Optimized Distributed Data Sharing Substrate in Multi-Core Commodity Clusters: A Comprehensive Study with Applications

Size: px
Start display at page:

Download "Optimized Distributed Data Sharing Substrate in Multi-Core Commodity Clusters: A Comprehensive Study with Applications"

Transcription

1 Optimized Distributed Data Sharing Substrate in Multi-Core Commodity Clusters: A Comprehensive Study with Applications K. Vaidyanathan, P. Lai, S. Narravula and D. K. Panda Network Based Computing Laboratory (NBCL) The Ohio State University

2 Presentation Outline Introduction and Motivation Distributed Data Sharing Substrate Proposed Design Optimizations Experimental Results Conclusions and Future Work

3 Introduction and Motivation Stock markets Airline industries Medical imaging Online auction Interactive data-driven applications Stock trading, airline tickets, medical imaging, online auction, online banking, web streaming, Ability to interact, synthesize and visualize data Datacenters enable such capabilities Processes data and reply to client queries Common and increasing in size (IBM, Amazon, Google) Datacenters unable to meet increasing client demands

4 Datacenter Architecture Clients WAN Resource monitoring (Ganglia), resource mgmt (IBM WebSphere), caching More Computation and Communication Requirements Proxy/Web Server (Apache, STORM) Application Server (PHP, CGI) Database Server (MySQL, DB2) Storage Tier 0 Tier 1 Tier 2 Applications host web content online Services improve performance and scalability State sharing is common in applications and services Communicate and synchronize (intra-node, intra-tier and inter-tier)

5 State Sharing in Datacenters Proxy Server Resource Resource Apache Network Tier System 1 monitoring adaptation state Memory copies load Apache IPC Caching Application Server STORM Resource Load Network Tier System 1 balancing adaptation state Memory copies load STORM A STORM B IPC Tier 0 Resource Caching Network Caching Tier Data 1 adaptation Memory copies load Resource Mgmt Network Caching Tier Data 1 adaptation Memory copies load Servlets Apache App IPC Res Mgmt IPC Tier 1 Intra-Node Intra-Tier Inter-Tier State Sharing

6 State Sharing in Datacenters Several applications employ their own data management protocols maintain versions of stored data synchronization primitives Issues Datacenter Services frequently exchange System load, system state, locks Cached data Ad-hoc messaging protocols for exchanging data/resource Same data/resource at multiple places (e.g., load information, data) Protocols used are typically TCP/IP, IPC mechanisms, memory copies, etc Performance may depend on the back-end load Scalability issues

7 InfiniBand, 10 Gigabit Ethernet High-Performance Networks High-Performance Low latency (< 1 usecs) and high bandwidth (> 32 Gbps with QDR adapters) Novel features One-sided RDMA and atomics, multicast, QoS OpenFabrics alliance ( Common stack for several networks including iwarp (LAN/WAN)

8 Datacenter Research at OSU Existing Datacenter Components Active Resource Adaptation Reconfiguration Resource Monitoring Dynamic Content Caching Active Cooperative Caching Caching QoS & Admission Control Advanced System Services Distributed Data/Resource Sharing Substrate Global Memory Soft Shared State Lock Manager Aggregator Advanced Service Primitives Sockets Direct Protocol Advanced Communication Protocols and Subsystems RDMA Atomics Multicast High-Performance Networks (InfiniBand, iwarp 10GigE) High-speed Networks Datacenter Homepage:

9 Distributed Data Sharing Substrate Datacenter Application Get Put Datacenter Application Datacenter Application Get Get Load Info System State Meta-data Data Put Put Datacenter Application Datacenter Services Datacenter Services

10 Multicore Architectures Increased cores per-chip More parallelism available Intel, AMD Dual-core, quad-core 80-core systems are currently built Significant benefits for datacenters Applications are multi-threaded in nature Design Optimizations in state sharing mechanisms Opportunities for dedicating one or more cores Future multicore systems

11 Objective Can we enhance the distributed data sharing substrate using the features of multicore architectures by dedicating one or more of the cores? How do these enhancements help in improving the overall performance with datacenter applications and services?

12 Presentation Outline Introduction and Motivation Distributed Data Sharing Substrate Proposed Design Optimizations Experimental Results Conclusions and Future Work

13 Distributed Data Sharing Substrate Use of a common service thread to get access to the shared state Applications get shared state information using the service thread Several design optimizations in communicating with the service thread Message Queues (MQ-DDSS) Memory mapped queues for request (RMQ-DDSS) Memory mapped queues for request and response (RCQ-DDSS)

14 Message Queue-based DDSS (MQ-DDSS) Application Threads IPC_Recv Service Thread Produce Consume Request Queue Consume NIC IPC_Recv IPC_Send IPC_Send Completion Queue Produce Interrupt Kernel Message Queues Event User Space Kernel Space Kernel Involvement Kernel Thread

15 Message Queue-based DDSS Kernel involvement IPC Send and Receive operations Communication Progress Limitations Several context-switches Interrupt overheads

16 Presentation Outline Introduction and Motivation Distributed Data Sharing Substrate Proposed Design Optimizations Experimental Results Conclusions and Future Work

17 Application Threads Request/Message Queue-based Request Queue Produce Consume Service Thread DDSS (RMQ-DDSS) Produce Consume Request Queue Consume NIC IPC_Recv Kernel Message Queues IPC_Send Completion Queue Produce User Space Kernel Space Kernel Involvement

18 Application Threads Request/Completion Queue-based Request Queue Produce Consume Service Thread DDSS (RCQ-DDSS) Produce Consume Request Queue Consume NIC Consume Completion Queue Produce Completion Queue Produce User Space No Kernel Involvement Kernel Space

19 RMQ-DDSS and RCQ-DDSS Schemes RMQ-DDSS scheme + Lesser number of interrupts and context-switches compared to MQ-DDSS + Improvement in response time as request is sent via memory mapped queues May occupy significant CPU RCQ-DDSS scheme + Avoids kernel involvement + Significant improvement in response time as request and response are sent via memory mapped queues May occupy more CPU as compared to RMQ-DDSS - apps & service thread need to poll on the completion queue

20 Presentation Outline Introduction and Motivation Distributed Data Sharing Substrate Proposed Design Optimizations Experimental Results Conclusions and Future Work

21 Experimental Testbed InfiniBand experiments 560-core cluster consisting of 70 compute nodes with dual 2.33 GHz Intel Xeon quad-core processors Mellanox MT25208 dual port HCA 10-Gigabit experiments Intel dual quad-core Xeon 3.0 GHz, 512 MB memory Chelsio T3B 10 GigE PCI-Express adapters OpenFabrics stack OFED 1.2 Experimental outline Microbenchmarks (performance and scalability) Application performance (R-Trees, B-Trees, STORM, checkpointing) Dedicating cores for datacenter services (resource monitoring)

22 IPC Latency (usecs) RCQ-DDSS scales with increasing client threads RCQ-DDSS performs better than RMQ-DDSS and MQ- DDSS Basic Performance of DDSS Number of Client Threads RCQ-DDSS RMQ-DDSS MQ-DDSS Latency (usecs) Latency (usecs) K 4K 16K Message Size (bytes) RCQ-DDSS RMQ-DDSS MQ-DDSS InfiniBand K 4K 16K Message Size (bytes) RCQ-DDSS RMQ-DDSS MQ-DDSS 10-Gigabit Ethernet

23 IPC Latency (usecs) Hybrid approach is required for scalability with large number of threads DDSS scales when keys are distributed Number of Client Threads RCQ-DDSS RMQ-DDSS MQ-DDSS Latency (usecs) DDSS Scalability Latency (usecs) Number of Client Threads Number of Client Threads RCQ-DDSS RMQ-DDSS MQ-DDSS Keys are on a single node RCQ-DDSS RMQ-DDSS MQ-DDSS Keys are distributed

24 Performance with R-Trees, B-Trees, STORM Time (msecs) Time (msecs) % 40% 60% 80% 100% 20% 40% 60% 80% 100% Records Accessed Records Accessed RTREE-RCQ-SS RTREE-MQ-SS RRTEE-RMQ-SS RTREE BTREE-RCQ-SS BTREE-MQ-SS BTREE-RMQ-SS BTREE MQ-SS shows significant improvement compared to traditional implementations but RCQ-SS shows marginal improvements compared to MQ-SS Time (msecs) K 100K 1000K Number of Records STORM-RCQ-SS STORM-RMQ-SS STORM-MQ-SS STORM

25 Data Sharing Performance in Applications Time (usecs) Time (usecs) % 40% 60% 80% 100% 20% 40% 60% 80% 100% Records Accessed Records Accessed RTREE-RCQ-DDSS RTREE-MQ-DDSS RRTEE-RMQ-DDSS RTREE BTREE-RCQ-DDSS BTREE-MQ-DDSS BTREE-RMQ-DDSS BTREE RCQ-DDSS shows significant improvement as compared to RMQ-DDSS and MQ-DDSS Time (milliseconds) K 10K 100K 1000K Number of Records STORM-RCQ-DDSS STORM-MQ-DDSS STORM-RMQ-DDSS STORM

26 Performance with checkpointing Execution Time (usecs) Number of Client Threads RCQ-DDSS RMQ-DDSS MQ-DDSS Clients on single node (non-distributed) Execution Time (usecs) Number of Client Threads RCQ-DDSS RMQ-DDSS MQ-DDSS Clients on diff node (non-distributed) Hybrid approach is required for scalability with large number of threads Latency (usecs) Number of Client Threads RCQ-DDSS RMQ-DDSS MQ-DDSS Clients on diff node (non-distributed)

27 Performance with Dedicated Cores Latency(Microseconds) Latency(Microseconds) Servers Servers 16Servers 32Servers Iterations 4Servers Servers 16Servers 32Servers Iterations Dedicating a core for resource monitoring can avoid up to 50% degradation in client response time

28 Conclusions & Future Work Proposed multicore optimizations for distributed data sharing substrate Evaluations with several applications shows significant improvement Showed the benefits of dedicating cores for services in datacenters Future work on dedicating other datacenter services, datacenter-specific operations

29 Web Pointers NBC-LAB Datacenter Homepage: s: {vaidyana, laipi, narravul,

Advanced RDMA-based Admission Control for Modern Data-Centers

Advanced RDMA-based Admission Control for Modern Data-Centers Advanced RDMA-based Admission Control for Modern Data-Centers Ping Lai Sundeep Narravula Karthikeyan Vaidyanathan Dhabaleswar. K. Panda Computer Science & Engineering Department Ohio State University Outline

More information

Designing Next Generation Data-Centers with Advanced Communication Protocols and Systems Services

Designing Next Generation Data-Centers with Advanced Communication Protocols and Systems Services Designing Next Generation Data-Centers with Advanced Communication Protocols and Systems Services P. Balaji, K. Vaidyanathan, S. Narravula, H. W. Jin and D. K. Panda Network Based Computing Laboratory

More information

S. Narravula, P. Balaji, K. Vaidyanathan, H.-W. Jin and D. K. Panda. The Ohio State University

S. Narravula, P. Balaji, K. Vaidyanathan, H.-W. Jin and D. K. Panda. The Ohio State University Architecture for Caching Responses with Multiple Dynamic Dependencies in Multi-Tier Data- Centers over InfiniBand S. Narravula, P. Balaji, K. Vaidyanathan, H.-W. Jin and D. K. Panda The Ohio State University

More information

Supporting Strong Cache Coherency for Active Caches in Multi-Tier Data-Centers over InfiniBand

Supporting Strong Cache Coherency for Active Caches in Multi-Tier Data-Centers over InfiniBand Supporting Strong Cache Coherency for Active Caches in Multi-Tier Data-Centers over InfiniBand S. Narravula, P. Balaji, K. Vaidyanathan, S. Krishnamoorthy, J. Wu and D. K. Panda The Ohio State University

More information

Benefits of Dedicating Resource Sharing Services in Data-Centers for Emerging Multi-Core Systems

Benefits of Dedicating Resource Sharing Services in Data-Centers for Emerging Multi-Core Systems Benefits of Dedicating Resource Sharing Services in Data-Centers for Emerging Multi-Core Systems K. VAIDYANATHAN, P. LAI, S. NARRAVULA AND D. K. PANDA Technical Report Ohio State University (OSU-CISRC-8/7-TR53)

More information

High Performance Distributed Lock Management Services using Network-based Remote Atomic Operations

High Performance Distributed Lock Management Services using Network-based Remote Atomic Operations High Performance Distributed Lock Management Services using Network-based Remote Atomic Operations S. Narravula, A. Mamidala, A. Vishnu, K. Vaidyanathan, and D. K. Panda Presented by Lei Chai Network Based

More information

Improving Application Performance and Predictability using Multiple Virtual Lanes in Modern Multi-Core InfiniBand Clusters

Improving Application Performance and Predictability using Multiple Virtual Lanes in Modern Multi-Core InfiniBand Clusters Improving Application Performance and Predictability using Multiple Virtual Lanes in Modern Multi-Core InfiniBand Clusters Hari Subramoni, Ping Lai, Sayantan Sur and Dhabhaleswar. K. Panda Department of

More information

Designing High Performance DSM Systems using InfiniBand Features

Designing High Performance DSM Systems using InfiniBand Features Designing High Performance DSM Systems using InfiniBand Features Ranjit Noronha and Dhabaleswar K. Panda The Ohio State University NBC Outline Introduction Motivation Design and Implementation Results

More information

Designing Power-Aware Collective Communication Algorithms for InfiniBand Clusters

Designing Power-Aware Collective Communication Algorithms for InfiniBand Clusters Designing Power-Aware Collective Communication Algorithms for InfiniBand Clusters Krishna Kandalla, Emilio P. Mancini, Sayantan Sur, and Dhabaleswar. K. Panda Department of Computer Science & Engineering,

More information

Study. Dhabaleswar. K. Panda. The Ohio State University HPIDC '09

Study. Dhabaleswar. K. Panda. The Ohio State University HPIDC '09 RDMA over Ethernet - A Preliminary Study Hari Subramoni, Miao Luo, Ping Lai and Dhabaleswar. K. Panda Computer Science & Engineering Department The Ohio State University Introduction Problem Statement

More information

Performance Analysis and Evaluation of Mellanox ConnectX InfiniBand Architecture with Multi-Core Platforms

Performance Analysis and Evaluation of Mellanox ConnectX InfiniBand Architecture with Multi-Core Platforms Performance Analysis and Evaluation of Mellanox ConnectX InfiniBand Architecture with Multi-Core Platforms Sayantan Sur, Matt Koop, Lei Chai Dhabaleswar K. Panda Network Based Computing Lab, The Ohio State

More information

Designing Next-Generation Data- Centers with Advanced Communication Protocols and Systems Services. Presented by: Jitong Chen

Designing Next-Generation Data- Centers with Advanced Communication Protocols and Systems Services. Presented by: Jitong Chen Designing Next-Generation Data- Centers with Advanced Communication Protocols and Systems Services Presented by: Jitong Chen Outline Architecture of Web-based Data Center Three-Stage framework to benefit

More information

Designing High Performance Communication Middleware with Emerging Multi-core Architectures

Designing High Performance Communication Middleware with Emerging Multi-core Architectures Designing High Performance Communication Middleware with Emerging Multi-core Architectures Dhabaleswar K. (DK) Panda Department of Computer Science and Engg. The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

Memory Scalability Evaluation of the Next-Generation Intel Bensley Platform with InfiniBand

Memory Scalability Evaluation of the Next-Generation Intel Bensley Platform with InfiniBand Memory Scalability Evaluation of the Next-Generation Intel Bensley Platform with InfiniBand Matthew Koop, Wei Huang, Ahbinav Vishnu, Dhabaleswar K. Panda Network-Based Computing Laboratory Department of

More information

Can Memory-Less Network Adapters Benefit Next-Generation InfiniBand Systems?

Can Memory-Less Network Adapters Benefit Next-Generation InfiniBand Systems? Can Memory-Less Network Adapters Benefit Next-Generation InfiniBand Systems? Sayantan Sur, Abhinav Vishnu, Hyun-Wook Jin, Wei Huang and D. K. Panda {surs, vishnu, jinhy, huanwei, panda}@cse.ohio-state.edu

More information

High Performance Distributed Lock Management Services using Network-based Remote Atomic Operations

High Performance Distributed Lock Management Services using Network-based Remote Atomic Operations High Performance Distributed Lock Management Services using Network-based Remote Atomic Operations S. Narravula A. Mamidala A. Vishnu K. Vaidyanathan D. K. Panda Department of Computer Science and Engineering

More information

SR-IOV Support for Virtualization on InfiniBand Clusters: Early Experience

SR-IOV Support for Virtualization on InfiniBand Clusters: Early Experience SR-IOV Support for Virtualization on InfiniBand Clusters: Early Experience Jithin Jose, Mingzhe Li, Xiaoyi Lu, Krishna Kandalla, Mark Arnold and Dhabaleswar K. (DK) Panda Network-Based Computing Laboratory

More information

Unified Runtime for PGAS and MPI over OFED

Unified Runtime for PGAS and MPI over OFED Unified Runtime for PGAS and MPI over OFED D. K. Panda and Sayantan Sur Network-Based Computing Laboratory Department of Computer Science and Engineering The Ohio State University, USA Outline Introduction

More information

High-Performance and Scalable Non-Blocking All-to-All with Collective Offload on InfiniBand Clusters: A study with Parallel 3DFFT

High-Performance and Scalable Non-Blocking All-to-All with Collective Offload on InfiniBand Clusters: A study with Parallel 3DFFT High-Performance and Scalable Non-Blocking All-to-All with Collective Offload on InfiniBand Clusters: A study with Parallel 3DFFT Krishna Kandalla (1), Hari Subramoni (1), Karen Tomko (2), Dmitry Pekurovsky

More information

Design and Evaluation of Benchmarks for Financial Applications using Advanced Message Queuing Protocol (AMQP) over InfiniBand

Design and Evaluation of Benchmarks for Financial Applications using Advanced Message Queuing Protocol (AMQP) over InfiniBand Design and Evaluation of Benchmarks for Financial Applications using Advanced Message Queuing Protocol (AMQP) over InfiniBand Hari Subramoni, Gregory Marsh, Sundeep Narravula, Ping Lai, and Dhabaleswar

More information

Implementing Efficient and Scalable Flow Control Schemes in MPI over InfiniBand

Implementing Efficient and Scalable Flow Control Schemes in MPI over InfiniBand Implementing Efficient and Scalable Flow Control Schemes in MPI over InfiniBand Jiuxing Liu and Dhabaleswar K. Panda Computer Science and Engineering The Ohio State University Presentation Outline Introduction

More information

Reducing Network Contention with Mixed Workloads on Modern Multicore Clusters

Reducing Network Contention with Mixed Workloads on Modern Multicore Clusters Reducing Network Contention with Mixed Workloads on Modern Multicore Clusters Matthew Koop 1 Miao Luo D. K. Panda matthew.koop@nasa.gov {luom, panda}@cse.ohio-state.edu 1 NASA Center for Computational

More information

Design Alternatives for Implementing Fence Synchronization in MPI-2 One-Sided Communication for InfiniBand Clusters

Design Alternatives for Implementing Fence Synchronization in MPI-2 One-Sided Communication for InfiniBand Clusters Design Alternatives for Implementing Fence Synchronization in MPI-2 One-Sided Communication for InfiniBand Clusters G.Santhanaraman, T. Gangadharappa, S.Narravula, A.Mamidala and D.K.Panda Presented by:

More information

Unifying UPC and MPI Runtimes: Experience with MVAPICH

Unifying UPC and MPI Runtimes: Experience with MVAPICH Unifying UPC and MPI Runtimes: Experience with MVAPICH Jithin Jose Miao Luo Sayantan Sur D. K. Panda Network-Based Computing Laboratory Department of Computer Science and Engineering The Ohio State University,

More information

Exploiting Full Potential of GPU Clusters with InfiniBand using MVAPICH2-GDR

Exploiting Full Potential of GPU Clusters with InfiniBand using MVAPICH2-GDR Exploiting Full Potential of GPU Clusters with InfiniBand using MVAPICH2-GDR Presentation at Mellanox Theater () Dhabaleswar K. (DK) Panda - The Ohio State University panda@cse.ohio-state.edu Outline Communication

More information

Memcached Design on High Performance RDMA Capable Interconnects

Memcached Design on High Performance RDMA Capable Interconnects Memcached Design on High Performance RDMA Capable Interconnects Jithin Jose, Hari Subramoni, Miao Luo, Minjia Zhang, Jian Huang, Md. Wasi- ur- Rahman, Nusrat S. Islam, Xiangyong Ouyang, Hao Wang, Sayantan

More information

Application-Transparent Checkpoint/Restart for MPI Programs over InfiniBand

Application-Transparent Checkpoint/Restart for MPI Programs over InfiniBand Application-Transparent Checkpoint/Restart for MPI Programs over InfiniBand Qi Gao, Weikuan Yu, Wei Huang, Dhabaleswar K. Panda Network-Based Computing Laboratory Department of Computer Science & Engineering

More information

Can Parallel Replication Benefit Hadoop Distributed File System for High Performance Interconnects?

Can Parallel Replication Benefit Hadoop Distributed File System for High Performance Interconnects? Can Parallel Replication Benefit Hadoop Distributed File System for High Performance Interconnects? N. S. Islam, X. Lu, M. W. Rahman, and D. K. Panda Network- Based Compu2ng Laboratory Department of Computer

More information

Designing Efficient Systems Services and Primitives for Next-Generation Data-Centers

Designing Efficient Systems Services and Primitives for Next-Generation Data-Centers Designing Efficient Systems Services and Primitives for Next-Generation Data-Centers K. Vaidyanathan S. Narravula P. Balaji D. K. Panda Department of Computer Science and Engineering The Ohio State University

More information

Evaluating the Impact of RDMA on Storage I/O over InfiniBand

Evaluating the Impact of RDMA on Storage I/O over InfiniBand Evaluating the Impact of RDMA on Storage I/O over InfiniBand J Liu, DK Panda and M Banikazemi Computer and Information Science IBM T J Watson Research Center The Ohio State University Presentation Outline

More information

High Performance MPI on IBM 12x InfiniBand Architecture

High Performance MPI on IBM 12x InfiniBand Architecture High Performance MPI on IBM 12x InfiniBand Architecture Abhinav Vishnu, Brad Benton 1 and Dhabaleswar K. Panda {vishnu, panda} @ cse.ohio-state.edu {brad.benton}@us.ibm.com 1 1 Presentation Road-Map Introduction

More information

Multi-Threaded UPC Runtime for GPU to GPU communication over InfiniBand

Multi-Threaded UPC Runtime for GPU to GPU communication over InfiniBand Multi-Threaded UPC Runtime for GPU to GPU communication over InfiniBand Miao Luo, Hao Wang, & D. K. Panda Network- Based Compu2ng Laboratory Department of Computer Science and Engineering The Ohio State

More information

Designing Optimized MPI Broadcast and Allreduce for Many Integrated Core (MIC) InfiniBand Clusters

Designing Optimized MPI Broadcast and Allreduce for Many Integrated Core (MIC) InfiniBand Clusters Designing Optimized MPI Broadcast and Allreduce for Many Integrated Core (MIC) InfiniBand Clusters K. Kandalla, A. Venkatesh, K. Hamidouche, S. Potluri, D. Bureddy and D. K. Panda Presented by Dr. Xiaoyi

More information

A Plugin-based Approach to Exploit RDMA Benefits for Apache and Enterprise HDFS

A Plugin-based Approach to Exploit RDMA Benefits for Apache and Enterprise HDFS A Plugin-based Approach to Exploit RDMA Benefits for Apache and Enterprise HDFS Adithya Bhat, Nusrat Islam, Xiaoyi Lu, Md. Wasi- ur- Rahman, Dip: Shankar, and Dhabaleswar K. (DK) Panda Network- Based Compu2ng

More information

MVAPICH-Aptus: Scalable High-Performance Multi-Transport MPI over InfiniBand

MVAPICH-Aptus: Scalable High-Performance Multi-Transport MPI over InfiniBand MVAPICH-Aptus: Scalable High-Performance Multi-Transport MPI over InfiniBand Matthew Koop 1,2 Terry Jones 2 D. K. Panda 1 {koop, panda}@cse.ohio-state.edu trj@llnl.gov 1 Network-Based Computing Lab, The

More information

Latest Advances in MVAPICH2 MPI Library for NVIDIA GPU Clusters with InfiniBand

Latest Advances in MVAPICH2 MPI Library for NVIDIA GPU Clusters with InfiniBand Latest Advances in MVAPICH2 MPI Library for NVIDIA GPU Clusters with InfiniBand Presentation at GTC 2014 by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

2008 International ANSYS Conference

2008 International ANSYS Conference 2008 International ANSYS Conference Maximizing Productivity With InfiniBand-Based Clusters Gilad Shainer Director of Technical Marketing Mellanox Technologies 2008 ANSYS, Inc. All rights reserved. 1 ANSYS,

More information

Efficient and Truly Passive MPI-3 RMA Synchronization Using InfiniBand Atomics

Efficient and Truly Passive MPI-3 RMA Synchronization Using InfiniBand Atomics 1 Efficient and Truly Passive MPI-3 RMA Synchronization Using InfiniBand Atomics Mingzhe Li Sreeram Potluri Khaled Hamidouche Jithin Jose Dhabaleswar K. Panda Network-Based Computing Laboratory Department

More information

Enabling Efficient Use of UPC and OpenSHMEM PGAS models on GPU Clusters

Enabling Efficient Use of UPC and OpenSHMEM PGAS models on GPU Clusters Enabling Efficient Use of UPC and OpenSHMEM PGAS models on GPU Clusters Presentation at GTC 2014 by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

10-Gigabit iwarp Ethernet: Comparative Performance Analysis with InfiniBand and Myrinet-10G

10-Gigabit iwarp Ethernet: Comparative Performance Analysis with InfiniBand and Myrinet-10G 10-Gigabit iwarp Ethernet: Comparative Performance Analysis with InfiniBand and Myrinet-10G Mohammad J. Rashti and Ahmad Afsahi Queen s University Kingston, ON, Canada 2007 Workshop on Communication Architectures

More information

Evaluation of the Chelsio T580-CR iscsi Offload adapter

Evaluation of the Chelsio T580-CR iscsi Offload adapter October 2016 Evaluation of the Chelsio T580-CR iscsi iscsi Offload makes a difference Executive Summary As application processing demands increase and the amount of data continues to grow, getting this

More information

Birds of a Feather Presentation

Birds of a Feather Presentation Mellanox InfiniBand QDR 4Gb/s The Fabric of Choice for High Performance Computing Gilad Shainer, shainer@mellanox.com June 28 Birds of a Feather Presentation InfiniBand Technology Leadership Industry Standard

More information

RDMA Read Based Rendezvous Protocol for MPI over InfiniBand: Design Alternatives and Benefits

RDMA Read Based Rendezvous Protocol for MPI over InfiniBand: Design Alternatives and Benefits RDMA Read Based Rendezvous Protocol for MPI over InfiniBand: Design Alternatives and Benefits Sayantan Sur Hyun-Wook Jin Lei Chai D. K. Panda Network Based Computing Lab, The Ohio State University Presentation

More information

Infiniband and RDMA Technology. Doug Ledford

Infiniband and RDMA Technology. Doug Ledford Infiniband and RDMA Technology Doug Ledford Top 500 Supercomputers Nov 2005 #5 Sandia National Labs, 4500 machines, 9000 CPUs, 38TFlops, 1 big headache Performance great...but... Adding new machines problematic

More information

NFS/RDMA over 40Gbps iwarp Wael Noureddine Chelsio Communications

NFS/RDMA over 40Gbps iwarp Wael Noureddine Chelsio Communications NFS/RDMA over 40Gbps iwarp Wael Noureddine Chelsio Communications Outline RDMA Motivating trends iwarp NFS over RDMA Overview Chelsio T5 support Performance results 2 Adoption Rate of 40GbE Source: Crehan

More information

LiMIC: Support for High-Performance MPI Intra-Node Communication on Linux Cluster

LiMIC: Support for High-Performance MPI Intra-Node Communication on Linux Cluster LiMIC: Support for High-Performance MPI Intra-Node Communication on Linux Cluster H. W. Jin, S. Sur, L. Chai, and D. K. Panda Network-Based Computing Laboratory Department of Computer Science and Engineering

More information

Future Routing Schemes in Petascale clusters

Future Routing Schemes in Petascale clusters Future Routing Schemes in Petascale clusters Gilad Shainer, Mellanox, USA Ola Torudbakken, Sun Microsystems, Norway Richard Graham, Oak Ridge National Laboratory, USA Birds of a Feather Presentation Abstract

More information

Performance Evaluation of InfiniBand with PCI Express

Performance Evaluation of InfiniBand with PCI Express Performance Evaluation of InfiniBand with PCI Express Jiuxing Liu Amith Mamidala Abhinav Vishnu Dhabaleswar K Panda Department of Computer and Science and Engineering The Ohio State University Columbus,

More information

MiAMI: Multi-Core Aware Processor Affinity for TCP/IP over Multiple Network Interfaces

MiAMI: Multi-Core Aware Processor Affinity for TCP/IP over Multiple Network Interfaces MiAMI: Multi-Core Aware Processor Affinity for TCP/IP over Multiple Network Interfaces Hye-Churn Jang Hyun-Wook (Jin) Jin Department of Computer Science and Engineering Konkuk University Seoul, Korea {comfact,

More information

How to Boost the Performance of Your MPI and PGAS Applications with MVAPICH2 Libraries

How to Boost the Performance of Your MPI and PGAS Applications with MVAPICH2 Libraries How to Boost the Performance of Your MPI and PGAS s with MVAPICH2 Libraries A Tutorial at the MVAPICH User Group (MUG) Meeting 18 by The MVAPICH Team The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

Dynamic Reconfigurability Support for providing Soft QoS Guarantees in Cluster-based Multi-Tier Data-Centers over InfiniBand

Dynamic Reconfigurability Support for providing Soft QoS Guarantees in Cluster-based Multi-Tier Data-Centers over InfiniBand Dynamic Reconfigurability Support for providing Soft QoS Guarantees in Cluster-based Multi-Tier Data-Centers over InfiniBand S. KRISHNAMOORTHY, P. BALAJI, K. VAIDYANATHAN, H. -W. JIN AND D. K. PANDA Technical

More information

The NE010 iwarp Adapter

The NE010 iwarp Adapter The NE010 iwarp Adapter Gary Montry Senior Scientist +1-512-493-3241 GMontry@NetEffect.com Today s Data Center Users Applications networking adapter LAN Ethernet NAS block storage clustering adapter adapter

More information

In the multi-core age, How do larger, faster and cheaper and more responsive memory sub-systems affect data management? Dhabaleswar K.

In the multi-core age, How do larger, faster and cheaper and more responsive memory sub-systems affect data management? Dhabaleswar K. In the multi-core age, How do larger, faster and cheaper and more responsive sub-systems affect data management? Panel at ADMS 211 Dhabaleswar K. (DK) Panda Network-Based Computing Laboratory Department

More information

Optimizing LS-DYNA Productivity in Cluster Environments

Optimizing LS-DYNA Productivity in Cluster Environments 10 th International LS-DYNA Users Conference Computing Technology Optimizing LS-DYNA Productivity in Cluster Environments Gilad Shainer and Swati Kher Mellanox Technologies Abstract Increasing demand for

More information

Accelerating MPI Message Matching and Reduction Collectives For Multi-/Many-core Architectures Mohammadreza Bayatpour, Hari Subramoni, D. K.

Accelerating MPI Message Matching and Reduction Collectives For Multi-/Many-core Architectures Mohammadreza Bayatpour, Hari Subramoni, D. K. Accelerating MPI Message Matching and Reduction Collectives For Multi-/Many-core Architectures Mohammadreza Bayatpour, Hari Subramoni, D. K. Panda Department of Computer Science and Engineering The Ohio

More information

Workload-driven Analysis of File Systems in Shared Multi-tier Data-Centers over InfiniBand

Workload-driven Analysis of File Systems in Shared Multi-tier Data-Centers over InfiniBand Workload-driven Analysis of File Systems in Shared Multi-tier Data-Centers over InfiniBand K. VAIDYANATHAN, P. BALAJI, H. -W. JIN AND D. K. PANDA Technical Report OSU-CISRC-12/4-TR65 Workload-driven Analysis

More information

Operational Robustness of Accelerator Aware MPI

Operational Robustness of Accelerator Aware MPI Operational Robustness of Accelerator Aware MPI Sadaf Alam Swiss National Supercomputing Centre (CSSC) Switzerland 2nd Annual MVAPICH User Group (MUG) Meeting, 2014 Computing Systems @ CSCS http://www.cscs.ch/computers

More information

Sockets Direct Procotol over InfiniBand in Clusters: Is it Beneficial?

Sockets Direct Procotol over InfiniBand in Clusters: Is it Beneficial? Sockets Direct Procotol over InfiniBand in Clusters: Is it Beneficial? P. Balaji S. Narravula K. Vaidyanathan S. Krishnamoorthy J. Wu D. K. Panda Computer and Information Science, The Ohio State University

More information

Designing Multi-Leader-Based Allgather Algorithms for Multi-Core Clusters *

Designing Multi-Leader-Based Allgather Algorithms for Multi-Core Clusters * Designing Multi-Leader-Based Allgather Algorithms for Multi-Core Clusters * Krishna Kandalla, Hari Subramoni, Gopal Santhanaraman, Matthew Koop and Dhabaleswar K. Panda Department of Computer Science and

More information

IBM WebSphere MQ Low Latency Messaging Software Tested With Arista 10 Gigabit Ethernet Switch and Mellanox ConnectX

IBM WebSphere MQ Low Latency Messaging Software Tested With Arista 10 Gigabit Ethernet Switch and Mellanox ConnectX IBM WebSphere MQ Low Latency Messaging Software Tested With Arista 10 Gigabit Ethernet Switch and Mellanox ConnectX -2 EN with RoCE Adapter Delivers Reliable Multicast Messaging With Ultra Low Latency

More information

Informatix Solutions INFINIBAND OVERVIEW. - Informatix Solutions, Page 1 Version 1.0

Informatix Solutions INFINIBAND OVERVIEW. - Informatix Solutions, Page 1 Version 1.0 INFINIBAND OVERVIEW -, 2010 Page 1 Version 1.0 Why InfiniBand? Open and comprehensive standard with broad vendor support Standard defined by the InfiniBand Trade Association (Sun was a founder member,

More information

Application Acceleration Beyond Flash Storage

Application Acceleration Beyond Flash Storage Application Acceleration Beyond Flash Storage Session 303C Mellanox Technologies Flash Memory Summit July 2014 Accelerating Applications, Step-by-Step First Steps Make compute fast Moore s Law Make storage

More information

Presentation Outline. Dominant Computing System and Paradigm. Past and Current Systems. Basic Resources for Designing Computing Systems

Presentation Outline. Dominant Computing System and Paradigm. Past and Current Systems. Basic Resources for Designing Computing Systems Network Based Computing: Trends, Issues and Challenges Dhabaleswar K (DK) Panda Department of r Science and Engineering The Ohio State University E-mail: panda@cseohio-stateedu http://nowlabcseohio-stateedu

More information

Mellanox Technologies Maximize Cluster Performance and Productivity. Gilad Shainer, October, 2007

Mellanox Technologies Maximize Cluster Performance and Productivity. Gilad Shainer, October, 2007 Mellanox Technologies Maximize Cluster Performance and Productivity Gilad Shainer, shainer@mellanox.com October, 27 Mellanox Technologies Hardware OEMs Servers And Blades Applications End-Users Enterprise

More information

Designing An Efficient Kernel-level and User-level Hybrid Approach for MPI Intra-node Communication on Multi-core Systems

Designing An Efficient Kernel-level and User-level Hybrid Approach for MPI Intra-node Communication on Multi-core Systems Designing An Efficient Kernel-level and User-level Hybrid Approach for MPI Intra-node Communication on Multi-core Systems Lei Chai Ping Lai Hyun-Wook Jin Dhabaleswar K. Panda Department of Computer Science

More information

CRFS: A Lightweight User-Level Filesystem for Generic Checkpoint/Restart

CRFS: A Lightweight User-Level Filesystem for Generic Checkpoint/Restart CRFS: A Lightweight User-Level Filesystem for Generic Checkpoint/Restart Xiangyong Ouyang, Raghunath Rajachandrasekar, Xavier Besseron, Hao Wang, Jian Huang, Dhabaleswar K. Panda Department of Computer

More information

A Low Latency Solution Stack for High Frequency Trading. High-Frequency Trading. Solution. White Paper

A Low Latency Solution Stack for High Frequency Trading. High-Frequency Trading. Solution. White Paper A Low Latency Solution Stack for High Frequency Trading White Paper High-Frequency Trading High-frequency trading has gained a strong foothold in financial markets, driven by several factors including

More information

The Role of InfiniBand Technologies in High Performance Computing. 1 Managed by UT-Battelle for the Department of Energy

The Role of InfiniBand Technologies in High Performance Computing. 1 Managed by UT-Battelle for the Department of Energy The Role of InfiniBand Technologies in High Performance Computing 1 Managed by UT-Battelle Contributors Gil Bloch Noam Bloch Hillel Chapman Manjunath Gorentla- Venkata Richard Graham Michael Kagan Vasily

More information

Enhancing Checkpoint Performance with Staging IO & SSD

Enhancing Checkpoint Performance with Staging IO & SSD Enhancing Checkpoint Performance with Staging IO & SSD Xiangyong Ouyang Sonya Marcarelli Dhabaleswar K. Panda Department of Computer Science & Engineering The Ohio State University Outline Motivation and

More information

UNDERSTANDING THE IMPACT OF MULTI-CORE ARCHITECTURE IN CLUSTER COMPUTING: A CASE STUDY WITH INTEL DUAL-CORE SYSTEM

UNDERSTANDING THE IMPACT OF MULTI-CORE ARCHITECTURE IN CLUSTER COMPUTING: A CASE STUDY WITH INTEL DUAL-CORE SYSTEM UNDERSTANDING THE IMPACT OF MULTI-CORE ARCHITECTURE IN CLUSTER COMPUTING: A CASE STUDY WITH INTEL DUAL-CORE SYSTEM Sweety Sen, Sonali Samanta B.Tech, Information Technology, Dronacharya College of Engineering,

More information

Benefits of I/O Acceleration Technology (I/OAT) in Clusters

Benefits of I/O Acceleration Technology (I/OAT) in Clusters Benefits of I/O Acceleration Technology (I/OAT) in Clusters K. VAIDYANATHAN AND D. K. PANDA Technical Report Ohio State University (OSU-CISRC-2/7-TR13) The 27 IEEE International Symposium on Performance

More information

Coupling GPUDirect RDMA and InfiniBand Hardware Multicast Technologies for Streaming Applications

Coupling GPUDirect RDMA and InfiniBand Hardware Multicast Technologies for Streaming Applications Coupling GPUDirect RDMA and InfiniBand Hardware Multicast Technologies for Streaming Applications GPU Technology Conference GTC 2016 by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

Support for GPUs with GPUDirect RDMA in MVAPICH2 SC 13 NVIDIA Booth

Support for GPUs with GPUDirect RDMA in MVAPICH2 SC 13 NVIDIA Booth Support for GPUs with GPUDirect RDMA in MVAPICH2 SC 13 NVIDIA Booth by D.K. Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda Outline Overview of MVAPICH2-GPU

More information

Performance Evaluation of RDMA over IP: A Case Study with Ammasso Gigabit Ethernet NIC

Performance Evaluation of RDMA over IP: A Case Study with Ammasso Gigabit Ethernet NIC Performance Evaluation of RDMA over IP: A Case Study with Ammasso Gigabit Ethernet NIC HYUN-WOOK JIN, SUNDEEP NARRAVULA, GREGORY BROWN, KARTHIKEYAN VAIDYANATHAN, PAVAN BALAJI, AND DHABALESWAR K. PANDA

More information

LUSTRE NETWORKING High-Performance Features and Flexible Support for a Wide Array of Networks White Paper November Abstract

LUSTRE NETWORKING High-Performance Features and Flexible Support for a Wide Array of Networks White Paper November Abstract LUSTRE NETWORKING High-Performance Features and Flexible Support for a Wide Array of Networks White Paper November 2008 Abstract This paper provides information about Lustre networking that can be used

More information

Performance Evaluation of InfiniBand with PCI Express

Performance Evaluation of InfiniBand with PCI Express Performance Evaluation of InfiniBand with PCI Express Jiuxing Liu Server Technology Group IBM T. J. Watson Research Center Yorktown Heights, NY 1598 jl@us.ibm.com Amith Mamidala, Abhinav Vishnu, and Dhabaleswar

More information

MM5 Modeling System Performance Research and Profiling. March 2009

MM5 Modeling System Performance Research and Profiling. March 2009 MM5 Modeling System Performance Research and Profiling March 2009 Note The following research was performed under the HPC Advisory Council activities AMD, Dell, Mellanox HPC Advisory Council Cluster Center

More information

Fast packet processing in the cloud. Dániel Géhberger Ericsson Research

Fast packet processing in the cloud. Dániel Géhberger Ericsson Research Fast packet processing in the cloud Dániel Géhberger Ericsson Research Outline Motivation Service chains Hardware related topics, acceleration Virtualization basics Software performance and acceleration

More information

AcuSolve Performance Benchmark and Profiling. October 2011

AcuSolve Performance Benchmark and Profiling. October 2011 AcuSolve Performance Benchmark and Profiling October 2011 Note The following research was performed under the HPC Advisory Council activities Participating vendors: AMD, Dell, Mellanox, Altair Compute

More information

IsoStack Highly Efficient Network Processing on Dedicated Cores

IsoStack Highly Efficient Network Processing on Dedicated Cores IsoStack Highly Efficient Network Processing on Dedicated Cores Leah Shalev Eran Borovik, Julian Satran, Muli Ben-Yehuda Outline Motivation IsoStack architecture Prototype TCP/IP over 10GE on a single

More information

CSC501 Operating Systems Principles. OS Structure

CSC501 Operating Systems Principles. OS Structure CSC501 Operating Systems Principles OS Structure 1 Announcements q TA s office hour has changed Q Thursday 1:30pm 3:00pm, MRC-409C Q Or email: awang@ncsu.edu q From department: No audit allowed 2 Last

More information

ABySS Performance Benchmark and Profiling. May 2010

ABySS Performance Benchmark and Profiling. May 2010 ABySS Performance Benchmark and Profiling May 2010 Note The following research was performed under the HPC Advisory Council activities Participating vendors: AMD, Dell, Mellanox Compute resource - HPC

More information

A Portable InfiniBand Module for MPICH2/Nemesis: Design and Evaluation

A Portable InfiniBand Module for MPICH2/Nemesis: Design and Evaluation A Portable InfiniBand Module for MPICH2/Nemesis: Design and Evaluation Miao Luo, Ping Lai, Sreeram Potluri, Emilio P. Mancini, Hari Subramoni, Krishna Kandalla, Dhabaleswar K. Panda Department of Computer

More information

An Implementation of the Homa Transport Protocol in RAMCloud. Yilong Li, Behnam Montazeri, John Ousterhout

An Implementation of the Homa Transport Protocol in RAMCloud. Yilong Li, Behnam Montazeri, John Ousterhout An Implementation of the Homa Transport Protocol in RAMCloud Yilong Li, Behnam Montazeri, John Ousterhout Introduction Homa: receiver-driven low-latency transport protocol using network priorities HomaTransport

More information

HYCOM Performance Benchmark and Profiling

HYCOM Performance Benchmark and Profiling HYCOM Performance Benchmark and Profiling Jan 2011 Acknowledgment: - The DoD High Performance Computing Modernization Program Note The following research was performed under the HPC Advisory Council activities

More information

Optimizing MPI Communication on Multi-GPU Systems using CUDA Inter-Process Communication

Optimizing MPI Communication on Multi-GPU Systems using CUDA Inter-Process Communication Optimizing MPI Communication on Multi-GPU Systems using CUDA Inter-Process Communication Sreeram Potluri* Hao Wang* Devendar Bureddy* Ashish Kumar Singh* Carlos Rosales + Dhabaleswar K. Panda* *Network-Based

More information

Advanced Computer Networks. End Host Optimization

Advanced Computer Networks. End Host Optimization Oriana Riva, Department of Computer Science ETH Zürich 263 3501 00 End Host Optimization Patrick Stuedi Spring Semester 2017 1 Today End-host optimizations: NUMA-aware networking Kernel-bypass Remote Direct

More information

DB2 purescale: High Performance with High-Speed Fabrics. Author: Steve Rees Date: April 5, 2011

DB2 purescale: High Performance with High-Speed Fabrics. Author: Steve Rees Date: April 5, 2011 DB2 purescale: High Performance with High-Speed Fabrics Author: Steve Rees Date: April 5, 2011 www.openfabrics.org IBM 2011 Copyright 1 Agenda Quick DB2 purescale recap DB2 purescale comes to Linux DB2

More information

The rcuda middleware and applications

The rcuda middleware and applications The rcuda middleware and applications Will my application work with rcuda? rcuda currently provides binary compatibility with CUDA 5.0, virtualizing the entire Runtime API except for the graphics functions,

More information

FROM HPC TO THE CLOUD WITH AMQP AND OPEN SOURCE SOFTWARE

FROM HPC TO THE CLOUD WITH AMQP AND OPEN SOURCE SOFTWARE FROM HPC TO THE CLOUD WITH AMQP AND OPEN SOURCE SOFTWARE Carl Trieloff cctrieloff@redhat.com Red Hat Lee Fisher lee.fisher@hp.com Hewlett-Packard High Performance Computing on Wall Street conference 14

More information

May 1, Foundation for Research and Technology - Hellas (FORTH) Institute of Computer Science (ICS) A Sleep-based Communication Mechanism to

May 1, Foundation for Research and Technology - Hellas (FORTH) Institute of Computer Science (ICS) A Sleep-based Communication Mechanism to A Sleep-based Our Akram Foundation for Research and Technology - Hellas (FORTH) Institute of Computer Science (ICS) May 1, 2011 Our 1 2 Our 3 4 5 6 Our Efficiency in Back-end Processing Efficiency in back-end

More information

Experimental Study of Virtual Machine Migration in Support of Reservation of Cluster Resources

Experimental Study of Virtual Machine Migration in Support of Reservation of Cluster Resources Experimental Study of Virtual Machine Migration in Support of Reservation of Cluster Resources Ming Zhao, Renato J. Figueiredo Advanced Computing and Information Systems (ACIS) Electrical and Computer

More information

Performance Analysis and Evaluation of PCIe 2.0 and Quad-Data Rate InfiniBand

Performance Analysis and Evaluation of PCIe 2.0 and Quad-Data Rate InfiniBand th IEEE Symposium on High Performance Interconnects Performance Analysis and Evaluation of PCIe. and Quad-Data Rate InfiniBand Matthew J. Koop Wei Huang Karthik Gopalakrishnan Dhabaleswar K. Panda Network-Based

More information

NTRDMA v0.1. An Open Source Driver for PCIe NTB and DMA. Allen Hubbe at Linux Piter 2015 NTRDMA. Messaging App. IB Verbs. dmaengine.h ntb.

NTRDMA v0.1. An Open Source Driver for PCIe NTB and DMA. Allen Hubbe at Linux Piter 2015 NTRDMA. Messaging App. IB Verbs. dmaengine.h ntb. Messaging App IB Verbs NTRDMA dmaengine.h ntb.h DMA DMA DMA NTRDMA v0.1 An Open Source Driver for PCIe and DMA Allen Hubbe at Linux Piter 2015 1 INTRODUCTION Allen Hubbe Senior Software Engineer EMC Corporation

More information

AN ANALYSIS OF 10-GIGABIT ETHERNET PROTOCOL STACKS IN MULTICORE ENVIRONMENTS

AN ANALYSIS OF 10-GIGABIT ETHERNET PROTOCOL STACKS IN MULTICORE ENVIRONMENTS AN ANALYSIS OF 10-GIGABIT ETHERNET PROTOCOL STACKS IN MULTICORE ENVIRONMENTS G. NARAYANASWAMY, P. BALAJI, AND W. FENG Virginia Tech. Technical Report TR-07-25 Argonne National Laboratory Preprint ANL/MCS-P1432-0607

More information

Op#miza#on and Tuning of Hybrid, Mul#rail, 3D Torus Support and QoS in MVAPICH2

Op#miza#on and Tuning of Hybrid, Mul#rail, 3D Torus Support and QoS in MVAPICH2 Op#miza#on and Tuning of Hybrid, Mul#rail, 3D Torus Support and QoS in MVAPICH2 MVAPICH2 User Group (MUG) Mee#ng by Hari Subramoni The Ohio State University E- mail: subramon@cse.ohio- state.edu h

More information

Server Networking e Virtual Data Center

Server Networking e Virtual Data Center Server Networking e Virtual Data Center Roma, 8 Febbraio 2006 Luciano Pomelli Consulting Systems Engineer lpomelli@cisco.com 1 Typical Compute Profile at a Fortune 500 Enterprise Compute Infrastructure

More information

Interconnect Your Future

Interconnect Your Future Interconnect Your Future Gilad Shainer 2nd Annual MVAPICH User Group (MUG) Meeting, August 2014 Complete High-Performance Scalable Interconnect Infrastructure Comprehensive End-to-End Software Accelerators

More information

Exploiting RDMA operations for Providing Efficient Fine-Grained Resource Monitoring in Cluster-based Servers

Exploiting RDMA operations for Providing Efficient Fine-Grained Resource Monitoring in Cluster-based Servers Exploiting RDMA operations for Providing Efficient Fine-Grained Resource Monitoring in Cluster-based Servers K. Vaidyanathan Comp. Science and Engg., Ohio State University vaidyana@cse.ohio-state.edu H.

More information

Oncilla - a Managed GAS Runtime for Accelerating Data Warehousing Queries

Oncilla - a Managed GAS Runtime for Accelerating Data Warehousing Queries Oncilla - a Managed GAS Runtime for Accelerating Data Warehousing Queries Jeffrey Young, Alex Merritt, Se Hoon Shon Advisor: Sudhakar Yalamanchili 4/16/13 Sponsors: Intel, NVIDIA, NSF 2 The Problem Big

More information