Machine Learning for Speaker Recogni2on and Bioinforma2cs

Size: px
Start display at page:

Download "Machine Learning for Speaker Recogni2on and Bioinforma2cs"

Transcription

1 Machine Learning for Speaker Recogni2on and Bioinforma2cs Man-Wai MAK Dept of Electronic and Informa8on Engineering, The Hong Kong Polytechnic University UTS/PolyU Workshop 24 Oct 2017

2 1 High-Level Perspec8ve 2 Speaker Recogni8on Contents Robust speaker recogni8on SNR-invariant PLDA Mixture of PLDA Deep learning for speaker recogni8on 3 Machine Learning for Bioinforma8cs 2

3 A High-Level Perspec2ve of My Work Machine Learning Speech Applica8ons Bioinforma8cs Applica8ons Speaker Recogni8on Emo8on Recogni8on Protein Recogni8on ECG Recogni8on 32

4 What is Speaker Recogni2on Based on the fact that speech produc8on organs are speakerdependent Automa8c speaker recogni8on under controlled environments is easy But under uncontrolled environments, errors are s8ll very high because of different types of variability in speech signals 4

5 Processes of Speaker Verifica2on Utterance from registered speaker low-dim representation of the whole utterance Spectral Analysis 60-dim acoustic vectors Factor Analysis 500-dim i-vector Decision Threshold Spectral Analysis 60-dim acoustic vectors Factor Analysis PLDA Scoring 500-dim i-vector x s x t Decision Making Accept/ Reject Utterance from test speaker PLDA: A supervised factor analysis model that can suppress the channel effects in the i-vectors 5

6 Noise Robust Speaker Recogni2on In conven8onal mul8-condi8on training, we pool i- vectors from various background noise levels to train the PLDA model I-vectors with 2 SNR ranges EM Algorithm PLDA Model 6

7 SNR-Invariant PLDA We proposed to use an SNR subspace to model the SNR variability in uzerances Group1 Group2 Group3 SNR Factor 1 SNR Factor 2 SNR Factor 3 SNR Subspace N Li and MW Mak, "SNR-Invariant PLDA Modeling in Nonparametric Subspace for Robust Speaker Verification", IEEE/ACM Trans on Audio Speech and Language Processing, 2015 N Li, MW Mak, WW Lin and JT Chien, "Discriminative Subspace Modeling of SNR and Duration Variabilities for Robust Speaker Verification", Computer Speech and Language,

8 Compared with Conven2onal PLDA Conventional PLDA xij = m+ Vhi + εij x = m+ Vh + Uw + ε k k ij i k ij SNR-Invariant PLDA 8

9 Noise Robust Speaker Recogni2on Conven8onal i-vector/plda systems use a single PLDA model to handle all SNR condi8ons PLDA Model PLDA Score Enrollment i-vectors 9

10 Mixture of PLDA SNR Es8mator SNR Posterior Estimator We proposed to handle uzerances of diverse SNR by a mixture of PLDA in which the posteriors of the indicator variables depend on the uzerance s SNR PLDA Model 1 PLDA Model 2 PLDA Score PLDA Model 3 MW Mak, XM Pang and JT Chien, "Mixture of PLDA for Noise Robust I-Vector Speaker Verification", IEEE/ACM Trans on Audio Speech and Language Processing,

11 Mixture of PLDA Use a GMM to es8mate the mixture posteriors MW Mak, XM Pang and JT Chien, "Mixture of PLDA for Noise Robust I-Vector Speaker Verification", IEEE/ACM Trans on Audio Speech and Language Processing,

12 DNN-Driven Mixture of PLDA Use a DNN to es8mate the mixture posteriors, given i- vectors as input N Li, MW Mak, and JT Chien, "DNN-driven Mixture of PLDA for Robust Speaker Verification", IEEE/ACM Transactions on Audio, Speech and Language Processing,

13 Deep Learning for Speaker Recogni2on Use DNNs for noise reduc8on and feature extrac8on Z Tan, Y Zhu, MW Mak and B Mak, "Senone I-Vectors for Robust Speaker Verification", ISCSLP'16 13

14 Deep Learning for Speaker Recogni2on Use denoising DNNs for i-vector extrac8on Z Tan, Y Zhu, MW Mak and B Mak, "Senone I-Vectors for Robust Speaker Verification", ISCSLP'16 14

15 Deep Learning for Speaker Recogni2on Use mul8-task DNNs for score calibra8on Z Tan, MW Mak and B Mak, DNN-Based Score Calibration with Multi-Task Learning for Noise Robust Speaker Verification", IEEE/ACM Trans on Audio, Speech and Language Processing, to appear 15

16 Machine Learning for Bioinforma2cs We leverage the knowledge in gene ontology database and Swissprot protein database for protein subcellular localiza8on m=m S AC BLAST GO Terms Retrieval Swiss-Prot Database GO Vectors Construc8on RP 1 RP l SVM SVM w l m=2 m=1 w 1 w L Mul8-label Classifica8 on GOA Database RP L SVM Ensemble RP SB Wan, MW Mak, and SY Kung, "mgoasvm: Multi-label protein subcellular localization based on gene ontology and support vector machines", BMC Bioinformatics,

17 Machine Learning for Bioinforma2cs Using LASSO and elas8c net, we discovered some essen8al GO terms for each subcellular loca8on SB Wan, MW Mak and SY Kung, "Sparse Regressions for Predicting and Interpreting Subcellular Localization of Multi-label Proteins", BMC Bioinformatics,

18 Machine Learning for Bioinforma2cs For each method (paper), we provide a web server for researchers to use our algorithm SB Wan, MW Mak and SY Kung, "FUEL-mLoc: Feature-Unified Prediction and Explanation of Multi- Localization of Cellular Proteins in Multiple Organisms", Bioinformatics, 2016 SB Wan and MW Mak, Machine Learning for Protein Subcellular Localization Prediction, De Gruyter,

19 Thanks

20 PLDA Likelihood-Ra2o Scores x t : I-vector from a test uzerance x s : I-vector from an enrollment uzerance of speaker s H 0 : Same speaker H 1 : Different speakers x s = m+ Vz + ε s x t = m+ Vz + ε t against x s = m + Vz s +ε s x t = m + Vz t +ε t p(x Score(x s, x t ) = log s, x t Same Speaker) p(x s, x t Different Speaker) = log p(x s, x t z)p(z)dz p(x s z s )p(z s )dz s p(x t z t )p(z t )dz t = 1 2 x T s Qx s + x T t Qx t + 2x T s Px t + const where Full derivation of this scoring function can be found in 20

21 SNR-Invariant PLDA Method of modeling SNR informa8on i-vector w 6dB 6 db w cln SNR Subspace 15 db clean w 15dB I-vector Space N Li, MW Mak, WW Lin and JT Chien, "Discriminative Subspace Modeling of SNR and Duration Variabilities for Robust Speaker Verification", Computer Speech and Language,

Bo#leneck Features from SNR- Adap9ve Denoising Deep Classifier for Speaker Iden9fica9on

Bo#leneck Features from SNR- Adap9ve Denoising Deep Classifier for Speaker Iden9fica9on Bo#leneck Features from SNR- Adap9ve Denoising Deep Classifier for Speaker Iden9fica9on TAN Zhili & MAK Man-Wai APSIPA 2015 Department of Electronic and Informa2on Engineering The Hong Kong Polytechnic

More information

Variable-Component Deep Neural Network for Robust Speech Recognition

Variable-Component Deep Neural Network for Robust Speech Recognition Variable-Component Deep Neural Network for Robust Speech Recognition Rui Zhao 1, Jinyu Li 2, and Yifan Gong 2 1 Microsoft Search Technology Center Asia, Beijing, China 2 Microsoft Corporation, One Microsoft

More information

An Ensemble Classifier with Random Projection for Predicting Multi-label Protein Subcellular Localization

An Ensemble Classifier with Random Projection for Predicting Multi-label Protein Subcellular Localization An Ensemble Classifier with Random Projection for Predicting Multi-label Protein Subcellular Localization Shibiao Wan, Man-Wai Mak, Bai Zhang, Yue Wang, Sun-Yuan Kung Dept of Electronic and Information

More information

Minimum Redundancy and Maximum Relevance Feature Selec4on. Hang Xiao

Minimum Redundancy and Maximum Relevance Feature Selec4on. Hang Xiao Minimum Redundancy and Maximum Relevance Feature Selec4on Hang Xiao Background Feature a feature is an individual measurable heuris4c property of a phenomenon being observed In character recogni4on: horizontal

More information

Video- to- Video Face Matching: Establishing a Baseline for Unconstrained Face Recogni:on

Video- to- Video Face Matching: Establishing a Baseline for Unconstrained Face Recogni:on Video- to- Video Face Matching: Establishing a Baseline for Unconstrained Face Recogni:on Lacey Best- Rowden, Brendan Klare, Joshua Klontz, and Anil K. Jain Biometrics: Theory, Applica:ons, and Systems

More information

SUT Submission for NIST 2016 Speaker Recognition Evaluation: Description and Analysis

SUT Submission for NIST 2016 Speaker Recognition Evaluation: Description and Analysis The 2017 Conference on Computational Linguistics and Speech Processing ROCLING 2017, pp. 276-286 The Association for Computational Linguistics and Chinese Language Processing SUT Submission for NIST 2016

More information

arxiv: v1 [cs.sd] 8 Jun 2017

arxiv: v1 [cs.sd] 8 Jun 2017 SUT SYSTEM DESCRIPTION FOR NIST SRE 2016 Hossein Zeinali 1,2, Hossein Sameti 1 and Nooshin Maghsoodi 1 1 Sharif University of Technology, Tehran, Iran 2 Brno University of Technology, Speech@FIT and IT4I

More information

STA 4273H: Sta-s-cal Machine Learning

STA 4273H: Sta-s-cal Machine Learning STA 4273H: Sta-s-cal Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! h0p://www.cs.toronto.edu/~rsalakhu/ Lecture 3 Parametric Distribu>ons We want model the probability

More information

A Wavenet for Speech Denoising

A Wavenet for Speech Denoising A Wavenet for Speech Denoising Jordi Pons work done in collaboration with Dario Rethage and Xavier Serra Music Technology Group (Universitat Pompeu Fabra, Barcelona) Summer 2017 Presented at Pandora and

More information

GPU Accelerated Model Combination for Robust Speech Recognition and Keyword Search

GPU Accelerated Model Combination for Robust Speech Recognition and Keyword Search GPU Accelerated Model Combination for Robust Speech Recognition and Keyword Search Wonkyum Lee Jungsuk Kim Ian Lane Electrical and Computer Engineering Carnegie Mellon University March 26, 2014 @GTC2014

More information

Clustering Lecture 5: Mixture Model

Clustering Lecture 5: Mixture Model Clustering Lecture 5: Mixture Model Jing Gao SUNY Buffalo 1 Outline Basics Motivation, definition, evaluation Methods Partitional Hierarchical Density-based Mixture model Spectral methods Advanced topics

More information

A Scalable Speech Recognizer with Deep-Neural-Network Acoustic Models

A Scalable Speech Recognizer with Deep-Neural-Network Acoustic Models A Scalable Speech Recognizer with Deep-Neural-Network Acoustic Models and Voice-Activated Power Gating Michael Price*, James Glass, Anantha Chandrakasan MIT, Cambridge, MA * now at Analog Devices, Cambridge,

More information

Client Dependent GMM-SVM Models for Speaker Verification

Client Dependent GMM-SVM Models for Speaker Verification Client Dependent GMM-SVM Models for Speaker Verification Quan Le, Samy Bengio IDIAP, P.O. Box 592, CH-1920 Martigny, Switzerland {quan,bengio}@idiap.ch Abstract. Generative Gaussian Mixture Models (GMMs)

More information

Pa#ern Recogni-on for Neuroimaging Toolbox

Pa#ern Recogni-on for Neuroimaging Toolbox Pa#ern Recogni-on for Neuroimaging Toolbox Pa#ern Recogni-on Methods: Basics João M. Monteiro Based on slides from Jessica Schrouff and Janaina Mourão-Miranda PRoNTo course UCL, London, UK 2017 Outline

More information

TWO-STEP SEMI-SUPERVISED APPROACH FOR MUSIC STRUCTURAL CLASSIFICATION. Prateek Verma, Yang-Kai Lin, Li-Fan Yu. Stanford University

TWO-STEP SEMI-SUPERVISED APPROACH FOR MUSIC STRUCTURAL CLASSIFICATION. Prateek Verma, Yang-Kai Lin, Li-Fan Yu. Stanford University TWO-STEP SEMI-SUPERVISED APPROACH FOR MUSIC STRUCTURAL CLASSIFICATION Prateek Verma, Yang-Kai Lin, Li-Fan Yu Stanford University ABSTRACT Structural segmentation involves finding hoogeneous sections appearing

More information

Optimization of Observation Membership Function By Particle Swarm Method for Enhancing Performances of Speaker Identification

Optimization of Observation Membership Function By Particle Swarm Method for Enhancing Performances of Speaker Identification Proceedings of the 6th WSEAS International Conference on SIGNAL PROCESSING, Dallas, Texas, USA, March 22-24, 2007 52 Optimization of Observation Membership Function By Particle Swarm Method for Enhancing

More information

Hidden Markov Models. Gabriela Tavares and Juri Minxha Mentor: Taehwan Kim CS159 04/25/2017

Hidden Markov Models. Gabriela Tavares and Juri Minxha Mentor: Taehwan Kim CS159 04/25/2017 Hidden Markov Models Gabriela Tavares and Juri Minxha Mentor: Taehwan Kim CS159 04/25/2017 1 Outline 1. 2. 3. 4. Brief review of HMMs Hidden Markov Support Vector Machines Large Margin Hidden Markov Models

More information

SYNTHESIZED STEREO MAPPING VIA DEEP NEURAL NETWORKS FOR NOISY SPEECH RECOGNITION

SYNTHESIZED STEREO MAPPING VIA DEEP NEURAL NETWORKS FOR NOISY SPEECH RECOGNITION 2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP) SYNTHESIZED STEREO MAPPING VIA DEEP NEURAL NETWORKS FOR NOISY SPEECH RECOGNITION Jun Du 1, Li-Rong Dai 1, Qiang Huo

More information

AudioSet: Real-world Audio Event Classification

AudioSet: Real-world Audio Event Classification AudioSet: Real-world Audio Event Classification g.co/audioset Rif A. Saurous, Shawn Hershey, Dan Ellis, Aren Jansen and the Google Sound Understanding Team 2017-10-20 Outline The Early Years: Weakly-Supervised

More information

Speaker Verification with Adaptive Spectral Subband Centroids

Speaker Verification with Adaptive Spectral Subband Centroids Speaker Verification with Adaptive Spectral Subband Centroids Tomi Kinnunen 1, Bingjun Zhang 2, Jia Zhu 2, and Ye Wang 2 1 Speech and Dialogue Processing Lab Institution for Infocomm Research (I 2 R) 21

More information

Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1

Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1 Preface to the Second Edition Preface to the First Edition vii xi 1 Introduction 1 2 Overview of Supervised Learning 9 2.1 Introduction... 9 2.2 Variable Types and Terminology... 9 2.3 Two Simple Approaches

More information

SPEECH FEATURE EXTRACTION USING WEIGHTED HIGHER-ORDER LOCAL AUTO-CORRELATION

SPEECH FEATURE EXTRACTION USING WEIGHTED HIGHER-ORDER LOCAL AUTO-CORRELATION Far East Journal of Electronics and Communications Volume 3, Number 2, 2009, Pages 125-140 Published Online: September 14, 2009 This paper is available online at http://www.pphmj.com 2009 Pushpa Publishing

More information

Trial-Based Calibration for Speaker Recognition in Unseen Conditions

Trial-Based Calibration for Speaker Recognition in Unseen Conditions Trial-Based Calibration for Speaker Recognition in Unseen Conditions Mitchell McLaren, Aaron Lawson, Luciana Ferrer, Nicolas Scheffer, Yun Lei Speech Technology and Research Laboratory SRI International,

More information

The Hitachi/JHU CHiME-5 system: Advances in speech recognition for everyday home environments using multiple microphone arrays

The Hitachi/JHU CHiME-5 system: Advances in speech recognition for everyday home environments using multiple microphone arrays CHiME2018 workshop The Hitachi/JHU CHiME-5 system: Advances in speech recognition for everyday home environments using multiple microphone arrays Naoyuki Kanda 1, Rintaro Ikeshita 1, Shota Horiguchi 1,

More information

Improving Speaker Verification Performance in Presence of Spoofing Attacks Using Out-of-Domain Spoofed Data

Improving Speaker Verification Performance in Presence of Spoofing Attacks Using Out-of-Domain Spoofed Data INTERSPEECH 17 August 24, 17, Stockholm, Sweden Improving Speaker Verification Performance in Presence of Spoofing Attacks Using Out-of-Domain Spoofed Data Achintya Kr. Sarkar 1, Md. Sahidullah 2, Zheng-Hua

More information

From processing to learning on graphs

From processing to learning on graphs From processing to learning on graphs Patrick Pérez Maths and Images in Paris IHP, 2 March 2017 Signals on graphs Natural graph: mesh, network, etc., related to a real structure, various signals can live

More information

CS395T Visual Recogni5on and Search. Gautam S. Muralidhar

CS395T Visual Recogni5on and Search. Gautam S. Muralidhar CS395T Visual Recogni5on and Search Gautam S. Muralidhar Today s Theme Unsupervised discovery of images Main mo5va5on behind unsupervised discovery is that supervision is expensive Common tasks include

More information

Kernels for Structured Data

Kernels for Structured Data T-122.102 Special Course in Information Science VI: Co-occurence methods in analysis of discrete data Kernels for Structured Data Based on article: A Survey of Kernels for Structured Data by Thomas Gärtner

More information

Pair-wise Distance Metric Learning of Neural Network Model for Spoken Language Identification

Pair-wise Distance Metric Learning of Neural Network Model for Spoken Language Identification INTERSPEECH 2016 September 8 12, 2016, San Francisco, USA Pair-wise Distance Metric Learning of Neural Network Model for Spoken Language Identification 2 1 Xugang Lu 1, Peng Shen 1, Yu Tsao 2, Hisashi

More information

Multifactor Fusion for Audio-Visual Speaker Recognition

Multifactor Fusion for Audio-Visual Speaker Recognition Proceedings of the 7th WSEAS International Conference on Signal, Speech and Image Processing, Beijing, China, September 15-17, 2007 70 Multifactor Fusion for Audio-Visual Speaker Recognition GIRIJA CHETTY

More information

IMAGE RESTORATION VIA EFFICIENT GAUSSIAN MIXTURE MODEL LEARNING

IMAGE RESTORATION VIA EFFICIENT GAUSSIAN MIXTURE MODEL LEARNING IMAGE RESTORATION VIA EFFICIENT GAUSSIAN MIXTURE MODEL LEARNING Jianzhou Feng Li Song Xiaog Huo Xiaokang Yang Wenjun Zhang Shanghai Digital Media Processing Transmission Key Lab, Shanghai Jiaotong University

More information

Epitomic Analysis of Human Motion

Epitomic Analysis of Human Motion Epitomic Analysis of Human Motion Wooyoung Kim James M. Rehg Department of Computer Science Georgia Institute of Technology Atlanta, GA 30332 {wooyoung, rehg}@cc.gatech.edu Abstract Epitomic analysis is

More information

Dynamic Time Warping

Dynamic Time Warping Centre for Vision Speech & Signal Processing University of Surrey, Guildford GU2 7XH. Dynamic Time Warping Dr Philip Jackson Acoustic features Distance measures Pattern matching Distortion penalties DTW

More information

2-2-2, Hikaridai, Seika-cho, Soraku-gun, Kyoto , Japan 2 Graduate School of Information Science, Nara Institute of Science and Technology

2-2-2, Hikaridai, Seika-cho, Soraku-gun, Kyoto , Japan 2 Graduate School of Information Science, Nara Institute of Science and Technology ISCA Archive STREAM WEIGHT OPTIMIZATION OF SPEECH AND LIP IMAGE SEQUENCE FOR AUDIO-VISUAL SPEECH RECOGNITION Satoshi Nakamura 1 Hidetoshi Ito 2 Kiyohiro Shikano 2 1 ATR Spoken Language Translation Research

More information

10703 Deep Reinforcement Learning and Control

10703 Deep Reinforcement Learning and Control 10703 Deep Reinforcement Learning and Control Russ Salakhutdinov Machine Learning Department rsalakhu@cs.cmu.edu Policy Gradient II Used Materials Disclaimer: Much of the material and slides for this lecture

More information

Multi-label classification using rule-based classifier systems

Multi-label classification using rule-based classifier systems Multi-label classification using rule-based classifier systems Shabnam Nazmi (PhD candidate) Department of electrical and computer engineering North Carolina A&T state university Advisor: Dr. A. Homaifar

More information

Lec 08 Feature Aggregation II: Fisher Vector, Super Vector and AKULA

Lec 08 Feature Aggregation II: Fisher Vector, Super Vector and AKULA Image Analysis & Retrieval CS/EE 5590 Special Topics (Class Ids: 44873, 44874) Fall 2016, M/W 4-5:15pm@Bloch 0012 Lec 08 Feature Aggregation II: Fisher Vector, Super Vector and AKULA Zhu Li Dept of CSEE,

More information

Deep Convolutional Neural Network using Triplet of Faces, Deep Ensemble, and Scorelevel Fusion for Face Recognition

Deep Convolutional Neural Network using Triplet of Faces, Deep Ensemble, and Scorelevel Fusion for Face Recognition IEEE 2017 Conference on Computer Vision and Pattern Recognition Deep Convolutional Neural Network using Triplet of Faces, Deep Ensemble, and Scorelevel Fusion for Face Recognition Bong-Nam Kang*, Yonghyun

More information

Comparative Evaluation of Feature Normalization Techniques for Speaker Verification

Comparative Evaluation of Feature Normalization Techniques for Speaker Verification Comparative Evaluation of Feature Normalization Techniques for Speaker Verification Md Jahangir Alam 1,2, Pierre Ouellet 1, Patrick Kenny 1, Douglas O Shaughnessy 2, 1 CRIM, Montreal, Canada {Janagir.Alam,

More information

Confidence Measures: how much we can trust our speech recognizers

Confidence Measures: how much we can trust our speech recognizers Confidence Measures: how much we can trust our speech recognizers Prof. Hui Jiang Department of Computer Science York University, Toronto, Ontario, Canada Email: hj@cs.yorku.ca Outline Speech recognition

More information

GYROPHONE RECOGNIZING SPEECH FROM GYROSCOPE SIGNALS. Yan Michalevsky (1), Gabi Nakibly (2) and Dan Boneh (1)

GYROPHONE RECOGNIZING SPEECH FROM GYROSCOPE SIGNALS. Yan Michalevsky (1), Gabi Nakibly (2) and Dan Boneh (1) GYROPHONE RECOGNIZING SPEECH FROM GYROSCOPE SIGNALS Yan Michalevsky (1), Gabi Nakibly (2) and Dan Boneh (1) (1) Stanford University (2) National Research and Simulation Center, Rafael Ltd. 0 MICROPHONE

More information

SAS: A speaker verification spoofing database containing diverse attacks

SAS: A speaker verification spoofing database containing diverse attacks SAS: A speaker verification spoofing database containing diverse attacks Zhizheng Wu 1, Ali Khodabakhsh 2, Cenk Demiroglu 2, Junichi Yamagishi 1,3, Daisuke Saito 4, Tomoki Toda 5, Simon King 1 1 University

More information

ABSTRACT 1. INTRODUCTION

ABSTRACT 1. INTRODUCTION LOW-RANK PLUS DIAGONAL ADAPTATION FOR DEEP NEURAL NETWORKS Yong Zhao, Jinyu Li, and Yifan Gong Microsoft Corporation, One Microsoft Way, Redmond, WA 98052, USA {yonzhao; jinyli; ygong}@microsoft.com ABSTRACT

More information

Maximum Likelihood Beamforming for Robust Automatic Speech Recognition

Maximum Likelihood Beamforming for Robust Automatic Speech Recognition Maximum Likelihood Beamforming for Robust Automatic Speech Recognition Barbara Rauch barbara@lsv.uni-saarland.de IGK Colloquium, Saarbrücken, 16 February 2006 Agenda Background: Standard ASR Robust ASR

More information

Fingerprint Mosaicking by Rolling with Sliding

Fingerprint Mosaicking by Rolling with Sliding Fingerprint Mosaicking by Rolling with Sliding Kyoungtaek Choi, Hunjae Park, Hee-seung Choi and Jaihie Kim Department of Electrical and Electronic Engineering,Yonsei University Biometrics Engineering Research

More information

Experimental Evaluation of Latent Variable Models. for Dimensionality Reduction

Experimental Evaluation of Latent Variable Models. for Dimensionality Reduction Experimental Evaluation of Latent Variable Models for Dimensionality Reduction Miguel Á. Carreira-Perpiñán and Steve Renals a Dept. of Computer Science, University of Sheffield {M.Carreira,S.Renals}@dcs.shef.ac.uk

More information

Novel Subband Autoencoder Features for Non-intrusive Quality Assessment of Noise Suppressed Speech

Novel Subband Autoencoder Features for Non-intrusive Quality Assessment of Noise Suppressed Speech INTERSPEECH 16 September 8 12, 16, San Francisco, USA Novel Subband Autoencoder Features for Non-intrusive Quality Assessment of Noise Suppressed Speech Meet H. Soni, Hemant A. Patil Dhirubhai Ambani Institute

More information

Deep Learning on Graphs

Deep Learning on Graphs Deep Learning on Graphs with Graph Convolutional Networks Hidden layer Hidden layer Input Output ReLU ReLU, 22 March 2017 joint work with Max Welling (University of Amsterdam) BDL Workshop @ NIPS 2016

More information

SUPERVISED LEARNING METHODS. Stanley Liang, PhD Candidate, Lassonde School of Engineering, York University Helix Science Engagement Programs 2018

SUPERVISED LEARNING METHODS. Stanley Liang, PhD Candidate, Lassonde School of Engineering, York University Helix Science Engagement Programs 2018 SUPERVISED LEARNING METHODS Stanley Liang, PhD Candidate, Lassonde School of Engineering, York University Helix Science Engagement Programs 2018 2 CHOICE OF ML You cannot know which algorithm will work

More information

Machine Learning Crash Course: Part I

Machine Learning Crash Course: Part I Machine Learning Crash Course: Part I Ariel Kleiner August 21, 2012 Machine learning exists at the intersec

More information

Deep Temporal Models (Benchmarks and Applica6ons Analysis)

Deep Temporal Models (Benchmarks and Applica6ons Analysis) Deep Temporal Models (Benchmarks and Applica6ons Analysis) Sek Chai SRI Interna6onal Presented at: NICE 2016, March 7, 2016 2016 SRI International Project Summary Goals Analyze Deep Temporal Models (DTMs).

More information

End- To- End Speech Recogni0on with Recurrent Neural Networks

End- To- End Speech Recogni0on with Recurrent Neural Networks RTTH Summer School on Speech Technology: A Deep Learning Perspec0ve End- To- End Speech Recogni0on with Recurrent Neural Networks José A. R. Fonollosa Universitat Politècnica de Catalunya. Barcelona Barcelona,

More information

Classification. 1 o Semestre 2007/2008

Classification. 1 o Semestre 2007/2008 Classification Departamento de Engenharia Informática Instituto Superior Técnico 1 o Semestre 2007/2008 Slides baseados nos slides oficiais do livro Mining the Web c Soumen Chakrabarti. Outline 1 2 3 Single-Class

More information

Deep Generative Models Variational Autoencoders

Deep Generative Models Variational Autoencoders Deep Generative Models Variational Autoencoders Sudeshna Sarkar 5 April 2017 Generative Nets Generative models that represent probability distributions over multiple variables in some way. Directed Generative

More information

MACHINE LEARNING: CLUSTERING, AND CLASSIFICATION. Steve Tjoa June 25, 2014

MACHINE LEARNING: CLUSTERING, AND CLASSIFICATION. Steve Tjoa June 25, 2014 MACHINE LEARNING: CLUSTERING, AND CLASSIFICATION Steve Tjoa kiemyang@gmail.com June 25, 2014 Review from Day 2 Supervised vs. Unsupervised Unsupervised - clustering Supervised binary classifiers (2 classes)

More information

Sparse and large-scale learning with heterogeneous data

Sparse and large-scale learning with heterogeneous data Sparse and large-scale learning with heterogeneous data February 15, 2007 Gert Lanckriet (gert@ece.ucsd.edu) IEEE-SDCIS In this talk Statistical machine learning Techniques: roots in classical statistics

More information

Sparse Solutions to Linear Inverse Problems. Yuzhe Jin

Sparse Solutions to Linear Inverse Problems. Yuzhe Jin Sparse Solutions to Linear Inverse Problems Yuzhe Jin Outline Intro/Background Two types of algorithms Forward Sequential Selection Methods Diversity Minimization Methods Experimental results Potential

More information

COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning

COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning Associate Instructor: Herke van Hoof (herke.vanhoof@mail.mcgill.ca) Slides mostly by: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp551

More information

TerraSwarm. A Machine Learning and Op0miza0on Toolkit for the Swarm. Ilge Akkaya, Shuhei Emoto, Edward A. Lee. University of California, Berkeley

TerraSwarm. A Machine Learning and Op0miza0on Toolkit for the Swarm. Ilge Akkaya, Shuhei Emoto, Edward A. Lee. University of California, Berkeley TerraSwarm A Machine Learning and Op0miza0on Toolkit for the Swarm Ilge Akkaya, Shuhei Emoto, Edward A. Lee University of California, Berkeley TerraSwarm Tools Telecon 17 November 2014 Sponsored by the

More information

SVD-based Universal DNN Modeling for Multiple Scenarios

SVD-based Universal DNN Modeling for Multiple Scenarios SVD-based Universal DNN Modeling for Multiple Scenarios Changliang Liu 1, Jinyu Li 2, Yifan Gong 2 1 Microsoft Search echnology Center Asia, Beijing, China 2 Microsoft Corporation, One Microsoft Way, Redmond,

More information

Speech Technology Using in Wechat

Speech Technology Using in Wechat Speech Technology Using in Wechat FENG RAO Powered by WeChat Outline Introduce Algorithm of Speech Recognition Acoustic Model Language Model Decoder Speech Technology Open Platform Framework of Speech

More information

Autoencoder. Representation learning (related to dictionary learning) Both the input and the output are x

Autoencoder. Representation learning (related to dictionary learning) Both the input and the output are x Deep Learning 4 Autoencoder, Attention (spatial transformer), Multi-modal learning, Neural Turing Machine, Memory Networks, Generative Adversarial Net Jian Li IIIS, Tsinghua Autoencoder Autoencoder Unsupervised

More information

Introduc)on to Probabilis)c Latent Seman)c Analysis. NYP Predic)ve Analy)cs Meetup June 10, 2010

Introduc)on to Probabilis)c Latent Seman)c Analysis. NYP Predic)ve Analy)cs Meetup June 10, 2010 Introduc)on to Probabilis)c Latent Seman)c Analysis NYP Predic)ve Analy)cs Meetup June 10, 2010 PLSA A type of latent variable model with observed count data and nominal latent variable(s). Despite the

More information

Bilevel Sparse Coding

Bilevel Sparse Coding Adobe Research 345 Park Ave, San Jose, CA Mar 15, 2013 Outline 1 2 The learning model The learning algorithm 3 4 Sparse Modeling Many types of sensory data, e.g., images and audio, are in high-dimensional

More information

Feature Selec+on. Machine Learning Fall 2018 Kasthuri Kannan

Feature Selec+on. Machine Learning Fall 2018 Kasthuri Kannan Feature Selec+on Machine Learning Fall 2018 Kasthuri Kannan Interpretability vs. Predic+on Types of feature selec+on Subset selec+on/forward/backward Shrinkage (Lasso/Ridge) Best model (CV) Feature selec+on

More information

Partial Least Squares Regression on Grassmannian Manifold for Emotion Recognition

Partial Least Squares Regression on Grassmannian Manifold for Emotion Recognition Emotion Recognition In The Wild Challenge and Workshop (EmotiW 2013) Partial Least Squares Regression on Grassmannian Manifold for Emotion Recognition Mengyi Liu, Ruiping Wang, Zhiwu Huang, Shiguang Shan,

More information

A Survey on Postive and Unlabelled Learning

A Survey on Postive and Unlabelled Learning A Survey on Postive and Unlabelled Learning Gang Li Computer & Information Sciences University of Delaware ligang@udel.edu Abstract In this paper we survey the main algorithms used in positive and unlabeled

More information

CS 229 Midterm Review

CS 229 Midterm Review CS 229 Midterm Review Course Staff Fall 2018 11/2/2018 Outline Today: SVMs Kernels Tree Ensembles EM Algorithm / Mixture Models [ Focus on building intuition, less so on solving specific problems. Ask

More information

Multi-Modal Audio, Video, and Physiological Sensor Learning for Continuous Emotion Prediction

Multi-Modal Audio, Video, and Physiological Sensor Learning for Continuous Emotion Prediction Multi-Modal Audio, Video, and Physiological Sensor Learning for Continuous Emotion Prediction Youngjune Gwon 1, Kevin Brady 1, Pooya Khorrami 2, Elizabeth Godoy 1, William Campbell 1, Charlie Dagli 1,

More information

Dr Andrew Abel University of Stirling, Scotland

Dr Andrew Abel University of Stirling, Scotland Dr Andrew Abel University of Stirling, Scotland University of Stirling - Scotland Cognitive Signal Image and Control Processing Research (COSIPRA) Cognitive Computation neurobiology, cognitive psychology

More information

Machine learning for image- based localiza4on. Juho Kannala May 15, 2017

Machine learning for image- based localiza4on. Juho Kannala May 15, 2017 Machine learning for image- based localiza4on Juho Kannala May 15, 2017 Contents Problem sebng (What?) Mo4va4on & applica4ons (Why?) Previous work & background (How?) Our own studies and results Open ques4ons

More information

Manifold Constrained Deep Neural Networks for ASR

Manifold Constrained Deep Neural Networks for ASR 1 Manifold Constrained Deep Neural Networks for ASR Department of Electrical and Computer Engineering, McGill University Richard Rose and Vikrant Tomar Motivation Speech features can be characterized as

More information

Large-Scale Lasso and Elastic-Net Regularized Generalized Linear Models

Large-Scale Lasso and Elastic-Net Regularized Generalized Linear Models Large-Scale Lasso and Elastic-Net Regularized Generalized Linear Models DB Tsai Steven Hillion Outline Introduction Linear / Nonlinear Classification Feature Engineering - Polynomial Expansion Big-data

More information

CNN for Low Level Image Processing. Huanjing Yue

CNN for Low Level Image Processing. Huanjing Yue CNN for Low Level Image Processing Huanjing Yue 2017.11 1 Deep Learning for Image Restoration General formulation: min Θ L( x, x) s. t. x = F(y; Θ) Loss function Parameters to be learned Key issues The

More information

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

PDF hosted at the Radboud Repository of the Radboud University Nijmegen PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/94752

More information

Introducing I-Vectors for Joint Anti-spoofing and Speaker Verification

Introducing I-Vectors for Joint Anti-spoofing and Speaker Verification Introducing I-Vectors for Joint Anti-spoofing and Speaker Verification Elie Khoury, Tomi Kinnunen, Aleksandr Sizov, Zhizheng Wu, Sébastien Marcel Idiap Research Institute, Switzerland School of Computing,

More information

Biometrics Technology: Multi-modal (Part 2)

Biometrics Technology: Multi-modal (Part 2) Biometrics Technology: Multi-modal (Part 2) References: At the Level: [M7] U. Dieckmann, P. Plankensteiner and T. Wagner, "SESAM: A biometric person identification system using sensor fusion ", Pattern

More information

The Pre-Image Problem and Kernel PCA for Speech Enhancement

The Pre-Image Problem and Kernel PCA for Speech Enhancement The Pre-Image Problem and Kernel PCA for Speech Enhancement Christina Leitner and Franz Pernkopf Signal Processing and Speech Communication Laboratory, Graz University of Technology, Inffeldgasse 6c, 8

More information

Vulnerability of Voice Verification System with STC anti-spoofing detector to different methods of spoofing attacks

Vulnerability of Voice Verification System with STC anti-spoofing detector to different methods of spoofing attacks Vulnerability of Voice Verification System with STC anti-spoofing detector to different methods of spoofing attacks Vadim Shchemelinin 1,2, Alexandr Kozlov 2, Galina Lavrentyeva 2, Sergey Novoselov 1,2

More information

Deep Learning. Volker Tresp Summer 2014

Deep Learning. Volker Tresp Summer 2014 Deep Learning Volker Tresp Summer 2014 1 Neural Network Winter and Revival While Machine Learning was flourishing, there was a Neural Network winter (late 1990 s until late 2000 s) Around 2010 there

More information

Decision Support Systems

Decision Support Systems Decision Support Systems 2011/2012 Week 3. Lecture 5 Previous Class: Data Pre- Processing Data quality: accuracy, completeness, consistency, 4meliness, believability, interpretability Data cleaning: handling

More information

Machine Learning. CS 232: Ar)ficial Intelligence Naïve Bayes Oct 26, 2015

Machine Learning. CS 232: Ar)ficial Intelligence Naïve Bayes Oct 26, 2015 1 CS 232: Ar)ficial Intelligence Naïve Bayes Oct 26, 2015 Machine Learning Part 1 of course: how use a model to make op)mal decisions (state space, MDPs) Machine learning: how to acquire a model from data

More information

Deep Generative Models and a Probabilistic Programming Library

Deep Generative Models and a Probabilistic Programming Library Deep Generative Models and a Probabilistic Programming Library Discriminative (Deep) Learning Learn a (differentiable) function mapping from input to output x f(x; θ) y Gradient back-propagation Generative

More information

Image Denoising via Group Sparse Eigenvectors of Graph Laplacian

Image Denoising via Group Sparse Eigenvectors of Graph Laplacian Image Denoising via Group Sparse Eigenvectors of Graph Laplacian Yibin Tang, Ying Chen, Ning Xu, Aimin Jiang, Lin Zhou College of IOT Engineering, Hohai University, Changzhou, China School of Information

More information

Hybrid Speech Synthesis

Hybrid Speech Synthesis Hybrid Speech Synthesis Simon King Centre for Speech Technology Research University of Edinburgh 2 What are you going to learn? Another recap of unit selection let s properly understand the Acoustic Space

More information

CS 6140: Machine Learning Spring Final Exams. What we learned Final Exams 2/26/16

CS 6140: Machine Learning Spring Final Exams. What we learned Final Exams 2/26/16 Logis@cs CS 6140: Machine Learning Spring 2016 Instructor: Lu Wang College of Computer and Informa@on Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang Email: luwang@ccs.neu.edu Assignment

More information

Online PLCA for Real-time Semi-supervised Source Separation

Online PLCA for Real-time Semi-supervised Source Separation Online PLCA for Real-time Semi-supervised Source Separation Zhiyao Duan 1, Gautham J. Mysore 2 and Paris Smaragdis 2,3 1 EECS Department, Northwestern University, 2 Advanced Technology Labs, Adobe Systems

More information

CS 6140: Machine Learning Spring 2016

CS 6140: Machine Learning Spring 2016 CS 6140: Machine Learning Spring 2016 Instructor: Lu Wang College of Computer and Informa?on Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang Email: luwang@ccs.neu.edu Logis?cs Assignment

More information

How to choose a Voice Biometrics Engine

How to choose a Voice Biometrics Engine Emilio Mar*nez emar%nez@agni%o- corp.com How to choose a Voice Biometrics Engine Voice Biometrics Engines Authen*ca*on solu*on vs. Voice Biometrics Engine 2 Selec2ng a VB Engine Voice Biometrics End Users

More information

COMP 551 Applied Machine Learning Lecture 16: Deep Learning

COMP 551 Applied Machine Learning Lecture 16: Deep Learning COMP 551 Applied Machine Learning Lecture 16: Deep Learning Instructor: Ryan Lowe (ryan.lowe@cs.mcgill.ca) Slides mostly by: Class web page: www.cs.mcgill.ca/~hvanho2/comp551 Unless otherwise noted, all

More information

Semi- Supervised Learning

Semi- Supervised Learning Semi- Supervised Learning Aarti Singh Machine Learning 10-601 Dec 1, 2011 Slides Courtesy: Jerry Zhu 1 Supervised Learning Feature Space Label Space Goal: Optimal predictor (Bayes Rule) depends on unknown

More information

Semi-Supervised Hierarchical Models for 3D Human Pose Reconstruction

Semi-Supervised Hierarchical Models for 3D Human Pose Reconstruction Semi-Supervised Hierarchical Models for 3D Human Pose Reconstruction Atul Kanaujia, CBIM, Rutgers Cristian Sminchisescu, TTI-C Dimitris Metaxas,CBIM, Rutgers 3D Human Pose Inference Difficulties Towards

More information

Lecture 7: Spectral Clustering; Linear Dimensionality Reduc:on via Principal Component Analysis

Lecture 7: Spectral Clustering; Linear Dimensionality Reduc:on via Principal Component Analysis Lecture 7: Spectral Clustering; Linear Dimensionality Reduc:on via Principal Component Analysis Lester Mackey April, Stats 6B: Unsupervised Learning Blackboard discussion See lecture notes Spectral clustering

More information

Detector. Flash. Detector

Detector. Flash. Detector CLIPS at TRECvid: Shot Boundary Detection and Feature Detection Georges M. Quénot, Daniel Moraru, and Laurent Besacier CLIPS-IMAG, BP53, 38041 Grenoble Cedex 9, France Georges.Quenot@imag.fr Abstract This

More information

Discovery Net : A UK e-science Pilot Project for Grid-based Knowledge Discovery Services. Patrick Wendel Imperial College, London

Discovery Net : A UK e-science Pilot Project for Grid-based Knowledge Discovery Services. Patrick Wendel Imperial College, London Discovery Net : A UK e-science Pilot Project for Grid-based Knowledge Discovery Services Patrick Wendel Imperial College, London Data Mining and Exploration Middleware for Distributed and Grid Computing,

More information

Feature Selection by Independent Component Analysis for Robust Speaker Verification

Feature Selection by Independent Component Analysis for Robust Speaker Verification IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3B, March 2006 229 Feature Selection by Independent Component Analysis for Robust Speaker Verification Ahmet Şentürk and

More information

IMPROVED SPEAKER RECOGNITION USING DCT COEFFICIENTS AS FEATURES. Mitchell McLaren, Yun Lei

IMPROVED SPEAKER RECOGNITION USING DCT COEFFICIENTS AS FEATURES. Mitchell McLaren, Yun Lei IMPROVED SPEAKER RECOGNITION USING DCT COEFFICIENTS AS FEATURES Mitchell McLaren, Yun Lei Speech Technology and Research Laboratory, SRI International, California, USA {mitch,yunlei}@speech.sri.com ABSTRACT

More information

Generalized Principal Component Analysis via Lossy Coding and Compression Yi Ma

Generalized Principal Component Analysis via Lossy Coding and Compression Yi Ma Generalized Principal Component Analysis via Lossy Coding and Compression Yi Ma Image Formation & Processing Group, Beckman Decision & Control Group, Coordinated Science Lab. Electrical & Computer Engineering

More information

Neural Networks. Single-layer neural network. CSE 446: Machine Learning Emily Fox University of Washington March 10, /10/2017

Neural Networks. Single-layer neural network. CSE 446: Machine Learning Emily Fox University of Washington March 10, /10/2017 3/0/207 Neural Networks Emily Fox University of Washington March 0, 207 Slides adapted from Ali Farhadi (via Carlos Guestrin and Luke Zettlemoyer) Single-layer neural network 3/0/207 Perceptron as a neural

More information

Large Scale Data Analysis Using Deep Learning

Large Scale Data Analysis Using Deep Learning Large Scale Data Analysis Using Deep Learning Machine Learning Basics - 1 U Kang Seoul National University U Kang 1 In This Lecture Overview of Machine Learning Capacity, overfitting, and underfitting

More information