleware. Distributed Objects Distributed Middleware Distributed objects DCOM CORBA EJBs Jini Lecture 25, page 1 Distributed Objects Figure 10-1. Common organization of a remote object with client-side proxy. Lecture 25, page 2 Distributed

More information

Today: Distributed Middleware. Middleware

Today: Distributed Middleware. Middleware Today: Distributed Middleware Middleware concepts Case study: CORBA Lecture 24, page 1 Middleware Software layer between application and the OS Provides useful services to the application Abstracts out

More information

Distributed Environments. CORBA, JavaRMI and DCOM

Distributed Environments. CORBA, JavaRMI and DCOM Distributed Environments CORBA, JavaRMI and DCOM Introduction to CORBA Distributed objects A mechanism allowing programs to invoke methods on remote objects Common Object Request Broker middleware - works

More information

CORBA COMMON OBJECT REQUEST BROKER ARCHITECTURE OVERVIEW OF CORBA, OMG'S OBJECT TECHNOLOGY FOR DISTRIBUTED APPLICATIONS CORBA

CORBA COMMON OBJECT REQUEST BROKER ARCHITECTURE OVERVIEW OF CORBA, OMG'S OBJECT TECHNOLOGY FOR DISTRIBUTED APPLICATIONS CORBA CORBA COMMON OBJECT REQUEST BROKER ARCHITECTURE OVERVIEW OF CORBA, OMG'S OBJECT TECHNOLOGY FOR DISTRIBUTED APPLICATIONS Peter R. Egli 1/27 Contents 1. What is CORBA? 2. CORBA Elements 3. The CORBA IDL

More information

1.264 Lecture 16. Legacy Middleware

1.264 Lecture 16. Legacy Middleware 1.264 Lecture 16 Legacy Middleware What is legacy middleware? Client (user interface, local application) Client (user interface, local application) How do we connect clients and servers? Middleware Network

More information

Advanced Topics in Operating Systems

Advanced Topics in Operating Systems Advanced Topics in Operating Systems MSc in Computer Science UNYT-UoG Dr. Marenglen Biba 8-9-10 January 2010 Lesson 10 01: Introduction 02: Architectures 03: Processes 04: Communication 05: Naming 06:

More information

Chapter 16. Layering a computing infrastructure

Chapter 16. Layering a computing infrastructure : Chapter 16 by David G. Messerschmitt Layering a computing infrastructure Applications Application components Middleware Operating system Network 2 1 Spanning layer Application Distributed object management

More information

The Umbilical Cord And Alphabet Soup

The Umbilical Cord And Alphabet Soup 2.771J BEH.453J HST.958J Spring 2005 Lecture 24 February 2005 The Umbilical Cord And Alphabet Soup THE UMBILICAL CORD AND ALPHABET SOUP Java contributions Interpreted language Remote code without security

More information

Distributed Object-Based Systems The WWW Architecture Web Services Handout 11 Part(a) EECS 591 Farnam Jahanian University of Michigan.

Distributed Object-Based Systems The WWW Architecture Web Services Handout 11 Part(a) EECS 591 Farnam Jahanian University of Michigan. Distributed Object-Based Systems The WWW Architecture Web Services Handout 11 Part(a) EECS 591 Farnam Jahanian University of Michigan Reading List Remote Object Invocation -- Tanenbaum Chapter 2.3 CORBA

More information

Lecture 5: Object Interaction: RMI and RPC

Lecture 5: Object Interaction: RMI and RPC 06-06798 Distributed Systems Lecture 5: Object Interaction: RMI and RPC Distributed Systems 1 Recap Message passing: send, receive synchronous versus asynchronous No global Time types of failure socket

More information

Interprocess Communication Tanenbaum, van Steen: Ch2 (Ch3) CoDoKi: Ch2, Ch3, Ch5

Interprocess Communication Tanenbaum, van Steen: Ch2 (Ch3) CoDoKi: Ch2, Ch3, Ch5 Interprocess Communication Tanenbaum, van Steen: Ch2 (Ch3) CoDoKi: Ch2, Ch3, Ch5 Fall 2008 Jussi Kangasharju Chapter Outline Overview of interprocess communication Remote invocations (RPC etc.) Message

More information

Qu O O & & A P P O O D

Qu O O & & A P P O O D Defense Enabling Using QuO: Experience in uilding Survivable CORA Applications Chris Jones, Partha Pal, Franklin Webber N Technologies QuO & APOD 1 APOD 12/1/2002 DOCSEC 2002 Christopher Jones APOD Overview

More information

ANSAwise - CORBA Interoperability

ANSAwise - CORBA Interoperability Poseidon House Castle Park Cambridge CB3 0RD United Kingdom TELEPHONE: Cambridge (01223) 515010 INTERNATIONAL: +44 1223 515010 FAX: +44 1223 359779 E-MAIL: apm@ansa.co.uk Training ANSAwise - CORBA Interoperability

More information

3C05 - Advanced Software Engineering Thursday, April 29, 2004

3C05 - Advanced Software Engineering Thursday, April 29, 2004 Distributed Software Architecture Using Middleware Avtar Raikmo Overview Middleware What is middleware? Why do we need middleware? Types of middleware Distributed Software Architecture Business Object

More information

UNIT 4 CORBA 4/2/2013 Middleware 59

UNIT 4 CORBA 4/2/2013 Middleware 59 UNIT 4 CORBA 4/2/2013 Middleware 59 CORBA AN OBJECT ORIENTED RPC MECHANISM HELPS TO DEVELOP DISTRIBUTED SYTEMS IN DIFF. PLATFORMS OBJECTS WRITTEN IN DIFF., LANG, CAN BE CALLED BY OBJECTS WRITTEN IN ANOTHER

More information

A Survey of Adaptive Middleware

A Survey of Adaptive Middleware A Survey for Ph.D. Qualifier Exam. A Survey of Adaptive Middleware S. M. Sadjadi Software Engineering and Network Systems Laboratory Department of Computer Science and Engineering Michigan State University

More information

Weapon Systems Open Architecture Overview

Weapon Systems Open Architecture Overview Weapon Systems Open Architecture Overview OMG Real-Time and Embedded Distributed Object Computing Workshop July 24-27, 2000 . Vision for Joint Theater Operations Joint Joint Forces Forces Global Global

More information

CAS 703 Software Design

CAS 703 Software Design Dr. Ridha Khedri Department of Computing and Software, McMaster University Canada L8S 4L7, Hamilton, Ontario Acknowledgments: Material based on Software by Tao et al. (Chapters 9 and 10) (SOA) 1 Interaction

More information

Appendix A - Glossary(of OO software term s)

Appendix A - Glossary(of OO software term s) Appendix A - Glossary(of OO software term s) Abstract Class A class that does not supply an implementation for its entire interface, and so consequently, cannot be instantiated. ActiveX Microsoft s component

More information

Lecture 06: Distributed Object

Lecture 06: Distributed Object Lecture 06: Distributed Object Distributed Systems Behzad Bordbar School of Computer Science, University of Birmingham, UK Lecture 0? 1 Recap Interprocess communication Synchronous and Asynchronous communication

More information

Distributed Objects and Remote Invocation. Programming Models for Distributed Applications

Distributed Objects and Remote Invocation. Programming Models for Distributed Applications Distributed Objects and Remote Invocation Programming Models for Distributed Applications Extending Conventional Techniques The remote procedure call model is an extension of the conventional procedure

More information

Distributed Systems. 5. Remote Method Invocation

Distributed Systems. 5. Remote Method Invocation Distributed Systems 5. Remote Method Invocation Werner Nutt 1 Remote Method Invocation 5.1 Communication between Distributed Objects 1. Communication between Distributed Objects 2. RMI 2 Middleware Middleware

More information

Session plan. sessionx. Desarrollo de Aplicaciones en Red. What s Corba? RPC vs. Corba. Middleware. Middleware task

Session plan. sessionx. Desarrollo de Aplicaciones en Red. What s Corba? RPC vs. Corba. Middleware. Middleware task sessionx Desarrollo de Aplicaciones en Red José Rafael Rojano Cáceres http://www.uv.mx/rrojano General vision Middleware OMA Corba IDL ORB IIOP Examples Session plan What s Corba? Middleware for Programming

More information

Evaluating Meta-Programming Mechanisms for ORB Middleware

Evaluating Meta-Programming Mechanisms for ORB Middleware Evaluating Meta-Programming Mechanisms for ORB Middleware Nanbor Wang and Kirthika Parameswaran fnanbor,kirthikag@cs.wustl.edu Department of Computer Science Washington University, St. Louis Douglas Schmidt

More information

Object Management Group. minimumcorba. Presented By Shahzad Aslam-Mir Vertel Corporation Copyright 2001 Object Management Group

Object Management Group. minimumcorba. Presented By Shahzad Aslam-Mir Vertel Corporation Copyright 2001 Object Management Group Presented By Shahzad Aslam-Mir Vertel Corporation Copyright 2001 Philosophy A standard profile for limited resource systems Simpler means smaller and faster Vendors can profile implementations

More information

Lecture 6. Architectural Patterns: Broker

Lecture 6. Architectural Patterns: Broker Lecture 6 Architectural Patterns: Broker Broker Pattern The Broker pattern can be used to structure distributed software systems with decoupled components that interact by remote service invocations. A

More information

ASPECTIX: A QUALITY-AWARE, OBJECT-BASED MIDDLEWARE ARCHITECTURE

ASPECTIX: A QUALITY-AWARE, OBJECT-BASED MIDDLEWARE ARCHITECTURE ASPECTIX: A QUALITY-AWARE, OBJECT-BASED MIDDLEWARE ARCHITECTURE Franz J. Hauck, Ulrich Becker, Martin Geier, Erich Meier, Uwe Rastofer, Martin Steckermeier Informatik 4, University of Erlangen-Nürnberg,

More information

Abstract. 1. Introduction

Abstract. 1. Introduction Towards Safety Critical Middleware for Avionics Applications D.A. Haverkamp, R.J. Richards, Ph.D., Rockwell Collins Advanced Technology Center, Advanced Computing Systems Department, Cedar Rapids, IA {dahaverk,

More information

Applications MW Technologies Fundamentals. Evolution. Applications MW Technologies Fundamentals. Evolution. Building Blocks. Summary.

Applications MW Technologies Fundamentals. Evolution. Applications MW Technologies Fundamentals. Evolution. Building Blocks. Summary. Summary Mariano Cilia cilia@informatik.tu-darmstadt.de 1 2 Communication Mechanisms Synchronous Asynchronous 3 4 RPC - Abstraction Remote Procedure (RPC) s System used interface interface definition logic

More information

Analysis of Passive CORBA Fault Tolerance Options for Real-Time Applications Robert A. Kukura, Raytheon IDS Paul V. Werme, NSWCDD

Analysis of Passive CORBA Fault Tolerance Options for Real-Time Applications Robert A. Kukura, Raytheon IDS Paul V. Werme, NSWCDD Analysis of Passive CORBA Fault Tolerance Options for Real-Time Applications Robert A. Kukura, Raytheon IDS Paul V. Werme, NSWCDD PASSIVE CORBA FAULT TOLERANCE All clients send method invocations only

More information

Advanced Lectures on knowledge Engineering

Advanced Lectures on knowledge Engineering TI-25 Advanced Lectures on knowledge Engineering Client-Server & Distributed Objects Platform Department of Information & Computer Sciences, Saitama University B.H. Far (far@cit.ics.saitama-u.ac.jp) http://www.cit.ics.saitama-u.ac.jp/~far/lectures/ke2/ke2-06/

More information

Amber streams presentation

Amber streams presentation Poseidon House Castle Park Cambridge CB3 0RD United Kingdom TELEPHONE: Cambridge (01223) 515010 INTERNATIONAL: +44 1223 515010 FAX: +44 1223 359779 E-MAIL: apm@ansa.co.uk Training Amber streams presentation

More information

QoS Control of Video Streams Using Quality Objects and the CORBA Audio/Video Service

QoS Control of Video Streams Using Quality Objects and the CORBA Audio/Video Service QoS Control of Streams Using Quality Objects and the CORBA Audio/ Service BBN Technologies OOMWorks Cambridge, MA St. Louis, MO http://www.dist-systems.bbn.com/tech/quo http://www.oomworks.com Craig Rodrigues

More information

Chapter 5: Distributed objects and remote invocation

Chapter 5: Distributed objects and remote invocation Chapter 5: Distributed objects and remote invocation From Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edition 4, Addison-Wesley 2005 Figure 5.1 Middleware layers Applications

More information

Contents. Java RMI. Java RMI. Java RMI system elements. Example application processes/machines Client machine Process/Application A

Contents. Java RMI. Java RMI. Java RMI system elements. Example application processes/machines Client machine Process/Application A Contents Java RMI G53ACC Chris Greenhalgh Java RMI overview A Java RMI example Overview Walk-through Implementation notes Argument passing File requirements RPC issues and RMI Other problems with RMI 1

More information

Software Paradigms (Lesson 10) Selected Topics in Software Architecture

Software Paradigms (Lesson 10) Selected Topics in Software Architecture Software Paradigms (Lesson 10) Selected Topics in Software Architecture Table of Contents 1 World-Wide-Web... 2 1.1 Basic Architectural Solution... 2 1.2 Designing WWW Applications... 7 2 CORBA... 11 2.1

More information

Communication. Distributed Systems Santa Clara University 2016

Communication. Distributed Systems Santa Clara University 2016 Communication Distributed Systems Santa Clara University 2016 Protocol Stack Each layer has its own protocol Can make changes at one layer without changing layers above or below Use well defined interfaces

More information

Architectural Patterns

Architectural Patterns Architectural Patterns CS 718 lecture series Prof. Rushikesh Joshi IIT Bombay wrapper provide a single layer of abstraction on top of many related functions wrapper an example the semop system call in

More information

Distributed Systems. What is a Distributed System?

Distributed Systems. What is a Distributed System? Distributed Systems A distributed system is one in which the failure of a computer you didn t even know existed can render your own computer unusable. Leslie Lamport What is a Distributed System? A distributed

More information

Distributed Object-based Systems CORBA

Distributed Object-based Systems CORBA Distributed Object-based Systems CORBA Dr. Yong Guan Department of Electrical and Computer Engineering & Information Assurance Center Iowa State University Outline for Today s Talk Role of CORBA and need

More information

Distributed Systems Principles and Paradigms. Distributed Object-Based Systems. Remote distributed objects. Remote distributed objects

Distributed Systems Principles and Paradigms. Distributed Object-Based Systems. Remote distributed objects. Remote distributed objects Distributed Systems Principles and Paradigms Maarten van Steen VU Amsterdam, Dept. Computer Science steen@cs.vu.nl Chapter 10: Version: December 10, 2012 1 / 22 10.1 Architecture 10.1 Architecture Remote

More information

Module 1 - Distributed System Architectures & Models

Module 1 - Distributed System Architectures & Models Module 1 - Distributed System Architectures & Models System Architecture Defines the structure of the system components identified functions of each component defined interrelationships and interactions

More information

On the Use of CORBA in High Level Software Applications at the SLS

On the Use of CORBA in High Level Software Applications at the SLS PAUL SCHERRER INSTITUT SLS TME TA 2001 0183 November, 2001 On the Use of CORBA in High Level Software Applications at the SLS Michael Böge, Jan Chrin Paul Scherrer Institut CH 5232 Villigen PSI Switzerland

More information

CHAPTER 2. Introduction to Middleware Technologies

CHAPTER 2. Introduction to Middleware Technologies CHAPTER 2. Introduction to Middleware Technologies What is Middleware? General Middleware Service Specific Middleware Client/Server Building blocks RPC Messaging Peer to Peer Java RMI. BHUSHAN JADHAV 1

More information

Distribution and web services

Distribution and web services Chair of Software Engineering Carlo A. Furia, Bertrand Meyer Distribution and web services From concurrent to distributed systems Node configuration Multiprocessor Multicomputer Distributed system CPU

More information

RMI: Design & Implementation

RMI: Design & Implementation RMI: Design & Implementation Operating Systems RMI 1 Middleware layers Applications, services RMI and RPC request-reply protocol marshalling and external data representation Middleware layers UDP and TCP

More information

Real-Time CORBA Experiences in an Avionics Domain

Real-Time CORBA Experiences in an Avionics Domain Real-Time CORBA Experiences in an Avionics Domain Jeanna Gossett, David Corman and David Sharp The Boeing Company OMG Real-Time Embedded and Distributed Object Computing Workshop June 7, 2001 Bold Stroke

More information

Oracle Tuxedo. CORBA Technical Articles 11g Release 1 ( ) March 2010

Oracle Tuxedo. CORBA Technical Articles 11g Release 1 ( ) March 2010 Oracle Tuxedo CORBA Technical Articles 11g Release 1 (11.1.1.1.0) March 2010 Oracle Tuxedo CORBA Technical Articles, 11g Release 1 (11.1.1.1.0) Copyright 1996, 2010, Oracle and/or its affiliates. All rights

More information

Interconnection of Distributed Components: An Overview of Current Middleware Solutions *

Interconnection of Distributed Components: An Overview of Current Middleware Solutions * Interconnection of Distributed Components: An Overview of Current Middleware Solutions * Susan D. Urban, Suzanne W. Dietrich, Akash Saxena, and Amy Sundermier Arizona State University Department of Computer

More information

QoS for Distributed Objects by Generating Tailored Protocols

QoS for Distributed Objects by Generating Tailored Protocols QoS for Distributed Objects by Generating Tailored Protocols Matthias Jung, Ernst W. Biersack Institut Eurécom, 2229 Route des Crêtes, 06190 Sophia Antipolis, France fjung,erbig@eurecom.fr In ECOOP 00

More information

Flexible Fault Tolerance In Configurable Middleware For Embedded Systems

Flexible Fault Tolerance In Configurable Middleware For Embedded Systems School of Electrical Engineering and Computer Science Flexible Fault Tolerance In Configurable Middleware For Embedded Systems Kevin Dorow 19 November 2002 Acknowledgment Dr. Bakken advisor Committee members

More information

The Design and Performance of a Pluggable Protocols Framework for Real-time Distributed Object Computing Middleware

The Design and Performance of a Pluggable Protocols Framework for Real-time Distributed Object Computing Middleware The Design and Performance of a Pluggable Protocols Framework for Real-time Distributed Object Computing Middleware, Fred Kuhns, Douglas C. Schmidt, Ossama Othman and Jeff Parsons coryan@uci.edu http://www.ece.uci.edu/coryan/

More information

Challenges in component based programming. Lena Buffoni

Challenges in component based programming. Lena Buffoni Challenges in component based programming Lena Buffoni Challenge: Size & complexity Software is everywhere and increasingly complex (embedded systems, internet of things ) Single products have become product

More information

Introduction and Overview Socket Programming Lower-level stuff Higher-level interfaces Security. Network Programming. Samuli Sorvakko/Nixu Oy

Introduction and Overview Socket Programming Lower-level stuff Higher-level interfaces Security. Network Programming. Samuli Sorvakko/Nixu Oy Network Programming Samuli Sorvakko/Nixu Oy Telecommunications software and Multimedia Laboratory T-110.4100 Computer Networks October 5, 2009 Agenda 1 Introduction and Overview 2 Socket Programming 3

More information

Recommendations for a CORBA Language Mapping for RTSJ

Recommendations for a CORBA Language Mapping for RTSJ CORBA Language Mapping Victor Giddings Objective Interface Systems victor.giddings@ois.com Outline Real-time Specification for Java Background Memory Management Thread Types Thread Priorities IDL to RTSJ

More information

Performance Evaluation of Java And C++ Distributed Applications In A CORBA Environment

Performance Evaluation of Java And C++ Distributed Applications In A CORBA Environment Performance Evaluation of Java And C++ Distributed Applications In A CORBA Environment Sanjay P. Ahuja Roger Eggen Cheryl Daucher Department of Computer and Information Sciences University of North Florida

More information

1 PROGRAMMING LANGUAGE INTEROPERABILITY IN DISTRIBUTED COMPUTING ENVIRONMENTS

1 PROGRAMMING LANGUAGE INTEROPERABILITY IN DISTRIBUTED COMPUTING ENVIRONMENTS 1 PROGRAMMING LANGUAGE INTEROPERABILITY IN DISTRIBUTED COMPUTING ENVIRONMENTS H. Arno Jacobsen Institute of Information Systems Humboldt University, Berlin Spandauerstr. 1 D 10178 Berlin jacobsen@wiwi.hu-berlin.de

More information

Distributed Technologies - overview & GIPSY Communication Procedure

Distributed Technologies - overview & GIPSY Communication Procedure DEPARTMENT OF COMPUTER SCIENCE CONCORDIA UNIVERSITY Distributed Technologies - overview & GIPSY Communication Procedure by Emil Vassev June 09, 2003 Index 1. Distributed Applications 2. Distributed Component

More information

Verteilte Systeme (Distributed Systems)

Verteilte Systeme (Distributed Systems) Verteilte Systeme (Distributed Systems) Karl M. Göschka Karl.Goeschka@tuwien.ac.at http://www.infosys.tuwien.ac.at/teaching/courses/ VerteilteSysteme/ Lecture 3: Communication (Part 2) Remote Procedure

More information

Remote Invocation. 1. Introduction 2. Remote Method Invocation (RMI) 3. RMI Invocation Semantics

Remote Invocation. 1. Introduction 2. Remote Method Invocation (RMI) 3. RMI Invocation Semantics Remote Invocation Nicola Dragoni Embedded Systems Engineering DTU Informatics 1. Introduction 2. Remote Method Invocation (RMI) 3. RMI Invocation Semantics From the First Lecture (Architectural Models)...

More information

Real-time & Embedded Systems Workshop July 2007 Building Successful Real-time Distributed Systems in Java

Real-time & Embedded Systems Workshop July 2007 Building Successful Real-time Distributed Systems in Java Real-time & Embedded Systems Workshop July 2007 Building Successful Real-time Distributed Systems in Java Andrew Foster Product Manager PrismTech Corporation The Case for Java in Enterprise Real-Time Systems

More information

Distributed Systems. The main method of distributed object communication is with remote method invocation

Distributed Systems. The main method of distributed object communication is with remote method invocation Distributed Systems Unit III Syllabus:Distributed Objects and Remote Invocation: Introduction, Communication between Distributed Objects- Object Model, Distributed Object Modal, Design Issues for RMI,

More information

QuickSpecs. Compaq NonStop Transaction Server for Java Solution. Models. Introduction. Creating a state-of-the-art transactional Java environment

QuickSpecs. Compaq NonStop Transaction Server for Java Solution. Models. Introduction. Creating a state-of-the-art transactional Java environment Models Bringing Compaq NonStop Himalaya server reliability and transactional power to enterprise Java environments Compaq enables companies to combine the strengths of Java technology with the reliability

More information

Verteilte Systeme (Distributed Systems)

Verteilte Systeme (Distributed Systems) Verteilte Systeme (Distributed Systems) Karl M. Göschka Karl.Goeschka@tuwien.ac.at http://www.infosys.tuwien.ac.at/teaching/courses/ VerteilteSysteme/ Lecture 4: Operating System Support Processes and

More information

Introduction and Overview Socket Programming Higher-level interfaces Final thoughts. Network Programming. Samuli Sorvakko/Nixu Oy

Introduction and Overview Socket Programming Higher-level interfaces Final thoughts. Network Programming. Samuli Sorvakko/Nixu Oy Network Programming Samuli Sorvakko/Nixu Oy Telecommunications software and Multimedia Laboratory T-110.4100 Computer Networks October 16, 2008 Agenda 1 Introduction and Overview Introduction 2 Socket

More information

Electronic Payment Systems (1) E-cash

Electronic Payment Systems (1) E-cash Electronic Payment Systems (1) Payment systems based on direct payment between customer and merchant. a) Paying in cash. b) Using a check. c) Using a credit card. Lecture 24, page 1 E-cash The principle

More information

Connecting ESRI to Anything: EAI Solutions

Connecting ESRI to Anything: EAI Solutions Connecting ESRI to Anything: EAI Solutions Frank Weiss P.E., ESRI User s Conference 2002 Agenda Introduction What is EAI? Industry trends Key integration issues Point-to-point interfaces vs. Middleware

More information

Phasor Data Networks and Middleware

Phasor Data Networks and Middleware Phasor Data Networks and Middleware Prof. Dave Bakken School of Electrical Engineering and Computer Science Washington State University Pullman, Washington, USA bakken@eecs.wsu.edu NASPI Working Group

More information

(D)COM Microsoft s response to CORBA. Alessandro RISSO - PS/CO

(D)COM Microsoft s response to CORBA. Alessandro RISSO - PS/CO (D)COM Microsoft s response to CORBA Alessandro RISSO - PS/CO Talk Outline DCOM What is DCOM? COM Components COM Library Transport Protocols, Security & Platforms Availability Services Based on DCOM DCOM

More information

Architectural Design Outline

Architectural Design Outline Architectural Design Outline Prev lecture general design principles. design Today architectural 1. What is a software architecture 2. Components, Connectors, and Configurations 3. Modeling Architectures:

More information

Application Servers in E-Commerce Applications

Application Servers in E-Commerce Applications Application Servers in E-Commerce Applications Péter Mileff 1, Károly Nehéz 2 1 PhD student, 2 PhD, Department of Information Engineering, University of Miskolc Abstract Nowadays there is a growing demand

More information

Distributed Objects. Chapter Distributing Objects Overview

Distributed Objects. Chapter Distributing Objects Overview Middleware Architecture with Patterns and Frameworks c 2003-2009, Sacha Krakowiak (version of February 27, 2009-12:58) Creative Commons license (http://creativecommons.org/licenses/by-nc-nd/3.0/) Chapter

More information

presentation DAD Distributed Applications Development Cristian Toma

presentation DAD Distributed Applications Development Cristian Toma Lecture 9 S4 - Core Distributed Middleware Programming in JEE presentation DAD Distributed Applications Development Cristian Toma D.I.C.E/D.E.I.C Department of Economic Informatics & Cybernetics www.dice.ase.ro

More information

Distributed Computing

Distributed Computing Distributed Computing 1 Why distributed systems: Benefits & Challenges The Sydney Olympic game system: see text page 29-30 Divide-and-conquer Interacting autonomous systems Concurrencies Transactions 2

More information