The Stampede Supercomputer

Size: px
Start display at page:

Download "The Stampede Supercomputer"

Transcription

1 The Stampede Supercomputer Niall Gaffney (Dan Stanzione, Karl Schulz, Bill Barth, Tommy Minyard) July 2013

2 Acknowledgements Thanks/kudos to: Sponsor: National Science Foundation NSF Grant #OCI Stampede Award, Enabling, Enhancing, and Extending Petascale Computing for Science and Engineering NSF Grant #OCI Topology-Aware MPI Collectives and Scheduling Many, many Dell, Intel, and Mellanox engineers All my colleagues at TACC who constructed such an amazing system and let me take some credit 2

3 Who am I Came from the Space Telescope Science Institute Hubble Space Telescope Archive, Hubble Legacy Archive, James Web Space Telescope Archive Started May 2013 as Director of Data Intensive Computing Charged with bringing new users to do Data Intensive Computations using Stampede Leading Data Management and Collections and Data Mining and Statistics groups 3

4 TACC s Stampede Project They designed a comprehensive science system: huge supercomputing capability, with powerful processors high throughput computing & big shared memory capabilities powerful visualization, with high-end GPUs extensive software stack to support both simulation-based and data-driven science expertise, training & documentation to support diverse users, applications, and modes of computational science 4

5 Faster Always Faster Default 2.15 R on Stampede: c $ cat R-benchmark-25.R time R --slave > R.2.15.out user 2.20system 3:06.67 elapsed 99%CPU (0avgtext+0avgdata maxresident)k 25984inputs+32outputs (54major minor)pagefaults 0swaps Yaakoubed 3.0 R on Stampede: c $ cat R-benchmark-25.R time R --slave > R.3.0.out 52.49user 2.10system 0:57.98 elapsed 94%CPU (0avgtext+0avgdata maxresident)k 30640inputs+16outputs (538major minor)pagefaults 0swaps From the article, default R takes ~ 9 minutes! 5

6 TACC s Stampede: The Big Picture Dell, Intel, and Mellanox are vendor partners Almost 10 petaflops peak in initial system (2013) 2.2 PF of Intel Xeon E5 (6400 dual-socket nodes) 7.3 PF of Intel Xeon Phi (MIC) coprocessors (6400+) 14 PB disk, 150+ GB/s I/O bandwidth 260 TB RAM 56 Gb/s Mellanox FDR InfiniBand interconnect 16 x 1TB large shared memory nodes 128 Nvidia Kepler K20 GPUs for remote visualization $51.5M project for 4 years to enable new science 6

7 Xeon Phi: Innovative Component One of the goals of the NSF solicitation was to introduce a major new innovative capability component to science and engineering research communities Included as an experimental HPC component We proposed the Intel Xeon Phi coprocessor (many integrated core or MIC) one first generation Phi installed per host during initial deployment confirmed injection of 1600 future generation MICs in 2015 (5+ PF) 7

8 What is MIC? Basic Design Ideas: Leverage x86 architecture (a CPU with many cores) Use x86 cores that are simpler, but allow for more compute throughput Leverage existing x86 programming models Dedicate much of the silicon to floating point ops., keep some cache(s) Keep cache-coherency protocol Increase floating-point throughput per core Implement as a separate device Strip expensive features (out-of-order execution, branch prediction, etc.) Widened SIMD registers for more throughput (512 bit) Fast (GDDR5) memory on card 8

9 Will My Code Run on MIC? Yes That s the wrong question, it s: Will your code run *best* on MIC?, or Will you get great MIC performance without additional work? Do not HAVE to use MICs to use Stampede More opportunities to learn about programing MICs in the near future. 9

10 Stampede Footprint Ranger Stampede 8000 ft 2 ~10PF 6.5 MW 3000 ft2 0.6 PF 3 MW Machine Room Expansion Added 6.5MW of additional power 10

11 Stampede: a Fast Deployment of a Fast System Feb 20, 2012 May 16, 2012 March 22, 2012 Sep 10,

12 Stampede Datacenter, ~September 10th 12

13 Some utilities are involved 13

14 [ I/O Subsystem ] 14

15 File Systems Build-Out At the Stampede scale, parallel file systems are universally required for all user file systems Currently running Lustre Logical Volume Capacity Target Usage $HOME $WORK $SCRATCH 768 TB (524 TB) ~2 PB (1.1 PB) ~11 PB (7.5 PB) Permanent user storage; automatically backed up, quota enforced Large allocated storage; not backed up, quota enforced Large temporary storage; not backed up, purged periodically 15

16 File Systems Before beginning any Lustre work, significant time was spent on designing MD layout and performing thorough drive burn-in Basic OSS config - DCS C Compute blade (left) 4 Storage blades (right) RAID6 software raid and Lustre run on dual-socket SB Each storage blade has 16 3TB drives each (64 drives/shelf) 16

17 Write Speed (GB/sec) Write Speed (GB/sec) File Systems Build-Out: Lustre With all raid sets vetted, we commenced with Lustre formatting and full formal I/O testing: single OSS tested first to verify adequate Lustre performance (measured peaks of almost 3 GB/sec) then, verified scalability of multiple servers when writing 2GB per task in parallel (near perfect scalability observed across 58 OSS servers) finally, full system I/O tests commenced using more than 6K hosts Full System I/O Results: Peak Write = 159 GB/sec Peak Read = GB/sec Lustre StripeCount= # of Write Clients Lustre StripeCount= # of Write Clients 17

18 [ System Speeds and Feeds ] 18

19 HPL Gflos HPL Efficiency Speeds and Feeds: Full System HPL (SB) HPL Completed on all 6400 hosts on 12/31/12 Exceeded 90% efficiency with 8GB/node 2.5E % 90.00% 2.0E % 70.00% 1.5E % 50.00% 1.0E % 30.00% 5.0E % 10.00% 0.0E+00 2G / node 4G / node 8G / node 0.00% 2G / node 4G / node 8G / node Prior to these full system runs, we also ran a heterogeneous SB+MIC run for submission ISC 13 -> Stampede currently ranked 6 th 19

20 MPI Bandwidth (MB/sec) Speeds and Feeds: P2P Bandwidth (FDR) Comparison to previous generation IB fabrics Stampede Lonestar 4 Ranger Message Size (Bytes)

21 Topology Considerations At scale, process mapping with respect to topology can have significant impact on applications Full fat-tree (Stampede, TACC) 4x4x4 3D Torus (Gordon, SDSC) 21

22 Latency (us) Topology Considerations Topology query service (now in production on Stampede) - NSF STCI with OSU, SDSC caches the entire linear forwarding table (LFT) for each IB switch - via OpenSM plugin or ibnetdiscover tools exposed via network (socket) interface such that an MPI stack (or user application) can query the service remotely can return # of hops between each host or full directed route between any two hosts Nearest neighbor application benchmark from Stampede [courtesy H. Subramoni, SC 12] query c :c c x0002c x0002c903006f9010 0x0002c c090 c We will also be leveraging this service to perform topology-aware scheduling so that smaller user jobs will have their nodes placed closer together topologically have created simple tool to create SLURM topology config file using above query service works, but slows interactivity when users specify maximum # of switch hops desired during job submission Default Topo-Aware K 2K 4K 8K Number of Processes 45% 22

23 Initial File System Growth (first 2 months) Disk Usage (in TBs) $WORK 1000 $SCRATCH Jan 17-Jan 27-Jan 6-Feb 16-Feb 26-Feb 8-Mar 23

24 Disk Usage Today Size Used Avail Use% Mounted on 524T 3.3T 521T 1% /home1 1.1P 125T 923T 12% /work 7.5P 5.0P 2.6P 67% /scratch 24

25 [Software Stack] 25

26 Data Oriented Software General Data Packages Python Enthought Python Dist. (numpy, scipy, ipython, matplotlib ) R - statistics package (multicore, snow) Paraview a parallel interactive visualization system Visit - a parallel visualization suite based in part on VTK Matlab 2013a from MathWorks (bring your own license) Bio/Genomic Packages Bedtools: a flexible suite of utilities for comparing genomic features BioPerl Many BLAST (Basic Local Alignment Search Tool) packages Freesurfer - a set of tools for structural and functional brain imaging data TopHat2 - a fast splice junction mapper for RNA-Seq reads Will support more tools for other communities 26

27 Stampede so far In first ~4 months of production operations Stampede has delivered: More than 700,000 successful job completions More than 250,000,000 core hours of processing time. Jobs for more than 1,100 individual users, on 850 different funded projects. Roughly 12% of projects on Stampede involve data computation 27

28 Modes for Data Intensive Computing User Created Code Not covered here (OpenMP, MPI, MIC optimization) High Throughput Computing Capabilities Launchers to start and manage jobs Large Shared Memory Capabilities Big Nodes for Large Data requirements Parallel Data Analysis Capabilities R analysis using parallel packages Remote Visualization Capabilities Using the GPUs and visualization packages remotely

29 Stampede Will Enable New Scientific Discoveries Across Domains science projects, by thousands of researchers

30 Stampede Will Enable New Scientific Discoveries Across Domains science projects, by thousands of researchers

31 Stampede Early Science Highlights Predicting Earthquakes in California The Southern California Earthquake Center used Stampede to predict the frequency of damaging earthquakes for the latest Uniform California Earthquake Rupture Forecast (UCERT3). Results will be incorporated into USGS s National Seismic Hazard Maps which are used to set building codes and insurance rates.

32 Stampede Early Science Highlights Predicting Earthquakes in California The Southern California Earthquake Center used Stampede to predict the frequency of damaging earthquakes for the latest Uniform California Earthquake Rupture Forecast (UCERT3). Results will be incorporated into USGS s National Seismic Hazard Maps which are used to set building codes and insurance rates. We do a lot of HPC calculations, but it s rare that any of them have this level of potential impact. Thomas Jordan, Director Southern California Earthquake Center

33 Stampede Early Science Highlights Stampede as a Computational Microscope Researchers from the University of Illinois at Urbana- Champaign used Stampede to simulate protein folding and to design enzymes for secondgeneration biofuels.

34 Stampede Early Science Highlights Stampede as a Computational Microscope Researchers from the University of Illinois at Urbana- Champaign used Stampede to simulate protein folding and to design enzymes for secondgeneration biofuels. We are extremely excited about the strong computational power of Stampede. It is the fastest machine we have experienced right away and we have performed a lot of interesting scientific computational experiments on the system. Klaus Schulten University of Illinois at Urbana-Champaign

35 Stampede Early Science Highlights Improving Brain Tumor Imaging Surgeons want to know how aggressive a tumor is, and what its infiltration into the surrounding tissue is, in order to plan for surgery, radiotherapy and other treatment options. Dr. George Biros is creating new methods that quickly and accurately assimilate massive amounts of data from MRI scans and other imaging modalities and combine these with biophysical models that represent tumor growth.

36 Stampede Early Science Highlights Improving Brain Tumor Imaging The addition of biophysical tumor models increases the accuracy and effectiveness of the interpretation of images, but involves large amounts of complex computations that must be accomplished quickly. This is an area where supercomputers can be of great assistance to medicine. Just looking at the image is not enough. You have to combine several imaging modalities, many images, do pattern recognition and statistical data analysis, and incorporate machine learning tools and biophysical models, to try to interpret the images. A machine like Stampede makes this possible. George Biros, The University of Texas at Austin

37 Stampede Early Science Highlights High Performance Sound Technologies for Access and Scholarship (HiPSTAS) Stampede will provide high performance computing, large-scale visualization and massive storage capabilities to sound archivists to help them search for patterns and gain insights into spoken language and music. Stampede combined with the ARLO software enabled researchers to analyze massive sound archives at unprecedented speeds, increasing the pace of new discoveries.

38 Stampede Early Science Highlights High Performance Sound Technologies for Access and Scholarship (HiPSTAS) Stampede will provide high performance computing, large-scale visualization and massive storage capabilities to sound archivists to help them search for patterns and gain insights into spoken language and music. Stampede combined with the ARLO software enabled researchers to analyze massive sound archives at unprecedented speeds, increasing the pace of new discoveries. Using Stampede was essential for the success of the workshop, as participants sought to run advanced processes over thousands of files at once. This work would not have been possible without the supercomputer. Tanya Clement, The University of Texas at Austin

39 Summary Stampede was successfully deployed into a newly expanded datacenter in 2012 entered formal production in January 2013 Xeon Phi were made available to users early - formal acceptance this summer Sandy-Bridge + FDR scaling looking great good application scaling - user s have run up to 64K in normal production so far Lustre file systems are providing excellent throughput I/O rates encouraging for supporting large parallel data computations Stampede is producing groundbreaking results Significant initial data intensive computing results Start expanding that today 39

40 Niall Gaffney For more information: 40

The Stampede is Coming Welcome to Stampede Introductory Training. Dan Stanzione Texas Advanced Computing Center

The Stampede is Coming Welcome to Stampede Introductory Training. Dan Stanzione Texas Advanced Computing Center The Stampede is Coming Welcome to Stampede Introductory Training Dan Stanzione Texas Advanced Computing Center dan@tacc.utexas.edu Thanks for Coming! Stampede is an exciting new system of incredible power.

More information

The Stampede is Coming: A New Petascale Resource for the Open Science Community

The Stampede is Coming: A New Petascale Resource for the Open Science Community The Stampede is Coming: A New Petascale Resource for the Open Science Community Jay Boisseau Texas Advanced Computing Center boisseau@tacc.utexas.edu Stampede: Solicitation US National Science Foundation

More information

Introduction to Xeon Phi. Bill Barth January 11, 2013

Introduction to Xeon Phi. Bill Barth January 11, 2013 Introduction to Xeon Phi Bill Barth January 11, 2013 What is it? Co-processor PCI Express card Stripped down Linux operating system Dense, simplified processor Many power-hungry operations removed Wider

More information

HPC Hardware Overview

HPC Hardware Overview HPC Hardware Overview John Lockman III April 19, 2013 Texas Advanced Computing Center The University of Texas at Austin Outline Lonestar Dell blade-based system InfiniBand ( QDR) Intel Processors Longhorn

More information

Tutorial. Preparing for Stampede: Programming Heterogeneous Many-Core Supercomputers

Tutorial. Preparing for Stampede: Programming Heterogeneous Many-Core Supercomputers Tutorial Preparing for Stampede: Programming Heterogeneous Many-Core Supercomputers Dan Stanzione, Lars Koesterke, Bill Barth, Kent Milfeld dan/lars/bbarth/milfeld@tacc.utexas.edu XSEDE 12 July 16, 2012

More information

HPC Capabilities at Research Intensive Universities

HPC Capabilities at Research Intensive Universities HPC Capabilities at Research Intensive Universities Purushotham (Puri) V. Bangalore Department of Computer and Information Sciences and UAB IT Research Computing UAB HPC Resources 24 nodes (192 cores)

More information

TACC s Stampede Project: Intel MIC for Simulation and Data-Intensive Computing

TACC s Stampede Project: Intel MIC for Simulation and Data-Intensive Computing TACC s Stampede Project: Intel MIC for Simulation and Data-Intensive Computing Jay Boisseau, Director April 17, 2012 TACC Vision & Strategy Provide the most powerful, capable computing technologies and

More information

Introduc)on to Xeon Phi

Introduc)on to Xeon Phi Introduc)on to Xeon Phi ACES Aus)n, TX Dec. 04 2013 Kent Milfeld, Luke Wilson, John McCalpin, Lars Koesterke TACC What is it? Co- processor PCI Express card Stripped down Linux opera)ng system Dense, simplified

More information

Introduction to the Intel Xeon Phi on Stampede

Introduction to the Intel Xeon Phi on Stampede June 10, 2014 Introduction to the Intel Xeon Phi on Stampede John Cazes Texas Advanced Computing Center Stampede - High Level Overview Base Cluster (Dell/Intel/Mellanox): Intel Sandy Bridge processors

More information

Gateways to Discovery: Cyberinfrastructure for the Long Tail of Science

Gateways to Discovery: Cyberinfrastructure for the Long Tail of Science Gateways to Discovery: Cyberinfrastructure for the Long Tail of Science ECSS Symposium, 12/16/14 M. L. Norman, R. L. Moore, D. Baxter, G. Fox (Indiana U), A Majumdar, P Papadopoulos, W Pfeiffer, R. S.

More information

Resources Current and Future Systems. Timothy H. Kaiser, Ph.D.

Resources Current and Future Systems. Timothy H. Kaiser, Ph.D. Resources Current and Future Systems Timothy H. Kaiser, Ph.D. tkaiser@mines.edu 1 Most likely talk to be out of date History of Top 500 Issues with building bigger machines Current and near future academic

More information

NAMD Performance Benchmark and Profiling. January 2015

NAMD Performance Benchmark and Profiling. January 2015 NAMD Performance Benchmark and Profiling January 2015 2 Note The following research was performed under the HPC Advisory Council activities Participating vendors: Intel, Dell, Mellanox Compute resource

More information

NERSC Site Update. National Energy Research Scientific Computing Center Lawrence Berkeley National Laboratory. Richard Gerber

NERSC Site Update. National Energy Research Scientific Computing Center Lawrence Berkeley National Laboratory. Richard Gerber NERSC Site Update National Energy Research Scientific Computing Center Lawrence Berkeley National Laboratory Richard Gerber NERSC Senior Science Advisor High Performance Computing Department Head Cori

More information

Scaling to Petaflop. Ola Torudbakken Distinguished Engineer. Sun Microsystems, Inc

Scaling to Petaflop. Ola Torudbakken Distinguished Engineer. Sun Microsystems, Inc Scaling to Petaflop Ola Torudbakken Distinguished Engineer Sun Microsystems, Inc HPC Market growth is strong CAGR increased from 9.2% (2006) to 15.5% (2007) Market in 2007 doubled from 2003 (Source: IDC

More information

Interconnect Your Future

Interconnect Your Future Interconnect Your Future Gilad Shainer 2nd Annual MVAPICH User Group (MUG) Meeting, August 2014 Complete High-Performance Scalable Interconnect Infrastructure Comprehensive End-to-End Software Accelerators

More information

CSD3 The Cambridge Service for Data Driven Discovery. A New National HPC Service for Data Intensive science

CSD3 The Cambridge Service for Data Driven Discovery. A New National HPC Service for Data Intensive science CSD3 The Cambridge Service for Data Driven Discovery A New National HPC Service for Data Intensive science Dr Paul Calleja Director of Research Computing University of Cambridge Problem statement Today

More information

Overview of the Texas Advanced Computing Center. Bill Barth TACC September 12, 2011

Overview of the Texas Advanced Computing Center. Bill Barth TACC September 12, 2011 Overview of the Texas Advanced Computing Center Bill Barth TACC September 12, 2011 TACC Mission & Strategic Approach To enable discoveries that advance science and society through the application of advanced

More information

Comet Virtualization Code & Design Sprint

Comet Virtualization Code & Design Sprint Comet Virtualization Code & Design Sprint SDSC September 23-24 Rick Wagner San Diego Supercomputer Center Meeting Goals Build personal connections between the IU and SDSC members of the Comet team working

More information

Introduc)on to Xeon Phi

Introduc)on to Xeon Phi Introduc)on to Xeon Phi IXPUG 14 Lars Koesterke Acknowledgements Thanks/kudos to: Sponsor: National Science Foundation NSF Grant #OCI-1134872 Stampede Award, Enabling, Enhancing, and Extending Petascale

More information

Interactively Visualizing Science at Scale

Interactively Visualizing Science at Scale Interactively Visualizing Science at Scale Kelly Gaither Director of Visualization/Senior Research Scientist Texas Advanced Computing Center November 13, 2012 Issues and Concerns Maximizing Scientific

More information

High Performance Computing and Data Resources at SDSC

High Performance Computing and Data Resources at SDSC High Performance Computing and Data Resources at SDSC "! Mahidhar Tatineni (mahidhar@sdsc.edu)! SDSC Summer Institute! August 05, 2013! HPC Resources at SDSC Hardware Overview HPC Systems : Gordon, Trestles

More information

Accelerated Earthquake Simulations

Accelerated Earthquake Simulations Accelerated Earthquake Simulations Alex Breuer Technische Universität München Germany 1 Acknowledgements Volkswagen Stiftung Project ASCETE: Advanced Simulation of Coupled Earthquake-Tsunami Events Bavarian

More information

A Unified Approach to Heterogeneous Architectures Using the Uintah Framework

A Unified Approach to Heterogeneous Architectures Using the Uintah Framework DOE for funding the CSAFE project (97-10), DOE NETL, DOE NNSA NSF for funding via SDCI and PetaApps A Unified Approach to Heterogeneous Architectures Using the Uintah Framework Qingyu Meng, Alan Humphrey

More information

The Cambridge Bio-Medical-Cloud An OpenStack platform for medical analytics and biomedical research

The Cambridge Bio-Medical-Cloud An OpenStack platform for medical analytics and biomedical research The Cambridge Bio-Medical-Cloud An OpenStack platform for medical analytics and biomedical research Dr Paul Calleja Director of Research Computing University of Cambridge Global leader in science & technology

More information

Resources Current and Future Systems. Timothy H. Kaiser, Ph.D.

Resources Current and Future Systems. Timothy H. Kaiser, Ph.D. Resources Current and Future Systems Timothy H. Kaiser, Ph.D. tkaiser@mines.edu 1 Most likely talk to be out of date History of Top 500 Issues with building bigger machines Current and near future academic

More information

HPC Architectures. Types of resource currently in use

HPC Architectures. Types of resource currently in use HPC Architectures Types of resource currently in use Reusing this material This work is licensed under a Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License. http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_us

More information

ABySS Performance Benchmark and Profiling. May 2010

ABySS Performance Benchmark and Profiling. May 2010 ABySS Performance Benchmark and Profiling May 2010 Note The following research was performed under the HPC Advisory Council activities Participating vendors: AMD, Dell, Mellanox Compute resource - HPC

More information

NUIT Tech Talk Topics in Research Computing: XSEDE and Northwestern University Campus Champions

NUIT Tech Talk Topics in Research Computing: XSEDE and Northwestern University Campus Champions NUIT Tech Talk Topics in Research Computing: XSEDE and Northwestern University Campus Champions Pradeep Sivakumar pradeep-sivakumar@northwestern.edu Contents What is XSEDE? Introduction Who uses XSEDE?

More information

Intel Many Integrated Core (MIC) Matt Kelly & Ryan Rawlins

Intel Many Integrated Core (MIC) Matt Kelly & Ryan Rawlins Intel Many Integrated Core (MIC) Matt Kelly & Ryan Rawlins Outline History & Motivation Architecture Core architecture Network Topology Memory hierarchy Brief comparison to GPU & Tilera Programming Applications

More information

Future of Enzo. Michael L. Norman James Bordner LCA/SDSC/UCSD

Future of Enzo. Michael L. Norman James Bordner LCA/SDSC/UCSD Future of Enzo Michael L. Norman James Bordner LCA/SDSC/UCSD SDSC Resources Data to Discovery Host SDNAP San Diego network access point for multiple 10 Gbs WANs ESNet, NSF TeraGrid, CENIC, Internet2, StarTap

More information

SuperMike-II Launch Workshop. System Overview and Allocations

SuperMike-II Launch Workshop. System Overview and Allocations : System Overview and Allocations Dr Jim Lupo CCT Computational Enablement jalupo@cct.lsu.edu SuperMike-II: Serious Heterogeneous Computing Power System Hardware SuperMike provides 442 nodes, 221TB of

More information

Large Scale Remote Interactive Visualization

Large Scale Remote Interactive Visualization Large Scale Remote Interactive Visualization Kelly Gaither Director of Visualization Senior Research Scientist Texas Advanced Computing Center The University of Texas at Austin March 1, 2012 Visualization

More information

Introduction CPS343. Spring Parallel and High Performance Computing. CPS343 (Parallel and HPC) Introduction Spring / 29

Introduction CPS343. Spring Parallel and High Performance Computing. CPS343 (Parallel and HPC) Introduction Spring / 29 Introduction CPS343 Parallel and High Performance Computing Spring 2018 CPS343 (Parallel and HPC) Introduction Spring 2018 1 / 29 Outline 1 Preface Course Details Course Requirements 2 Background Definitions

More information

InfiniBand Strengthens Leadership as the Interconnect Of Choice By Providing Best Return on Investment. TOP500 Supercomputers, June 2014

InfiniBand Strengthens Leadership as the Interconnect Of Choice By Providing Best Return on Investment. TOP500 Supercomputers, June 2014 InfiniBand Strengthens Leadership as the Interconnect Of Choice By Providing Best Return on Investment TOP500 Supercomputers, June 2014 TOP500 Performance Trends 38% CAGR 78% CAGR Explosive high-performance

More information

Managing Terascale Systems and Petascale Data Archives

Managing Terascale Systems and Petascale Data Archives Managing Terascale Systems and Petascale Data Archives February 26, 2010 Tommy Minyard, Ph.D. Director of Advanced Computing Systems Motivation: What s all the high performance computing fuss about? It

More information

Parallel Programming on Ranger and Stampede

Parallel Programming on Ranger and Stampede Parallel Programming on Ranger and Stampede Steve Lantz Senior Research Associate Cornell CAC Parallel Computing at TACC: Ranger to Stampede Transition December 11, 2012 What is Stampede? NSF-funded XSEDE

More information

Netweb Technologies Delivers India s Fastest Hybrid Supercomputer with Breakthrough Performance

Netweb Technologies Delivers India s Fastest Hybrid Supercomputer with Breakthrough Performance white paper Intel, Netweb Technologies & Tyrone Netweb Technologies Delivers India s Fastest Hybrid Supercomputer with Breakthrough Performance Using the Intel Xeon processor and new Intel Xeon Phi coprocessor

More information

FUJITSU PHI Turnkey Solution

FUJITSU PHI Turnkey Solution FUJITSU PHI Turnkey Solution Integrated ready to use XEON-PHI based platform Dr. Pierre Lagier ISC2014 - Leipzig PHI Turnkey Solution challenges System performance challenges Parallel IO best architecture

More information

Illinois Proposal Considerations Greg Bauer

Illinois Proposal Considerations Greg Bauer - 2016 Greg Bauer Support model Blue Waters provides traditional Partner Consulting as part of its User Services. Standard service requests for assistance with porting, debugging, allocation issues, and

More information

A New NSF TeraGrid Resource for Data-Intensive Science

A New NSF TeraGrid Resource for Data-Intensive Science A New NSF TeraGrid Resource for Data-Intensive Science Michael L. Norman Principal Investigator Director, SDSC Allan Snavely Co-Principal Investigator Project Scientist Slide 1 Coping with the data deluge

More information

Chelsio Communications. Meeting Today s Datacenter Challenges. Produced by Tabor Custom Publishing in conjunction with: CUSTOM PUBLISHING

Chelsio Communications. Meeting Today s Datacenter Challenges. Produced by Tabor Custom Publishing in conjunction with: CUSTOM PUBLISHING Meeting Today s Datacenter Challenges Produced by Tabor Custom Publishing in conjunction with: 1 Introduction In this era of Big Data, today s HPC systems are faced with unprecedented growth in the complexity

More information

Cray XC Scalability and the Aries Network Tony Ford

Cray XC Scalability and the Aries Network Tony Ford Cray XC Scalability and the Aries Network Tony Ford June 29, 2017 Exascale Scalability Which scalability metrics are important for Exascale? Performance (obviously!) What are the contributing factors?

More information

WVU RESEARCH COMPUTING INTRODUCTION. Introduction to WVU s Research Computing Services

WVU RESEARCH COMPUTING INTRODUCTION. Introduction to WVU s Research Computing Services WVU RESEARCH COMPUTING INTRODUCTION Introduction to WVU s Research Computing Services WHO ARE WE? Division of Information Technology Services Funded through WVU Research Corporation Provide centralized

More information

GROMACS (GPU) Performance Benchmark and Profiling. February 2016

GROMACS (GPU) Performance Benchmark and Profiling. February 2016 GROMACS (GPU) Performance Benchmark and Profiling February 2016 2 Note The following research was performed under the HPC Advisory Council activities Participating vendors: Dell, Mellanox, NVIDIA Compute

More information

Preparing GPU-Accelerated Applications for the Summit Supercomputer

Preparing GPU-Accelerated Applications for the Summit Supercomputer Preparing GPU-Accelerated Applications for the Summit Supercomputer Fernanda Foertter HPC User Assistance Group Training Lead foertterfs@ornl.gov This research used resources of the Oak Ridge Leadership

More information

Bridging Neuroscience and HPC with MPI-LiFE Shashank Gugnani

Bridging Neuroscience and HPC with MPI-LiFE Shashank Gugnani Bridging Neuroscience and HPC with MPI-LiFE Shashank Gugnani The Ohio State University E-mail: gugnani.2@osu.edu http://web.cse.ohio-state.edu/~gugnani/ Network Based Computing Laboratory SC 17 2 Neuroscience:

More information

Data Movement & Storage Using the Data Capacitor Filesystem

Data Movement & Storage Using the Data Capacitor Filesystem Data Movement & Storage Using the Data Capacitor Filesystem Justin Miller jupmille@indiana.edu http://pti.iu.edu/dc Big Data for Science Workshop July 2010 Challenges for DISC Keynote by Alex Szalay identified

More information

Lecture 20: Distributed Memory Parallelism. William Gropp

Lecture 20: Distributed Memory Parallelism. William Gropp Lecture 20: Distributed Parallelism William Gropp www.cs.illinois.edu/~wgropp A Very Short, Very Introductory Introduction We start with a short introduction to parallel computing from scratch in order

More information

The Future of Interconnect Technology

The Future of Interconnect Technology The Future of Interconnect Technology Michael Kagan, CTO HPC Advisory Council Stanford, 2014 Exponential Data Growth Best Interconnect Required 44X 0.8 Zetabyte 2009 35 Zetabyte 2020 2014 Mellanox Technologies

More information

Choosing Resources Wisely Plamen Krastev Office: 38 Oxford, Room 117 FAS Research Computing

Choosing Resources Wisely Plamen Krastev Office: 38 Oxford, Room 117 FAS Research Computing Choosing Resources Wisely Plamen Krastev Office: 38 Oxford, Room 117 Email:plamenkrastev@fas.harvard.edu Objectives Inform you of available computational resources Help you choose appropriate computational

More information

Parallel Visualization At TACC. Greg Abram

Parallel Visualization At TACC. Greg Abram Parallel Visualization At TACC Greg Abram Visualization Problems * With thanks to Sean Ahern for the metaphor Huge problems: Data cannot be moved off system where it is computed Large Visualization problems:

More information

HPC Innovation Lab Update. Dell EMC HPC Community Meeting 3/28/2017

HPC Innovation Lab Update. Dell EMC HPC Community Meeting 3/28/2017 HPC Innovation Lab Update Dell EMC HPC Community Meeting 3/28/2017 Dell EMC HPC Innovation Lab charter Design, develop and integrate Heading HPC systems Lorem ipsum Flexible reference dolor sit amet, architectures

More information

IBM Power AC922 Server

IBM Power AC922 Server IBM Power AC922 Server The Best Server for Enterprise AI Highlights More accuracy - GPUs access system RAM for larger models Faster insights - significant deep learning speedups Rapid deployment - integrated

More information

STAR-CCM+ Performance Benchmark and Profiling. July 2014

STAR-CCM+ Performance Benchmark and Profiling. July 2014 STAR-CCM+ Performance Benchmark and Profiling July 2014 Note The following research was performed under the HPC Advisory Council activities Participating vendors: CD-adapco, Intel, Dell, Mellanox Compute

More information

The BioHPC Nucleus Cluster & Future Developments

The BioHPC Nucleus Cluster & Future Developments 1 The BioHPC Nucleus Cluster & Future Developments Overview Today we ll talk about the BioHPC Nucleus HPC cluster with some technical details for those interested! How is it designed? What hardware does

More information

MVAPICH at Petascale: Experiences in Production on the Stampede System

MVAPICH at Petascale: Experiences in Production on the Stampede System MVAPICH at Petascale: Experiences in Production on the Stampede System Dan Stanzione Executive Director, Texas Advanced Computing Center August, 2014, Columbus, Ohio Acknowledgements Thanks/kudos to: Sponsor:

More information

Intel Knights Landing Hardware

Intel Knights Landing Hardware Intel Knights Landing Hardware TACC KNL Tutorial IXPUG Annual Meeting 2016 PRESENTED BY: John Cazes Lars Koesterke 1 Intel s Xeon Phi Architecture Leverages x86 architecture Simpler x86 cores, higher compute

More information

SR-IOV Support for Virtualization on InfiniBand Clusters: Early Experience

SR-IOV Support for Virtualization on InfiniBand Clusters: Early Experience SR-IOV Support for Virtualization on InfiniBand Clusters: Early Experience Jithin Jose, Mingzhe Li, Xiaoyi Lu, Krishna Kandalla, Mark Arnold and Dhabaleswar K. (DK) Panda Network-Based Computing Laboratory

More information

LBRN - HPC systems : CCT, LSU

LBRN - HPC systems : CCT, LSU LBRN - HPC systems : CCT, LSU HPC systems @ CCT & LSU LSU HPC Philip SuperMike-II SuperMIC LONI HPC Eric Qeenbee2 CCT HPC Delta LSU HPC Philip 3 Compute 32 Compute Two 2.93 GHz Quad Core Nehalem Xeon 64-bit

More information

HETEROGENEOUS HPC, ARCHITECTURAL OPTIMIZATION, AND NVLINK STEVE OBERLIN CTO, TESLA ACCELERATED COMPUTING NVIDIA

HETEROGENEOUS HPC, ARCHITECTURAL OPTIMIZATION, AND NVLINK STEVE OBERLIN CTO, TESLA ACCELERATED COMPUTING NVIDIA HETEROGENEOUS HPC, ARCHITECTURAL OPTIMIZATION, AND NVLINK STEVE OBERLIN CTO, TESLA ACCELERATED COMPUTING NVIDIA STATE OF THE ART 2012 18,688 Tesla K20X GPUs 27 PetaFLOPS FLAGSHIP SCIENTIFIC APPLICATIONS

More information

Bridging the Gap Between High Quality and High Performance for HPC Visualization

Bridging the Gap Between High Quality and High Performance for HPC Visualization Bridging the Gap Between High Quality and High Performance for HPC Visualization Rob Sisneros National Center for Supercomputing Applications University of Illinois at Urbana Champaign Outline Why am I

More information

S THE MAKING OF DGX SATURNV: BREAKING THE BARRIERS TO AI SCALE. Presenter: Louis Capps, Solution Architect, NVIDIA,

S THE MAKING OF DGX SATURNV: BREAKING THE BARRIERS TO AI SCALE. Presenter: Louis Capps, Solution Architect, NVIDIA, S7750 - THE MAKING OF DGX SATURNV: BREAKING THE BARRIERS TO AI SCALE Presenter: Louis Capps, Solution Architect, NVIDIA, lcapps@nvidia.com A TALE OF ENLIGHTENMENT Basic OK List 10 for x = 1 to 3 20 print

More information

Emerging Technologies for HPC Storage

Emerging Technologies for HPC Storage Emerging Technologies for HPC Storage Dr. Wolfgang Mertz CTO EMEA Unstructured Data Solutions June 2018 The very definition of HPC is expanding Blazing Fast Speed Accessibility and flexibility 2 Traditional

More information

Enabling Performance-per-Watt Gains in High-Performance Cluster Computing

Enabling Performance-per-Watt Gains in High-Performance Cluster Computing WHITE PAPER Appro Xtreme-X Supercomputer with the Intel Xeon Processor E5-2600 Product Family Enabling Performance-per-Watt Gains in High-Performance Cluster Computing Appro Xtreme-X Supercomputer with

More information

UAntwerpen, 24 June 2016

UAntwerpen, 24 June 2016 Tier-1b Info Session UAntwerpen, 24 June 2016 VSC HPC environment Tier - 0 47 PF Tier -1 623 TF Tier -2 510 Tf 16,240 CPU cores 128/256 GB memory/node IB EDR interconnect Tier -3 HOPPER/TURING STEVIN THINKING/CEREBRO

More information

Parallel Applications on Distributed Memory Systems. Le Yan HPC User LSU

Parallel Applications on Distributed Memory Systems. Le Yan HPC User LSU Parallel Applications on Distributed Memory Systems Le Yan HPC User Services @ LSU Outline Distributed memory systems Message Passing Interface (MPI) Parallel applications 6/3/2015 LONI Parallel Programming

More information

Store Process Analyze Collaborate Archive Cloud The HPC Storage Leader Invent Discover Compete

Store Process Analyze Collaborate Archive Cloud The HPC Storage Leader Invent Discover Compete Store Process Analyze Collaborate Archive Cloud The HPC Storage Leader Invent Discover Compete 1 DDN Who We Are 2 We Design, Deploy and Optimize Storage Systems Which Solve HPC, Big Data and Cloud Business

More information

MELLANOX EDR UPDATE & GPUDIRECT MELLANOX SR. SE 정연구

MELLANOX EDR UPDATE & GPUDIRECT MELLANOX SR. SE 정연구 MELLANOX EDR UPDATE & GPUDIRECT MELLANOX SR. SE 정연구 Leading Supplier of End-to-End Interconnect Solutions Analyze Enabling the Use of Data Store ICs Comprehensive End-to-End InfiniBand and Ethernet Portfolio

More information

An Introduction to the Intel Xeon Phi. Si Liu Feb 6, 2015

An Introduction to the Intel Xeon Phi. Si Liu Feb 6, 2015 Training Agenda Session 1: Introduction 8:00 9:45 Session 2: Native: MIC stand-alone 10:00-11:45 Lunch break Session 3: Offload: MIC as coprocessor 1:00 2:45 Session 4: Symmetric: MPI 3:00 4:45 1 Last

More information

Architecting Storage for Semiconductor Design: Manufacturing Preparation

Architecting Storage for Semiconductor Design: Manufacturing Preparation White Paper Architecting Storage for Semiconductor Design: Manufacturing Preparation March 2012 WP-7157 EXECUTIVE SUMMARY The manufacturing preparation phase of semiconductor design especially mask data

More information

Parallel Visualization At TACC. Greg Abram

Parallel Visualization At TACC. Greg Abram Parallel Visualization At TACC Greg Abram Visualization Problems * With thanks to Sean Ahern for the metaphor Huge problems: Data cannot be moved off system where it is computed Large Visualization problems:

More information

LAMMPS-KOKKOS Performance Benchmark and Profiling. September 2015

LAMMPS-KOKKOS Performance Benchmark and Profiling. September 2015 LAMMPS-KOKKOS Performance Benchmark and Profiling September 2015 2 Note The following research was performed under the HPC Advisory Council activities Participating vendors: Intel, Dell, Mellanox, NVIDIA

More information

Sun Lustre Storage System Simplifying and Accelerating Lustre Deployments

Sun Lustre Storage System Simplifying and Accelerating Lustre Deployments Sun Lustre Storage System Simplifying and Accelerating Lustre Deployments Torben Kling-Petersen, PhD Presenter s Name Principle Field Title andengineer Division HPC &Cloud LoB SunComputing Microsystems

More information

InfiniBand-based HPC Clusters

InfiniBand-based HPC Clusters Boosting Scalability of InfiniBand-based HPC Clusters Asaf Wachtel, Senior Product Manager 2010 Voltaire Inc. InfiniBand-based HPC Clusters Scalability Challenges Cluster TCO Scalability Hardware costs

More information

Altair OptiStruct 13.0 Performance Benchmark and Profiling. May 2015

Altair OptiStruct 13.0 Performance Benchmark and Profiling. May 2015 Altair OptiStruct 13.0 Performance Benchmark and Profiling May 2015 Note The following research was performed under the HPC Advisory Council activities Participating vendors: Intel, Dell, Mellanox Compute

More information

Solutions for Scalable HPC

Solutions for Scalable HPC Solutions for Scalable HPC Scot Schultz, Director HPC/Technical Computing HPC Advisory Council Stanford Conference Feb 2014 Leading Supplier of End-to-End Interconnect Solutions Comprehensive End-to-End

More information

TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 11th CALL (T ier-0)

TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 11th CALL (T ier-0) TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 11th CALL (T ier-0) Contributing sites and the corresponding computer systems for this call are: BSC, Spain IBM System X idataplex CINECA, Italy The site selection

More information

Improving Application Performance and Predictability using Multiple Virtual Lanes in Modern Multi-Core InfiniBand Clusters

Improving Application Performance and Predictability using Multiple Virtual Lanes in Modern Multi-Core InfiniBand Clusters Improving Application Performance and Predictability using Multiple Virtual Lanes in Modern Multi-Core InfiniBand Clusters Hari Subramoni, Ping Lai, Sayantan Sur and Dhabhaleswar. K. Panda Department of

More information

Organizational Update: December 2015

Organizational Update: December 2015 Organizational Update: December 2015 David Hudak Doug Johnson Alan Chalker www.osc.edu Slide 1 OSC Organizational Update Leadership changes State of OSC Roadmap Web app demonstration (if time) Slide 2

More information

Designing Optimized MPI Broadcast and Allreduce for Many Integrated Core (MIC) InfiniBand Clusters

Designing Optimized MPI Broadcast and Allreduce for Many Integrated Core (MIC) InfiniBand Clusters Designing Optimized MPI Broadcast and Allreduce for Many Integrated Core (MIC) InfiniBand Clusters K. Kandalla, A. Venkatesh, K. Hamidouche, S. Potluri, D. Bureddy and D. K. Panda Presented by Dr. Xiaoyi

More information

Intel Many Integrated Core (MIC) Architecture

Intel Many Integrated Core (MIC) Architecture Intel Many Integrated Core (MIC) Architecture Karl Solchenbach Director European Exascale Labs BMW2011, November 3, 2011 1 Notice and Disclaimers Notice: This document contains information on products

More information

n N c CIni.o ewsrg.au

n N c CIni.o ewsrg.au @NCInews NCI and Raijin National Computational Infrastructure 2 Our Partners General purpose, highly parallel processors High FLOPs/watt and FLOPs/$ Unit of execution Kernel Separate memory subsystem GPGPU

More information

Performance of Applications on Comet GPU Nodes Utilizing MVAPICH2-GDR. Mahidhar Tatineni MVAPICH User Group Meeting August 16, 2017

Performance of Applications on Comet GPU Nodes Utilizing MVAPICH2-GDR. Mahidhar Tatineni MVAPICH User Group Meeting August 16, 2017 Performance of Applications on Comet GPU Nodes Utilizing MVAPICH2-GDR Mahidhar Tatineni MVAPICH User Group Meeting August 16, 2017 This work supported by the National Science Foundation, award ACI-1341698.

More information

High-Performance Lustre with Maximum Data Assurance

High-Performance Lustre with Maximum Data Assurance High-Performance Lustre with Maximum Data Assurance Silicon Graphics International Corp. 900 North McCarthy Blvd. Milpitas, CA 95035 Disclaimer and Copyright Notice The information presented here is meant

More information

HPC Storage Use Cases & Future Trends

HPC Storage Use Cases & Future Trends Oct, 2014 HPC Storage Use Cases & Future Trends Massively-Scalable Platforms and Solutions Engineered for the Big Data and Cloud Era Atul Vidwansa Email: atul@ DDN About Us DDN is a Leader in Massively

More information

Intel Enterprise Edition Lustre (IEEL-2.3) [DNE-1 enabled] on Dell MD Storage

Intel Enterprise Edition Lustre (IEEL-2.3) [DNE-1 enabled] on Dell MD Storage Intel Enterprise Edition Lustre (IEEL-2.3) [DNE-1 enabled] on Dell MD Storage Evaluation of Lustre File System software enhancements for improved Metadata performance Wojciech Turek, Paul Calleja,John

More information

GPU- Aware Design, Implementation, and Evaluation of Non- blocking Collective Benchmarks

GPU- Aware Design, Implementation, and Evaluation of Non- blocking Collective Benchmarks GPU- Aware Design, Implementation, and Evaluation of Non- blocking Collective Benchmarks Presented By : Esthela Gallardo Ammar Ahmad Awan, Khaled Hamidouche, Akshay Venkatesh, Jonathan Perkins, Hari Subramoni,

More information

High Performance Computing The Essential Tool for a Knowledge Economy

High Performance Computing The Essential Tool for a Knowledge Economy High Performance Computing The Essential Tool for a Knowledge Economy Rajeeb Hazra Vice President & General Manager Technical Computing Group Datacenter & Connected Systems Group July 22 nd 2013 1 What

More information

TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 13 th CALL (T ier-0)

TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 13 th CALL (T ier-0) TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 13 th CALL (T ier-0) Contributing sites and the corresponding computer systems for this call are: BSC, Spain IBM System x idataplex CINECA, Italy Lenovo System

More information

Experiences in Optimizing a $250K Cluster for High- Performance Computing Applications

Experiences in Optimizing a $250K Cluster for High- Performance Computing Applications Experiences in Optimizing a $250K Cluster for High- Performance Computing Applications Kevin Brandstatter Dan Gordon Jason DiBabbo Ben Walters Alex Ballmer Lauren Ribordy Ioan Raicu Illinois Institute

More information

An Overview of Fujitsu s Lustre Based File System

An Overview of Fujitsu s Lustre Based File System An Overview of Fujitsu s Lustre Based File System Shinji Sumimoto Fujitsu Limited Apr.12 2011 For Maximizing CPU Utilization by Minimizing File IO Overhead Outline Target System Overview Goals of Fujitsu

More information

Oncilla - a Managed GAS Runtime for Accelerating Data Warehousing Queries

Oncilla - a Managed GAS Runtime for Accelerating Data Warehousing Queries Oncilla - a Managed GAS Runtime for Accelerating Data Warehousing Queries Jeffrey Young, Alex Merritt, Se Hoon Shon Advisor: Sudhakar Yalamanchili 4/16/13 Sponsors: Intel, NVIDIA, NSF 2 The Problem Big

More information

ACCI Recommendations on Long Term Cyberinfrastructure Issues: Building Future Development

ACCI Recommendations on Long Term Cyberinfrastructure Issues: Building Future Development ACCI Recommendations on Long Term Cyberinfrastructure Issues: Building Future Development Jeremy Fischer Indiana University 9 September 2014 Citation: Fischer, J.L. 2014. ACCI Recommendations on Long Term

More information

MAHA. - Supercomputing System for Bioinformatics

MAHA. - Supercomputing System for Bioinformatics MAHA - Supercomputing System for Bioinformatics - 2013.01.29 Outline 1. MAHA HW 2. MAHA SW 3. MAHA Storage System 2 ETRI HPC R&D Area - Overview Research area Computing HW MAHA System HW - Rpeak : 0.3

More information

HPC Saudi Jeffrey A. Nichols Associate Laboratory Director Computing and Computational Sciences. Presented to: March 14, 2017

HPC Saudi Jeffrey A. Nichols Associate Laboratory Director Computing and Computational Sciences. Presented to: March 14, 2017 Creating an Exascale Ecosystem for Science Presented to: HPC Saudi 2017 Jeffrey A. Nichols Associate Laboratory Director Computing and Computational Sciences March 14, 2017 ORNL is managed by UT-Battelle

More information

HPC NETWORKING IN THE REAL WORLD

HPC NETWORKING IN THE REAL WORLD 15 th ANNUAL WORKSHOP 2019 HPC NETWORKING IN THE REAL WORLD Jesse Martinez Los Alamos National Laboratory March 19 th, 2019 [ LOGO HERE ] LA-UR-19-22146 ABSTRACT Introduction to LANL High Speed Networking

More information

HPC 2 Informed by Industry

HPC 2 Informed by Industry HPC 2 Informed by Industry HPC User Forum October 2011 Merle Giles Private Sector Program & Economic Development mgiles@ncsa.illinois.edu National Center for Supercomputing Applications University of Illinois

More information

Current Status of the Next- Generation Supercomputer in Japan. YOKOKAWA, Mitsuo Next-Generation Supercomputer R&D Center RIKEN

Current Status of the Next- Generation Supercomputer in Japan. YOKOKAWA, Mitsuo Next-Generation Supercomputer R&D Center RIKEN Current Status of the Next- Generation Supercomputer in Japan YOKOKAWA, Mitsuo Next-Generation Supercomputer R&D Center RIKEN International Workshop on Peta-Scale Computing Programming Environment, Languages

More information

Before We Start. Sign in hpcxx account slips Windows Users: Download PuTTY. Google PuTTY First result Save putty.exe to Desktop

Before We Start. Sign in hpcxx account slips Windows Users: Download PuTTY. Google PuTTY First result Save putty.exe to Desktop Before We Start Sign in hpcxx account slips Windows Users: Download PuTTY Google PuTTY First result Save putty.exe to Desktop Research Computing at Virginia Tech Advanced Research Computing Compute Resources

More information

Feedback on BeeGFS. A Parallel File System for High Performance Computing

Feedback on BeeGFS. A Parallel File System for High Performance Computing Feedback on BeeGFS A Parallel File System for High Performance Computing Philippe Dos Santos et Georges Raseev FR 2764 Fédération de Recherche LUmière MATière December 13 2016 LOGO CNRS LOGO IO December

More information