Accelerating Big Data with Hadoop (HDFS, MapReduce and HBase) and Memcached

Size: px
Start display at page:

Download "Accelerating Big Data with Hadoop (HDFS, MapReduce and HBase) and Memcached"

Transcription

1 Accelerating Big Data with Hadoop (HDFS, MapReduce and HBase) and Memcached Talk at HPC Advisory Council Lugano Conference (213) by Dhabaleswar K. (DK) Panda The Ohio State University

2 Big Data Provides groundbreaking opportunities for enterprise information management and decision making The rate of information growth appears to be exceeding Moore s Law The amount of data is exploding; companies are capturing and digitizing more information that ever 35 zettabytes of data will be generated and consumed by the end of this decade Courtesy: John Gantz and David Reinsel, "The Digital Universe Decade Are You Ready?" May

3 Frequency of Big Data An Example Graph of 126 Twitter users whose tweets contain big data Tweets made over a period of 8 hours and 24 minutes 3

4 Trends of Networking Technologies in TOP5 Systems Interconnect Family Systems Share Interconnect Family Performance Share 4

5 HPC and Advanced Interconnects High-Performance Computing (HPC) has adopted advanced interconnects and protocols InfiniBand 1 Gigabit Ethernet/iWARP RDMA over Converged Enhanced Ethernet (RoCE) Very Good Performance Low latency (few micro seconds) High Bandwidth (1 Gb/s with dual FDR InfiniBand) Low CPU overhead (5-1%) OpenFabrics software stack with IB, iwarp and RoCE interfaces are driving HPC systems Many such systems in Top5 list 5

6 Use of High-Performance Networks for Scientific Computing Message Passing Interface (MPI) Parallel File Systems Storage Systems Almost 12 years of Research and Development since InfiniBand was introduced in October 2 Other Programming Models are emerging to take advantage of High-Performance Networks UPC OpenSHMEM Hybrid MPI+PGAS (OpenSHMEM and UPC) 6

7 Big Data/Enterprise/Commercial Computing Focuses on large data and data analysis Hadoop (HDFS, HBase, MapReduce) environment is gaining a lot of momentum Memcached is also used for Web 2. 7

8 Can High-Performance Interconnects Benefit Enterprise Computing? Most of the current enterprise systems use 1GE Concerns for performance and scalability Usage of High-Performance Networks is beginning to draw interest Oracle, IBM, Google are working along these directions What are the challenges? Where do the bottlenecks lie? Can these bottlenecks be alleviated with new designs (similar to the designs adopted for MPI)? 8

9 Presentation Outline Overview of Hadoop (HDFS, MapReduce and HBase) and Memcached Challenges in Accelerating Enterprise Middleware Designs and Case Studies Hadoop HDFS MapReduce HBase Combination (HDFS + HBase) Memcached Conclusion and Q&A 9

10 Big Data Processing with Hadoop The open-source implementation of MapReduce programming model for Big Data Analytics Framework includes: MapReduce, HDFS, and HBase Underlying Hadoop Distributed File System (HDFS) used by MapReduce and HBase Model scales but high amount of communication during intermediate phases HPC Advisory Council Stanford Conference, Mar'13 1

11 Hadoop Distributed File System (HDFS) Primary storage of Hadoop; highly reliable and fault-tolerant Adopted by many reputed organizations eg:- Facebook, Yahoo! NameNode: stores the file system namespace DataNode: stores data blocks Developed in Java for platformindependence and portability Uses sockets for communication! (HDFS Architecture) 11

12 Network-Level Interaction Between Clients and Data Nodes in HDFS (HDD/SSD) High Performance Networks (HDD/SSD) (HDD/SSD) (HDFS Clients) (HDFS Data Nodes) HPC Advisory Council Stanford Conference, Mar '13 12

13 HBase Apache Hadoop Database ( Semi-structured database, which is highly scalable ZooKeeper Integral part of many datacenter applications eg:- Facebook Social Inbox Developed in Java for platformindependence and portability HBase Client HMaster HRegion Servers (HBase Architecture) HDFS Uses sockets for communication! 13

14 Network-Level Interaction Between HBase Clients, Region Servers and Data Nodes (HDD/SSD) High Performance Networks... High Performance Networks... (HDD/SSD) (HDD/SSD) (HBase Clients) (HRegion Servers) (Data Nodes) HPC Advisory Council Stanford Conference, Mar '13 14

15 Memcached Architecture Main memory CPUs Main memory CPUs SSD HDD... SSD HDD!"#$%"$#& High Performance Networks High Performance Networks Main memory SSD CPUs HDD High Performance Networks Main memory SSD CPUs HDD (Database Servers) Main memory CPUs Web Frontend Servers (Memcached Clients) (Memcached Servers) SSD HDD Integral part of Web 2. architecture Distributed Caching Layer Allows to aggregate spare memory from multiple nodes General purpose Typically used to cache database queries, results of API calls Scalable model, but typical usage very network intensive HPC Advisory Council Stanford Conference, Mar '13 15

16 Presentation Outline Overview of Hadoop (HDFS, MapReduce and HBase) and Memcached Challenges in Accelerating Enterprise Middleware Designs and Case Studies Hadoop HDFS MapReduce HBase Combination (HDFS and HBase) Memcached Conclusion and Q&A 16

17 Designing Communication and I/O Libraries for Enterprise Systems: Challenges Appl i c at i on s D at ac e n t e r M i ddl e war e (H D F S, H Ba s e, M a pre duc e, M e m c a c he d) P r ogr am m i n g M ode l s (S oc ke t ) Com m u n i c at i on an d I / O L i br ar y P oi nt -t o-p oi nt Com m uni c a t i on T hre a di ng M ode l s a nd S ync hroni z a t i on I/ O a nd F i l e s ys t e m s Q os F a ul t T ol e ra nc e N e t w orki ng T e c hnol ogi e s (Infi ni Ba nd, 1/ 1/ 4 G i G E, RN ICs & Int e l l i ge nt N ICs ) Com m odi t y Com put i ng S ys t e m A rc hi t e c t ure s (s i ngl e, dua l, qua d,..) M ul t i / M a ny-c ore A rc hi t e c t ure a nd A c c e l e ra t ors S t ora ge T e c hnol ogi e s (H D D or S S D ) 17

18 Common Protocols using Open Fabrics Application Application Interface Sockets Verbs Protocol Kernel Space TCP/IP TCP/IP RSockets SDP iwarp RDMA RDMA Ethernet Driver IPoIB Hardware Offload User space RDMA User space User space User space Adapter Ethernet Adapter InfiniBand Adapter Ethernet Adapter InfiniBand Adapter InfiniBand Adapter iwarp Adapter RoCE Adapter InfiniBand Adapter Switch Ethernet Switch InfiniBand Switch Ethernet Switch InfiniBand Switch InfiniBand Switch Ethernet Switch Ethernet Switch InfiniBand Switch 1/1/4 GigE IPoIB 1/4 GigE- TOE RSockets SDP iwarp RoCE IB Verbs 18

19 Can Big Data Processing Systems be Designed with High- Performance Networks and Protocols? Current Design Enhanced Designs Our Approach Application Application Application Sockets Accelerated Sockets Verbs / Hardware Offload OSU Design Verbs Interface 1/1 GigE Network 1 GigE or InfiniBand 1 GigE or InfiniBand Sockets not designed for high-performance Stream semantics often mismatch for upper layers (Memcached, HBase, Hadoop) Zero-copy not available for non-blocking sockets 19

20 Interplay between Storage and Interconnect/Protocols Most of the current generation enterprise systems use the traditional hard disks Since hard disks are slower, high performance communication protocols may not have impact SSDs and other storage technologies are emerging Does it change the landscape? 2

21 Presentation Outline Overview of Hadoop (HDFS, MapReduce and HBase) and Memcached Challenges in Accelerating Enterprise Middleware Designs and Case Studies Hadoop HDFS MapReduce HBase Combination (HDFS + HBase) Memcached Conclusion and Q&A 21

22 HDFS-RDMA Design Overview Enables high performance RDMA communication, while supporting traditional socket interface Applications Others Java Socket Interface HDFS Write Java Native Interface (JNI) OSU Design HDFS Write involves replication; more network intensive HDFS Read is mostly node-local 1/1 GigE, IPoIB Network IB Verbs InfiniBand JNI Layer bridges Java based HDFS with communication library written in native code Only the communication part of HDFS Write is modified; No change in HDFS architecture 22

23 Communication Times in HDFS Communication Time (s) GigE IPoIB (QDR) OSU-IB (QDR) Reduced by 3% 1 2GB 4GB 6GB 8GB 1GB Cluster B with 32 HDD DataNodes File Size (GB) 3% improvement in communication time over IPoIB (32Gbps) 87% improvement in communication time over 1GigE Similar improvements are obtained for SSD DataNodes N. S. Islam, M. W. Rahman, J. Jose, R. Rajachandrasekar, H. Wang, H. Subramoni, C. Murthy and D. K. Panda, High Performance RDMA-Based Design of HDFS over InfiniBand, Supercomputing (SC), Nov

24 Throughput (MegaBytes/s) Throughput (MegaBytes/s) Evaluations using TestDFSIO GigE IPoIB (QDR) OSU-IB (QDR) GigE IPoIB (QDR) OSU-IB (QDR) Increased by 15% 1 8 Increased by 13.5% File Size (GB) File Size (GB) Cluster with 32 HDD Nodes Cluster with 4 SSD Nodes Cluster with 32 HDD DataNodes 13.5% improvement over IPoIB (32Gbps) for 8GB file size Cluster with 4 SSD DataNodes 15% improvement over IPoIB (32Gbps) for 8GB file size 24

25 Average Throughput (MegaBytes/s) Evaluations using TestDFSIO GigE (1HDD) IPoIB(1HDD) OSU-IB (1HDD) 1GigE (2HDD) IPoIB (2HDD) OSU-IB (2HDD) 25 2 Increased by 16.2% File Size (GB) Cluster with 4 DataNodes, 1 HDD per node 1% improvement over IPoIB (32Gbps) for 1GB file size Cluster with 4 DataNodes, 2 HDD per node 16.2% improvement over IPoIB (32Gbps) for 1GB file size 2 HDD vs 1 HDD 2.1x improvement for OSU-IB (32Gbps) 1.8x improvement for IPoIB (32Gbps) 25

26 Average Latency (us) Throughput (MegaBytes/s) Evaluations using YCSB (Single Region Server: 1% Update) GigE IPoIB (QDR) OSU-IB (QDR) 12K 24K 36K 48K Number of Record (Record Size = 1KB) Put Latency GigE IPoIB (QDR) OSU-IB (QDR) 12K 24K 36K 48K Number of Records (Record Size = 1KB) Put Throughput HBase using TCP/IP, running over HDFS-IB HBase Put latency for 36K records 24 us for OSU Design; 252 us for IPoIB (32Gbps) HBase Put throughput for 36K records 4.42 Kops/sec for OSU Design; 3.63 Kops/sec for IPoIB (32Gbps) 2% improvement in both average latency and throughput 26

27 Average Latency (us) Throughput (Kops/sec) Evaluations using YCSB (32 Region Servers: 1% Update) GigE IPoIB (QDR) OSU-IB (QDR) 12K 24K 36K 48K Number of Records (Record Size = 1KB) Put Latency HBase using TCP/IP, running over HDFS-IB HBase Put latency for 48K records 21 us for OSU Design; 272 us for IPoIB (32Gbps) HBase Put throughput for 48K records Number of Records (Record Size = 1KB) Put Throughput 4.42 Kops/sec for OSU Design; 3.63 Kops/sec for IPoIB (32Gbps) 26% improvement in average latency; 24% improvement in throughput GigE IPoIB (QDR) OSU-IB (QDR) 12K 24K 36K 48K

28 Presentation Outline Overview of Hadoop (HDFS, MapReduce and HBase) and Memcached Challenges in Accelerating Enterprise Middleware Designs and Case Studies Hadoop HDFS MapReduce HBase Combination (HDFS + HBase) Memcached Conclusion and Q&A 28

29 MapReduce-RDMA Design Overview Applications RDMA-enabled MapReduce Job Task Map Tracker Tracker Reduce Java Socket Interface Java Native Interface (JNI) OSU-IB Design IB Verbs 1/1 GigE Network RDMA Capable Networks (IB, 1GE/ iwarp, RoCE..) Enables high performance RDMA communication, while supporting traditional socket interface 29

30 Execution Time (sec) Execution Time (sec) Evaluations using Sort GigE IPoIB (QDR) OSU-IB (QDR) GigE IPoIB (QDR) OSU-IB (QDR) Sort Size (GB) Sort Size (GB) For 5-2 GB Sort, 4-node cluster with a single SSD per node For 25-4 GB Sort, 8-node cluster with a single HDD per node 46% improvement over IPoIB (32 Gbps) for 15 GB Sort 27% improvement over IPoIB (32 Gbps) for 4 GB Sort 3

31 Execution Time (sec) Evaluations using TeraSort GigE IPoIB (QDR) OSU-IB (QDR) GB 6 GB 1 GB 2 GB Cluster Size = 4 Cluster Size = 8 Cluster Size = 12 Cluster Size = 24 Cluster Size 4 and 8 have 24 GB RAM in each node, Cluster Size 12 and 24 have 12 GB RAM in each node, all the nodes have single HDD 41% improvement over IPoIB (32Gbps) for 1 GB Terasort 31

32 Execution Time (sec) Evaluations using PUMA Workload 3 25 IPoIB (QDR) OSU-IB (QDR) Adjacency List (3GB) Self Join (3 GB) Word Count (5 GB) Sequence Count (5 GB) Inverted Index (5 GB) Workloads The DataSet for these workloads are taken from PUMA (Purdue MapReduce Benchmark Suite) 46% improvement in Adjacency List over IPoIB (32Gbps) for 3 GB data size 33% improvement in Sequence Count over IPoIB (32 Gbps) for 5 GB data size 32

33 Presentation Outline Overview of Hadoop (HDFS, MapReduce and HBase) and Memcached Challenges in Accelerating Enterprise Middleware Designs and Case Studies Hadoop HDFS MapReduce HBase Combination (HDFS + HBase) Memcached Conclusion and Q&A 33

34 Time (us) Time (us) HBase Put/Get Detailed Analysis Communication Communication Preparation Server Processing Server Serialization Client Processing Client Serialization 5 5 1GigE IPoIB 1GigE OSU-IB HBase Put 1KB HBase 1KB Put Communication Time 8.9 us A factor of 6X improvement over 1GE for communication time HBase 1KB Get Communication Time 8.9 us A factor of 6X improvement over 1GE for communication time 1GigE IPoIB 1GigE OSU-IB HBase Get 1KB W. Rahman, J. Huang, J. Jose, X. Ouyang, H. Wang, N. Islam, H. Subramoni, Chet Murthy and D. K. Panda, Understanding the Communication Characteristics in HBase: What are the Fundamental Bottlenecks?, ISPASS 12 34

35 HBase-RDMA Design Overview Applications HBase Java Socket Interface Java Native Interface (JNI) OSU-IB Design IB Verbs 1/1 GigE Network RDMA Capable Networks (IB, 1GE/ iwarp, RoCE..) JNI Layer bridges Java based HBase with communication library written in native code Enables high performance RDMA communication, while supporting traditional socket interface 35

36 Time (us) Ops/sec HBase Single Server-Multi-Client Results IPoIB OSU-IB 4 4 1GigE 3 3 1GigE No. of Clients No. of Clients Latency Throughput HBase Get latency 4 clients: 14.5 us; 16 clients: us HBase Get throughput 4 clients: 37.1 Kops/sec; 16 clients: 53.4 Kops/sec 27% improvement in throughput for 16 clients over 1GE 36

37 Time (us) Time (us) HBase YCSB Read-Write Workload IPoIB 1GigE OSU-IB 1GigE No. of Clients No. of Clients Read Latency HBase Get latency (Yahoo! Cloud Service Benchmark) 64 clients: 2. ms; 128 Clients: 3.5 ms 42% improvement over IPoIB for 128 clients HBase Get latency 64 clients: 1.9 ms; 128 Clients: 3.5 ms 4% improvement over IPoIB for 128 clients Write Latency J. Huang, X. Ouyang, J. Jose, W. Rahman, H. Wang, M. Luo, H. Subramoni, Chet Murthy and D. K. Panda, High-Performance Design of HBase with RDMA over InfiniBand, IPDPS 12 37

38 Presentation Outline Overview of Hadoop (HDFS, MapReduce and HBase) and Memcached Challenges in Accelerating Enterprise Middleware Designs and Case Studies Hadoop HDFS MapReduce HBase Combination (HDFS + HBase) Memcached Conclusion and Q&A 38

39 Latency (us) Throughput (Kops/sec) HDFS and HBase Integration over IB (OSU-IB) 1GigE IPoIB (QDR) 1GigE IPoIB (QDR) OSU-IB (HDFS) - IPoIB (HBase) (QDR) OSU-IB (HDFS) - OSU-IB (HBase) (QDR) OSU-IB (HDFS) - IPoIB (HBase) (QDR) OSU-IB (HDFS) - OSU-IB (HBase) (QDR) K 24K 36K 48K Number of Records (Record Size = 1KB) 12K 24K 36K 48K Number of Records (Record Size = 1KB) YCSB Evaluation with 4 RegionServers (1% update) HBase Put Latency and Throughput for 36K records - 37% improvement over IPoIB (32Gbps) - 18% improvement over OSU-IB HDFS only 39

40 Presentation Outline Overview of Hadoop (HDFS, MapReduce and HBase) and Memcached Challenges in Accelerating Enterprise Middleware Designs and Case Studies Hadoop HDFS MapReduce HBase Combination (HDFS + HBase) Memcached Conclusion and Q&A 4

41 Memcached-RDMA Design Sockets Client RDMA Client Master Thread Sockets Worker Thread Verbs Worker Thread Sockets Worker Thread Verbs Worker Thread Shared Data Memory Slabs Items Memcached applications need not be modified; uses verbs interface if available Memcached Server can serve both socket and verbs clients simultaneously Native IB-verbs-level Design and evaluation with Memcached Server: Memcached Client: (libmemcached).52 41

42 Time (us) Time (us) Memcached Get Latency (Small Message) SDP OSU-RC-IB 1GigE IPoIB 1GigE OSU-UD-IB K 2K K 2K Message Size Message Size Intel Clovertown Cluster (IB: DDR) Intel Westmere Cluster (IB: QDR) Memcached Get latency 4 bytes RC/UD DDR: 6.82/7.55 us; QDR: 4.28/4.86 us 2K bytes RC/UD DDR: 12.31/12.78 us; QDR: 8.19/8.46 us Almost factor of four improvement over 1GE (TOE) for 2K bytes on the DDR cluster 42

43 Thousands of Transactions per second (TPS) Thousands of Transactions per second (TPS) Memcached Get TPS (4byte) SDP OSU-RC-IB OSU-UD-IB IPoIB 1GigE K 4 8 No. of Clients No. of Clients Memcached Get transactions per second for 4 bytes On IB QDR 1.4M/s (RC), 1.3 M/s (UD) for 8 clients Significant improvement with native IB QDR compared to SDP and IPoIB 43

44 Time (ms) Time (ms) Application Level Evaluation Olio Benchmark SDP 1 IPoIB OSU-RC-IB OSU-UD-IB OSU-Hybrid-IB No. of Clients No. of Clients Olio Benchmark RC 1.6 sec, UD 1.9 sec, Hybrid 1.7 sec for 124 clients 4X times better than IPoIB for 8 clients Hybrid design achieves comparable performance to that of pure RC design 44

45 Time (ms) Time (ms) Application Level Evaluation Real Application Workloads 12 SDP 1 IPoIB OSU-RC-IB 8 OSU-UD-IB OSU-Hybrid-IB No. of Clients Real Application Workload RC 32 ms, UD 318 ms, Hybrid 314 ms for 124 clients 12X times better than IPoIB for 8 clients Hybrid design achieves comparable performance to that of pure RC design No. of Clients J. Jose, H. Subramoni, M. Luo, M. Zhang, J. Huang, W. Rahman, N. Islam, X. Ouyang, H. Wang, S. Sur and D. K. Panda, Memcached Design on High Performance RDMA Capable Interconnects, ICPP 11 J. Jose, H. Subramoni, K. Kandalla, W. Rahman, H. Wang, S. Narravula, and D. K. Panda, Scalable Memcached design for InfiniBand Clusters using Hybrid Transport, CCGrid 12 45

46 Designing Communication and I/O Libraries for Enterprise Systems: Solved a Few Initial Challenges Appl i c at i on s D at ac e n t e r M i ddl e war e (H D F S, H Ba s e, M a pre duc e, M e m c a c he d) Upper level Changes? P r ogr am m i n g M ode l s (S oc ke t ) Com m u n i c at i on an d I / O L i br ar y P oi nt -t o-p oi nt Com m uni c a t i on T hre a di ng M ode l s a nd S ync hroni z a t i on I/ O a nd F i l e s ys t e m s Q os F a ul t T ol e ra nc e N e t w orki ng T e c hnol ogi e s (Infi ni Ba nd, 1/ 1/ 4 G i G E, RN ICs & Int e l l i ge nt N ICs ) Com m odi t y Com put i ng S ys t e m A rc hi t e c t ure s (s i ngl e, dua l, qua d,..) M ul t i / M a ny-c ore A rc hi t e c t ure a nd A c c e l e ra t ors S t ora ge T e c hnol ogi e s (H D D or S S D ) 46

47 Concluding Remarks Presented initial designs to take advantage of InfiniBand/RDMA for HDFS, MapReduce, HBase and Memcached Results are promising Working on Integrated designs of all components Many other open issues need to be solved including design changes at the upper layers Will enable BigData community to take advantage of modern clusters and Hadoop middleware to carry out their analytics in a fast and scalable manner 47

48 Web Pointers MVAPICH Web Page 48

Acceleration for Big Data, Hadoop and Memcached

Acceleration for Big Data, Hadoop and Memcached Acceleration for Big Data, Hadoop and Memcached A Presentation at HPC Advisory Council Workshop, Lugano 212 by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

Can Parallel Replication Benefit Hadoop Distributed File System for High Performance Interconnects?

Can Parallel Replication Benefit Hadoop Distributed File System for High Performance Interconnects? Can Parallel Replication Benefit Hadoop Distributed File System for High Performance Interconnects? N. S. Islam, X. Lu, M. W. Rahman, and D. K. Panda Network- Based Compu2ng Laboratory Department of Computer

More information

In the multi-core age, How do larger, faster and cheaper and more responsive memory sub-systems affect data management? Dhabaleswar K.

In the multi-core age, How do larger, faster and cheaper and more responsive memory sub-systems affect data management? Dhabaleswar K. In the multi-core age, How do larger, faster and cheaper and more responsive sub-systems affect data management? Panel at ADMS 211 Dhabaleswar K. (DK) Panda Network-Based Computing Laboratory Department

More information

A Plugin-based Approach to Exploit RDMA Benefits for Apache and Enterprise HDFS

A Plugin-based Approach to Exploit RDMA Benefits for Apache and Enterprise HDFS A Plugin-based Approach to Exploit RDMA Benefits for Apache and Enterprise HDFS Adithya Bhat, Nusrat Islam, Xiaoyi Lu, Md. Wasi- ur- Rahman, Dip: Shankar, and Dhabaleswar K. (DK) Panda Network- Based Compu2ng

More information

Memcached Design on High Performance RDMA Capable Interconnects

Memcached Design on High Performance RDMA Capable Interconnects Memcached Design on High Performance RDMA Capable Interconnects Jithin Jose, Hari Subramoni, Miao Luo, Minjia Zhang, Jian Huang, Md. Wasi- ur- Rahman, Nusrat S. Islam, Xiangyong Ouyang, Hao Wang, Sayantan

More information

Big Data Meets HPC: Exploiting HPC Technologies for Accelerating Big Data Processing and Management

Big Data Meets HPC: Exploiting HPC Technologies for Accelerating Big Data Processing and Management Big Data Meets HPC: Exploiting HPC Technologies for Accelerating Big Data Processing and Management SigHPC BigData BoF (SC 17) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

High Performance File System and I/O Middleware Design for Big Data on HPC Clusters

High Performance File System and I/O Middleware Design for Big Data on HPC Clusters High Performance File System and I/O Middleware Design for Big Data on HPC Clusters by Nusrat Sharmin Islam Advisor: Dhabaleswar K. (DK) Panda Department of Computer Science and Engineering The Ohio State

More information

Accelerating Data Management and Processing on Modern Clusters with RDMA-Enabled Interconnects

Accelerating Data Management and Processing on Modern Clusters with RDMA-Enabled Interconnects Accelerating Data Management and Processing on Modern Clusters with RDMA-Enabled Interconnects Keynote Talk at ADMS 214 by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

Accelerating Big Data Processing with RDMA- Enhanced Apache Hadoop

Accelerating Big Data Processing with RDMA- Enhanced Apache Hadoop Accelerating Big Data Processing with RDMA- Enhanced Apache Hadoop Keynote Talk at BPOE-4, in conjunction with ASPLOS 14 (March 2014) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

MVAPICH2 Project Update and Big Data Acceleration

MVAPICH2 Project Update and Big Data Acceleration MVAPICH2 Project Update and Big Data Acceleration Presentation at HPC Advisory Council European Conference 212 by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

SR-IOV Support for Virtualization on InfiniBand Clusters: Early Experience

SR-IOV Support for Virtualization on InfiniBand Clusters: Early Experience SR-IOV Support for Virtualization on InfiniBand Clusters: Early Experience Jithin Jose, Mingzhe Li, Xiaoyi Lu, Krishna Kandalla, Mark Arnold and Dhabaleswar K. (DK) Panda Network-Based Computing Laboratory

More information

High Performance Big Data (HiBD): Accelerating Hadoop, Spark and Memcached on Modern Clusters

High Performance Big Data (HiBD): Accelerating Hadoop, Spark and Memcached on Modern Clusters High Performance Big Data (HiBD): Accelerating Hadoop, Spark and Memcached on Modern Clusters Presentation at Mellanox Theatre (SC 17) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

High Performance Big Data (HiBD): Accelerating Hadoop, Spark and Memcached on Modern Clusters

High Performance Big Data (HiBD): Accelerating Hadoop, Spark and Memcached on Modern Clusters High Performance Big Data (HiBD): Accelerating Hadoop, Spark and Memcached on Modern Clusters Presentation at Mellanox Theatre (SC 16) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

Impact of HPC Cloud Networking Technologies on Accelerating Hadoop RPC and HBase

Impact of HPC Cloud Networking Technologies on Accelerating Hadoop RPC and HBase 2 IEEE 8th International Conference on Cloud Computing Technology and Science Impact of HPC Cloud Networking Technologies on Accelerating Hadoop RPC and HBase Xiaoyi Lu, Dipti Shankar, Shashank Gugnani,

More information

Designing High-Performance Non-Volatile Memory-aware RDMA Communication Protocols for Big Data Processing

Designing High-Performance Non-Volatile Memory-aware RDMA Communication Protocols for Big Data Processing Designing High-Performance Non-Volatile Memory-aware RDMA Communication Protocols for Big Data Processing Talk at Storage Developer Conference SNIA 2018 by Xiaoyi Lu The Ohio State University E-mail: luxi@cse.ohio-state.edu

More information

Study. Dhabaleswar. K. Panda. The Ohio State University HPIDC '09

Study. Dhabaleswar. K. Panda. The Ohio State University HPIDC '09 RDMA over Ethernet - A Preliminary Study Hari Subramoni, Miao Luo, Ping Lai and Dhabaleswar. K. Panda Computer Science & Engineering Department The Ohio State University Introduction Problem Statement

More information

Scaling with PGAS Languages

Scaling with PGAS Languages Scaling with PGAS Languages Panel Presentation at OFA Developers Workshop (2013) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

Improving Application Performance and Predictability using Multiple Virtual Lanes in Modern Multi-Core InfiniBand Clusters

Improving Application Performance and Predictability using Multiple Virtual Lanes in Modern Multi-Core InfiniBand Clusters Improving Application Performance and Predictability using Multiple Virtual Lanes in Modern Multi-Core InfiniBand Clusters Hari Subramoni, Ping Lai, Sayantan Sur and Dhabhaleswar. K. Panda Department of

More information

Intra-MIC MPI Communication using MVAPICH2: Early Experience

Intra-MIC MPI Communication using MVAPICH2: Early Experience Intra-MIC MPI Communication using MVAPICH: Early Experience Sreeram Potluri, Karen Tomko, Devendar Bureddy, and Dhabaleswar K. Panda Department of Computer Science and Engineering Ohio State University

More information

Performance Analysis and Evaluation of Mellanox ConnectX InfiniBand Architecture with Multi-Core Platforms

Performance Analysis and Evaluation of Mellanox ConnectX InfiniBand Architecture with Multi-Core Platforms Performance Analysis and Evaluation of Mellanox ConnectX InfiniBand Architecture with Multi-Core Platforms Sayantan Sur, Matt Koop, Lei Chai Dhabaleswar K. Panda Network Based Computing Lab, The Ohio State

More information

High-Performance Training for Deep Learning and Computer Vision HPC

High-Performance Training for Deep Learning and Computer Vision HPC High-Performance Training for Deep Learning and Computer Vision HPC Panel at CVPR-ECV 18 by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

Accelerating and Benchmarking Big Data Processing on Modern Clusters

Accelerating and Benchmarking Big Data Processing on Modern Clusters Accelerating and Benchmarking Big Data Processing on Modern Clusters Keynote Talk at BPOE-6 (Sept 15) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

The Future of Supercomputer Software Libraries

The Future of Supercomputer Software Libraries The Future of Supercomputer Software Libraries Talk at HPC Advisory Council Israel Supercomputing Conference by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

CRFS: A Lightweight User-Level Filesystem for Generic Checkpoint/Restart

CRFS: A Lightweight User-Level Filesystem for Generic Checkpoint/Restart CRFS: A Lightweight User-Level Filesystem for Generic Checkpoint/Restart Xiangyong Ouyang, Raghunath Rajachandrasekar, Xavier Besseron, Hao Wang, Jian Huang, Dhabaleswar K. Panda Department of Computer

More information

Spark Over RDMA: Accelerate Big Data SC Asia 2018 Ido Shamay Mellanox Technologies

Spark Over RDMA: Accelerate Big Data SC Asia 2018 Ido Shamay Mellanox Technologies Spark Over RDMA: Accelerate Big Data SC Asia 2018 Ido Shamay 1 Apache Spark - Intro Spark within the Big Data ecosystem Data Sources Data Acquisition / ETL Data Storage Data Analysis / ML Serving 3 Apache

More information

Accelerating and Benchmarking Big Data Processing on Modern Clusters

Accelerating and Benchmarking Big Data Processing on Modern Clusters Accelerating and Benchmarking Big Data Processing on Modern Clusters Open RG Big Data Webinar (Sept 15) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

Software Libraries and Middleware for Exascale Systems

Software Libraries and Middleware for Exascale Systems Software Libraries and Middleware for Exascale Systems Talk at HPC Advisory Council China Workshop (212) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

Infiniband and RDMA Technology. Doug Ledford

Infiniband and RDMA Technology. Doug Ledford Infiniband and RDMA Technology Doug Ledford Top 500 Supercomputers Nov 2005 #5 Sandia National Labs, 4500 machines, 9000 CPUs, 38TFlops, 1 big headache Performance great...but... Adding new machines problematic

More information

Unified Runtime for PGAS and MPI over OFED

Unified Runtime for PGAS and MPI over OFED Unified Runtime for PGAS and MPI over OFED D. K. Panda and Sayantan Sur Network-Based Computing Laboratory Department of Computer Science and Engineering The Ohio State University, USA Outline Introduction

More information

Enabling Efficient Use of UPC and OpenSHMEM PGAS models on GPU Clusters

Enabling Efficient Use of UPC and OpenSHMEM PGAS models on GPU Clusters Enabling Efficient Use of UPC and OpenSHMEM PGAS models on GPU Clusters Presentation at GTC 2014 by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

Unifying UPC and MPI Runtimes: Experience with MVAPICH

Unifying UPC and MPI Runtimes: Experience with MVAPICH Unifying UPC and MPI Runtimes: Experience with MVAPICH Jithin Jose Miao Luo Sayantan Sur D. K. Panda Network-Based Computing Laboratory Department of Computer Science and Engineering The Ohio State University,

More information

Accelerating Hadoop Applications with the MapR Distribution Using Flash Storage and High-Speed Ethernet

Accelerating Hadoop Applications with the MapR Distribution Using Flash Storage and High-Speed Ethernet WHITE PAPER Accelerating Hadoop Applications with the MapR Distribution Using Flash Storage and High-Speed Ethernet Contents Background... 2 The MapR Distribution... 2 Mellanox Ethernet Solution... 3 Test

More information

HPC Meets Big Data: Accelerating Hadoop, Spark, and Memcached with HPC Technologies

HPC Meets Big Data: Accelerating Hadoop, Spark, and Memcached with HPC Technologies HPC Meets Big Data: Accelerating Hadoop, Spark, and Memcached with HPC Technologies Talk at OpenFabrics Alliance Workshop (OFAW 17) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

Advanced RDMA-based Admission Control for Modern Data-Centers

Advanced RDMA-based Admission Control for Modern Data-Centers Advanced RDMA-based Admission Control for Modern Data-Centers Ping Lai Sundeep Narravula Karthikeyan Vaidyanathan Dhabaleswar. K. Panda Computer Science & Engineering Department Ohio State University Outline

More information

Big Data Meets HPC: Exploiting HPC Technologies for Accelerating Big Data Processing

Big Data Meets HPC: Exploiting HPC Technologies for Accelerating Big Data Processing Big Data Meets HPC: Exploiting HPC Technologies for Accelerating Big Data Processing Talk at HPCAC-Switzerland (April 17) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

Accelerate Big Data Processing (Hadoop, Spark, Memcached, & TensorFlow) with HPC Technologies

Accelerate Big Data Processing (Hadoop, Spark, Memcached, & TensorFlow) with HPC Technologies Accelerate Big Data Processing (Hadoop, Spark, Memcached, & TensorFlow) with HPC Technologies Talk at Intel HPC Developer Conference 2017 (SC 17) by Dhabaleswar K. (DK) Panda The Ohio State University

More information

Enhancing Checkpoint Performance with Staging IO & SSD

Enhancing Checkpoint Performance with Staging IO & SSD Enhancing Checkpoint Performance with Staging IO & SSD Xiangyong Ouyang Sonya Marcarelli Dhabaleswar K. Panda Department of Computer Science & Engineering The Ohio State University Outline Motivation and

More information

Assessing the Performance Impact of High-Speed Interconnects on MapReduce

Assessing the Performance Impact of High-Speed Interconnects on MapReduce Assessing the Performance Impact of High-Speed Interconnects on MapReduce Yandong Wang, Yizheng Jiao, Cong Xu, Xiaobing Li, Teng Wang, Xinyu Que, Cristian Cira, Bin Wang, Zhuo Liu, Bliss Bailey, Weikuan

More information

Big Data Meets HPC: Exploiting HPC Technologies for Accelerating Big Data Processing

Big Data Meets HPC: Exploiting HPC Technologies for Accelerating Big Data Processing Big Data Meets HPC: Exploiting HPC Technologies for Accelerating Big Data Processing Talk at HPCAC Stanford Conference (Feb 18) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

Application Acceleration Beyond Flash Storage

Application Acceleration Beyond Flash Storage Application Acceleration Beyond Flash Storage Session 303C Mellanox Technologies Flash Memory Summit July 2014 Accelerating Applications, Step-by-Step First Steps Make compute fast Moore s Law Make storage

More information

Birds of a Feather Presentation

Birds of a Feather Presentation Mellanox InfiniBand QDR 4Gb/s The Fabric of Choice for High Performance Computing Gilad Shainer, shainer@mellanox.com June 28 Birds of a Feather Presentation InfiniBand Technology Leadership Industry Standard

More information

Designing Next Generation Data-Centers with Advanced Communication Protocols and Systems Services

Designing Next Generation Data-Centers with Advanced Communication Protocols and Systems Services Designing Next Generation Data-Centers with Advanced Communication Protocols and Systems Services P. Balaji, K. Vaidyanathan, S. Narravula, H. W. Jin and D. K. Panda Network Based Computing Laboratory

More information

Designing High Performance Communication Middleware with Emerging Multi-core Architectures

Designing High Performance Communication Middleware with Emerging Multi-core Architectures Designing High Performance Communication Middleware with Emerging Multi-core Architectures Dhabaleswar K. (DK) Panda Department of Computer Science and Engg. The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

Characterizing and Benchmarking Deep Learning Systems on Modern Data Center Architectures

Characterizing and Benchmarking Deep Learning Systems on Modern Data Center Architectures Characterizing and Benchmarking Deep Learning Systems on Modern Data Center Architectures Talk at Bench 2018 by Xiaoyi Lu The Ohio State University E-mail: luxi@cse.ohio-state.edu http://www.cse.ohio-state.edu/~luxi

More information

Designing Power-Aware Collective Communication Algorithms for InfiniBand Clusters

Designing Power-Aware Collective Communication Algorithms for InfiniBand Clusters Designing Power-Aware Collective Communication Algorithms for InfiniBand Clusters Krishna Kandalla, Emilio P. Mancini, Sayantan Sur, and Dhabaleswar. K. Panda Department of Computer Science & Engineering,

More information

Memcached Design on High Performance RDMA Capable Interconnects

Memcached Design on High Performance RDMA Capable Interconnects 211 International Conference on Parallel Processing Memcached Design on High Performance RDMA Capable Interconnects Jithin Jose, Hari Subramoni, Miao Luo, Minjia Zhang, Jian Huang, Md. Wasi-ur-Rahman,

More information

Oncilla - a Managed GAS Runtime for Accelerating Data Warehousing Queries

Oncilla - a Managed GAS Runtime for Accelerating Data Warehousing Queries Oncilla - a Managed GAS Runtime for Accelerating Data Warehousing Queries Jeffrey Young, Alex Merritt, Se Hoon Shon Advisor: Sudhakar Yalamanchili 4/16/13 Sponsors: Intel, NVIDIA, NSF 2 The Problem Big

More information

Performance Optimizations via Connect-IB and Dynamically Connected Transport Service for Maximum Performance on LS-DYNA

Performance Optimizations via Connect-IB and Dynamically Connected Transport Service for Maximum Performance on LS-DYNA Performance Optimizations via Connect-IB and Dynamically Connected Transport Service for Maximum Performance on LS-DYNA Pak Lui, Gilad Shainer, Brian Klaff Mellanox Technologies Abstract From concept to

More information

Efficient Data Access Strategies for Hadoop and Spark on HPC Cluster with Heterogeneous Storage*

Efficient Data Access Strategies for Hadoop and Spark on HPC Cluster with Heterogeneous Storage* 216 IEEE International Conference on Big Data (Big Data) Efficient Data Access Strategies for Hadoop and Spark on HPC Cluster with Heterogeneous Storage* Nusrat Sharmin Islam, Md. Wasi-ur-Rahman, Xiaoyi

More information

Accelerating MPI Message Matching and Reduction Collectives For Multi-/Many-core Architectures

Accelerating MPI Message Matching and Reduction Collectives For Multi-/Many-core Architectures Accelerating MPI Message Matching and Reduction Collectives For Multi-/Many-core Architectures M. Bayatpour, S. Chakraborty, H. Subramoni, X. Lu, and D. K. Panda Department of Computer Science and Engineering

More information

Designing High-Performance MPI Collectives in MVAPICH2 for HPC and Deep Learning

Designing High-Performance MPI Collectives in MVAPICH2 for HPC and Deep Learning 5th ANNUAL WORKSHOP 209 Designing High-Performance MPI Collectives in MVAPICH2 for HPC and Deep Learning Hari Subramoni Dhabaleswar K. (DK) Panda The Ohio State University The Ohio State University E-mail:

More information

Latest Advances in MVAPICH2 MPI Library for NVIDIA GPU Clusters with InfiniBand

Latest Advances in MVAPICH2 MPI Library for NVIDIA GPU Clusters with InfiniBand Latest Advances in MVAPICH2 MPI Library for NVIDIA GPU Clusters with InfiniBand Presentation at GTC 2014 by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

Optimized Distributed Data Sharing Substrate in Multi-Core Commodity Clusters: A Comprehensive Study with Applications

Optimized Distributed Data Sharing Substrate in Multi-Core Commodity Clusters: A Comprehensive Study with Applications Optimized Distributed Data Sharing Substrate in Multi-Core Commodity Clusters: A Comprehensive Study with Applications K. Vaidyanathan, P. Lai, S. Narravula and D. K. Panda Network Based Computing Laboratory

More information

2008 International ANSYS Conference

2008 International ANSYS Conference 2008 International ANSYS Conference Maximizing Productivity With InfiniBand-Based Clusters Gilad Shainer Director of Technical Marketing Mellanox Technologies 2008 ANSYS, Inc. All rights reserved. 1 ANSYS,

More information

Reducing Network Contention with Mixed Workloads on Modern Multicore Clusters

Reducing Network Contention with Mixed Workloads on Modern Multicore Clusters Reducing Network Contention with Mixed Workloads on Modern Multicore Clusters Matthew Koop 1 Miao Luo D. K. Panda matthew.koop@nasa.gov {luom, panda}@cse.ohio-state.edu 1 NASA Center for Computational

More information

Exploiting HPC Technologies for Accelerating Big Data Processing and Storage

Exploiting HPC Technologies for Accelerating Big Data Processing and Storage Exploiting HPC Technologies for Accelerating Big Data Processing and Storage Talk in the 5194 class by Xiaoyi Lu The Ohio State University E-mail: luxi@cse.ohio-state.edu http://www.cse.ohio-state.edu/~luxi

More information

Exploiting HPC Technologies for Accelerating Big Data Processing and Associated Deep Learning

Exploiting HPC Technologies for Accelerating Big Data Processing and Associated Deep Learning Exploiting HPC Technologies for Accelerating Big Data Processing and Associated Deep Learning Keynote Talk at Swiss Conference (April 18) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail:

More information

Performance of PGAS Models on KNL: A Comprehensive Study with MVAPICH2-X

Performance of PGAS Models on KNL: A Comprehensive Study with MVAPICH2-X Performance of PGAS Models on KNL: A Comprehensive Study with MVAPICH2-X Intel Nerve Center (SC 7) Presentation Dhabaleswar K (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu Parallel

More information

Mellanox Technologies Maximize Cluster Performance and Productivity. Gilad Shainer, October, 2007

Mellanox Technologies Maximize Cluster Performance and Productivity. Gilad Shainer, October, 2007 Mellanox Technologies Maximize Cluster Performance and Productivity Gilad Shainer, shainer@mellanox.com October, 27 Mellanox Technologies Hardware OEMs Servers And Blades Applications End-Users Enterprise

More information

MVAPICH-Aptus: Scalable High-Performance Multi-Transport MPI over InfiniBand

MVAPICH-Aptus: Scalable High-Performance Multi-Transport MPI over InfiniBand MVAPICH-Aptus: Scalable High-Performance Multi-Transport MPI over InfiniBand Matthew Koop 1,2 Terry Jones 2 D. K. Panda 1 {koop, panda}@cse.ohio-state.edu trj@llnl.gov 1 Network-Based Computing Lab, The

More information

Exploiting InfiniBand and GPUDirect Technology for High Performance Collectives on GPU Clusters

Exploiting InfiniBand and GPUDirect Technology for High Performance Collectives on GPU Clusters Exploiting InfiniBand and Direct Technology for High Performance Collectives on Clusters Ching-Hsiang Chu chu.368@osu.edu Department of Computer Science and Engineering The Ohio State University OSU Booth

More information

Exploiting Full Potential of GPU Clusters with InfiniBand using MVAPICH2-GDR

Exploiting Full Potential of GPU Clusters with InfiniBand using MVAPICH2-GDR Exploiting Full Potential of GPU Clusters with InfiniBand using MVAPICH2-GDR Presentation at Mellanox Theater () Dhabaleswar K. (DK) Panda - The Ohio State University panda@cse.ohio-state.edu Outline Communication

More information

Efficient and Scalable Multi-Source Streaming Broadcast on GPU Clusters for Deep Learning

Efficient and Scalable Multi-Source Streaming Broadcast on GPU Clusters for Deep Learning Efficient and Scalable Multi-Source Streaming Broadcast on Clusters for Deep Learning Ching-Hsiang Chu 1, Xiaoyi Lu 1, Ammar A. Awan 1, Hari Subramoni 1, Jahanzeb Hashmi 1, Bracy Elton 2 and Dhabaleswar

More information

Designing and Modeling High-Performance MapReduce and DAG Execution Framework on Modern HPC Systems

Designing and Modeling High-Performance MapReduce and DAG Execution Framework on Modern HPC Systems Designing and Modeling High-Performance MapReduce and DAG Execution Framework on Modern HPC Systems Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy

More information

Performance Evaluation of Soft RoCE over 1 Gigabit Ethernet

Performance Evaluation of Soft RoCE over 1 Gigabit Ethernet IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 7-66, p- ISSN: 7-77Volume 5, Issue (Nov. - Dec. 3), PP -7 Performance Evaluation of over Gigabit Gurkirat Kaur, Manoj Kumar, Manju Bala Department

More information

Accelerating Big Data: Using SanDisk SSDs for Apache HBase Workloads

Accelerating Big Data: Using SanDisk SSDs for Apache HBase Workloads WHITE PAPER Accelerating Big Data: Using SanDisk SSDs for Apache HBase Workloads December 2014 Western Digital Technologies, Inc. 951 SanDisk Drive, Milpitas, CA 95035 www.sandisk.com Table of Contents

More information

Solutions for Scalable HPC

Solutions for Scalable HPC Solutions for Scalable HPC Scot Schultz, Director HPC/Technical Computing HPC Advisory Council Stanford Conference Feb 2014 Leading Supplier of End-to-End Interconnect Solutions Comprehensive End-to-End

More information

MPI Alltoall Personalized Exchange on GPGPU Clusters: Design Alternatives and Benefits

MPI Alltoall Personalized Exchange on GPGPU Clusters: Design Alternatives and Benefits MPI Alltoall Personalized Exchange on GPGPU Clusters: Design Alternatives and Benefits Ashish Kumar Singh, Sreeram Potluri, Hao Wang, Krishna Kandalla, Sayantan Sur, and Dhabaleswar K. Panda Network-Based

More information

Accelerating MPI Message Matching and Reduction Collectives For Multi-/Many-core Architectures Mohammadreza Bayatpour, Hari Subramoni, D. K.

Accelerating MPI Message Matching and Reduction Collectives For Multi-/Many-core Architectures Mohammadreza Bayatpour, Hari Subramoni, D. K. Accelerating MPI Message Matching and Reduction Collectives For Multi-/Many-core Architectures Mohammadreza Bayatpour, Hari Subramoni, D. K. Panda Department of Computer Science and Engineering The Ohio

More information

High Performance Design for HDFS with Byte-Addressability of NVM and RDMA

High Performance Design for HDFS with Byte-Addressability of NVM and RDMA High Performance Design for HDFS with Byte-Addressability of and RDMA Nusrat Sharmin Islam, Md Wasi-ur-Rahman, Xiaoyi Lu, and Dhabaleswar K (DK) Panda Department of Computer Science and Engineering The

More information

Interconnect Your Future

Interconnect Your Future Interconnect Your Future Gilad Shainer 2nd Annual MVAPICH User Group (MUG) Meeting, August 2014 Complete High-Performance Scalable Interconnect Infrastructure Comprehensive End-to-End Software Accelerators

More information

Chelsio Communications. Meeting Today s Datacenter Challenges. Produced by Tabor Custom Publishing in conjunction with: CUSTOM PUBLISHING

Chelsio Communications. Meeting Today s Datacenter Challenges. Produced by Tabor Custom Publishing in conjunction with: CUSTOM PUBLISHING Meeting Today s Datacenter Challenges Produced by Tabor Custom Publishing in conjunction with: 1 Introduction In this era of Big Data, today s HPC systems are faced with unprecedented growth in the complexity

More information

Can Memory-Less Network Adapters Benefit Next-Generation InfiniBand Systems?

Can Memory-Less Network Adapters Benefit Next-Generation InfiniBand Systems? Can Memory-Less Network Adapters Benefit Next-Generation InfiniBand Systems? Sayantan Sur, Abhinav Vishnu, Hyun-Wook Jin, Wei Huang and D. K. Panda {surs, vishnu, jinhy, huanwei, panda}@cse.ohio-state.edu

More information

High-Performance MPI Library with SR-IOV and SLURM for Virtualized InfiniBand Clusters

High-Performance MPI Library with SR-IOV and SLURM for Virtualized InfiniBand Clusters High-Performance MPI Library with SR-IOV and SLURM for Virtualized InfiniBand Clusters Talk at OpenFabrics Workshop (April 2016) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

NFS/RDMA over 40Gbps iwarp Wael Noureddine Chelsio Communications

NFS/RDMA over 40Gbps iwarp Wael Noureddine Chelsio Communications NFS/RDMA over 40Gbps iwarp Wael Noureddine Chelsio Communications Outline RDMA Motivating trends iwarp NFS over RDMA Overview Chelsio T5 support Performance results 2 Adoption Rate of 40GbE Source: Crehan

More information

Tutorial 1. Accelerating Big Data with Hadoop and Memcached Using High Performance Interconnects: Opportunities and Challenges

Tutorial 1. Accelerating Big Data with Hadoop and Memcached Using High Performance Interconnects: Opportunities and Challenges Tutorial 1 Accelerating Big Data with Hadoop and Memcached Using High Performance Interconnects: Opportunities and Challenges Abstract Speakers Dhabaleswar K. (DK) Panda and Xiaoyi Lu The Ohio State University

More information

How to Boost the Performance of Your MPI and PGAS Applications with MVAPICH2 Libraries

How to Boost the Performance of Your MPI and PGAS Applications with MVAPICH2 Libraries How to Boost the Performance of Your MPI and PGAS s with MVAPICH2 Libraries A Tutorial at the MVAPICH User Group (MUG) Meeting 18 by The MVAPICH Team The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

RDMA for Memcached User Guide

RDMA for Memcached User Guide 0.9.5 User Guide HIGH-PERFORMANCE BIG DATA TEAM http://hibd.cse.ohio-state.edu NETWORK-BASED COMPUTING LABORATORY DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING THE OHIO STATE UNIVERSITY Copyright (c)

More information

EsgynDB Enterprise 2.0 Platform Reference Architecture

EsgynDB Enterprise 2.0 Platform Reference Architecture EsgynDB Enterprise 2.0 Platform Reference Architecture This document outlines a Platform Reference Architecture for EsgynDB Enterprise, built on Apache Trafodion (Incubating) implementation with licensed

More information

Memory Management Strategies for Data Serving with RDMA

Memory Management Strategies for Data Serving with RDMA Memory Management Strategies for Data Serving with RDMA Dennis Dalessandro and Pete Wyckoff (presenting) Ohio Supercomputer Center {dennis,pw}@osc.edu HotI'07 23 August 2007 Motivation Increasing demands

More information

The Future of Interconnect Technology

The Future of Interconnect Technology The Future of Interconnect Technology Michael Kagan, CTO HPC Advisory Council Stanford, 2014 Exponential Data Growth Best Interconnect Required 44X 0.8 Zetabyte 2009 35 Zetabyte 2020 2014 Mellanox Technologies

More information

Support for GPUs with GPUDirect RDMA in MVAPICH2 SC 13 NVIDIA Booth

Support for GPUs with GPUDirect RDMA in MVAPICH2 SC 13 NVIDIA Booth Support for GPUs with GPUDirect RDMA in MVAPICH2 SC 13 NVIDIA Booth by D.K. Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda Outline Overview of MVAPICH2-GPU

More information

Next-Generation Cloud Platform

Next-Generation Cloud Platform Next-Generation Cloud Platform Jangwoo Kim Jun 24, 2013 E-mail: jangwoo@postech.ac.kr High Performance Computing Lab Department of Computer Science & Engineering Pohang University of Science and Technology

More information

High-Performance Broadcast for Streaming and Deep Learning

High-Performance Broadcast for Streaming and Deep Learning High-Performance Broadcast for Streaming and Deep Learning Ching-Hsiang Chu chu.368@osu.edu Department of Computer Science and Engineering The Ohio State University OSU Booth - SC17 2 Outline Introduction

More information

Memory Scalability Evaluation of the Next-Generation Intel Bensley Platform with InfiniBand

Memory Scalability Evaluation of the Next-Generation Intel Bensley Platform with InfiniBand Memory Scalability Evaluation of the Next-Generation Intel Bensley Platform with InfiniBand Matthew Koop, Wei Huang, Ahbinav Vishnu, Dhabaleswar K. Panda Network-Based Computing Laboratory Department of

More information

Data Processing at the Speed of 100 Gbps using Apache Crail. Patrick Stuedi IBM Research

Data Processing at the Speed of 100 Gbps using Apache Crail. Patrick Stuedi IBM Research Data Processing at the Speed of 100 Gbps using Apache Crail Patrick Stuedi IBM Research The CRAIL Project: Overview Data Processing Framework (e.g., Spark, TensorFlow, λ Compute) Spark-IO Albis Pocket

More information

High Performance MPI on IBM 12x InfiniBand Architecture

High Performance MPI on IBM 12x InfiniBand Architecture High Performance MPI on IBM 12x InfiniBand Architecture Abhinav Vishnu, Brad Benton 1 and Dhabaleswar K. Panda {vishnu, panda} @ cse.ohio-state.edu {brad.benton}@us.ibm.com 1 1 Presentation Road-Map Introduction

More information

Lecture 11 Hadoop & Spark

Lecture 11 Hadoop & Spark Lecture 11 Hadoop & Spark Dr. Wilson Rivera ICOM 6025: High Performance Computing Electrical and Computer Engineering Department University of Puerto Rico Outline Distributed File Systems Hadoop Ecosystem

More information

Designing Shared Address Space MPI libraries in the Many-core Era

Designing Shared Address Space MPI libraries in the Many-core Era Designing Shared Address Space MPI libraries in the Many-core Era Jahanzeb Hashmi hashmi.29@osu.edu (NBCL) The Ohio State University Outline Introduction and Motivation Background Shared-memory Communication

More information

RoCE vs. iwarp A Great Storage Debate. Live Webcast August 22, :00 am PT

RoCE vs. iwarp A Great Storage Debate. Live Webcast August 22, :00 am PT RoCE vs. iwarp A Great Storage Debate Live Webcast August 22, 2018 10:00 am PT Today s Presenters John Kim SNIA ESF Chair Mellanox Tim Lustig Mellanox Fred Zhang Intel 2 SNIA-At-A-Glance 3 SNIA Legal Notice

More information

Embedded Technosolutions

Embedded Technosolutions Hadoop Big Data An Important technology in IT Sector Hadoop - Big Data Oerie 90% of the worlds data was generated in the last few years. Due to the advent of new technologies, devices, and communication

More information

Designing High Performance Heterogeneous Broadcast for Streaming Applications on GPU Clusters

Designing High Performance Heterogeneous Broadcast for Streaming Applications on GPU Clusters Designing High Performance Heterogeneous Broadcast for Streaming Applications on Clusters 1 Ching-Hsiang Chu, 1 Khaled Hamidouche, 1 Hari Subramoni, 1 Akshay Venkatesh, 2 Bracy Elton and 1 Dhabaleswar

More information

Application-Transparent Checkpoint/Restart for MPI Programs over InfiniBand

Application-Transparent Checkpoint/Restart for MPI Programs over InfiniBand Application-Transparent Checkpoint/Restart for MPI Programs over InfiniBand Qi Gao, Weikuan Yu, Wei Huang, Dhabaleswar K. Panda Network-Based Computing Laboratory Department of Computer Science & Engineering

More information

Designing Optimized MPI Broadcast and Allreduce for Many Integrated Core (MIC) InfiniBand Clusters

Designing Optimized MPI Broadcast and Allreduce for Many Integrated Core (MIC) InfiniBand Clusters Designing Optimized MPI Broadcast and Allreduce for Many Integrated Core (MIC) InfiniBand Clusters K. Kandalla, A. Venkatesh, K. Hamidouche, S. Potluri, D. Bureddy and D. K. Panda Presented by Dr. Xiaoyi

More information

Topics. Big Data Analytics What is and Why Hadoop? Comparison to other technologies Hadoop architecture Hadoop ecosystem Hadoop usage examples

Topics. Big Data Analytics What is and Why Hadoop? Comparison to other technologies Hadoop architecture Hadoop ecosystem Hadoop usage examples Hadoop Introduction 1 Topics Big Data Analytics What is and Why Hadoop? Comparison to other technologies Hadoop architecture Hadoop ecosystem Hadoop usage examples 2 Big Data Analytics What is Big Data?

More information

10-Gigabit iwarp Ethernet: Comparative Performance Analysis with InfiniBand and Myrinet-10G

10-Gigabit iwarp Ethernet: Comparative Performance Analysis with InfiniBand and Myrinet-10G 10-Gigabit iwarp Ethernet: Comparative Performance Analysis with InfiniBand and Myrinet-10G Mohammad J. Rashti and Ahmad Afsahi Queen s University Kingston, ON, Canada 2007 Workshop on Communication Architectures

More information

A Case for High Performance Computing with Virtual Machines

A Case for High Performance Computing with Virtual Machines A Case for High Performance Computing with Virtual Machines Wei Huang*, Jiuxing Liu +, Bulent Abali +, and Dhabaleswar K. Panda* *The Ohio State University +IBM T. J. Waston Research Center Presentation

More information

EC-Bench: Benchmarking Onload and Offload Erasure Coders on Modern Hardware Architectures

EC-Bench: Benchmarking Onload and Offload Erasure Coders on Modern Hardware Architectures EC-Bench: Benchmarking Onload and Offload Erasure Coders on Modern Hardware Architectures Haiyang Shi, Xiaoyi Lu, and Dhabaleswar K. (DK) Panda {shi.876, lu.932, panda.2}@osu.edu The Ohio State University

More information

Future Routing Schemes in Petascale clusters

Future Routing Schemes in Petascale clusters Future Routing Schemes in Petascale clusters Gilad Shainer, Mellanox, USA Ola Torudbakken, Sun Microsystems, Norway Richard Graham, Oak Ridge National Laboratory, USA Birds of a Feather Presentation Abstract

More information

A Portable InfiniBand Module for MPICH2/Nemesis: Design and Evaluation

A Portable InfiniBand Module for MPICH2/Nemesis: Design and Evaluation A Portable InfiniBand Module for MPICH2/Nemesis: Design and Evaluation Miao Luo, Ping Lai, Sreeram Potluri, Emilio P. Mancini, Hari Subramoni, Krishna Kandalla, Dhabaleswar K. Panda Department of Computer

More information