SH7080/SH7146/SH7125/SH7200 Series

Size: px
Start display at page:

Download "SH7080/SH7146/SH7125/SH7200 Series"

Transcription

1 APPLICATION NOTE SH78/SH746/SH75/SH7 Series Introduction This application note discusses synchronous operation of the MTU and MTUS timers, Target Device Microcomputer: SH785 (R5F785) Operating frequency: Internal clock 8 MHz Bus clock 4 MHz Peripheral clock 4 MHz MTU clock 4 MHz MTUS clock 4 MHz C compiler: Ver of Renesas C compiler Contents. Specifications.... Description of Functions.... Description of Operation Description of Software Flowchart Website and Customer Support Center... REJ6B476-/Rev.. March 5 Page of 5

2 . Specifications SH78/SH746/SH75/SH7 Series () The MTU and the MTUS start counting simultaneously. () The MTU and the MTUS count upward using channel, and the counters are cleared on compare-match between TGRA_ and TGRA_S. () Toggle output synchronized with the compare-match period is output from the TIOCA and the TIOCAS pins. (4) The MTU and the MTUS perform counting with a 4-MHz clock. (5) By running the MTU and MTUS under the same conditions, the same waveforms are output by the two different modules. Note: Synchronous starting of counters is possible in all operating modes. Two synchronous PWM waveforms can be produced by using the MTU and MTUS in complementary PWM mode. TCNT_ TGRA_ MTU module channel H' TIOCA pin Synchronous start Synchronous operation Synchronous operation TCNT_S TGRA_S MTUS module channel H' TIOCAS pin Figure Synchronous Start of MTU and MTUS Timers REJ6B476-/Rev.. March 5 Page of 5

3 . Description of Functions SH78/SH746/SH75/SH7 Series In this sample task, counting operation is performed using channel of the MTU and the MTUS. The operating mode is normal mode. Synchronous starting of counters is possible on channels,,,, and 4 of the MTU and channels and 4 of the MTUS. Synchronous starting of counters is not possible on channel 5 of the MTU and MTUS. Figure shows a block diagram of a part of the functions used in this sample task, with an explanation of the function noted below. The MTUS has the same configurations and functions as the channels, 4 and 5 of the MTU. <MTU> Timer general register A_ (TGRA_) Comparator Match signal Output control Toggle output on the TIOCA pin Timer counter_ (TCNT_) Timer I/O control register (TIORL_) Set the corresponding bit Timer counter synchronous start register (TCSYSTR) Timer start register (TSTR) <MTUS> Set the corresponding bit Timer start register (TSTRS) Timer counter (TCNT_S) Timer I/O control register (TIORL_S) Comparator Match signal Output control Toggle output on the TIOCAS pin Timer general register A_ (TGRA_S) Note: The register names of the MTUS are distinguished from those of the MTU by appending the letter "S" to the end of the register name. Figure Block Diagram of MTU (ch) and MTUS (ch) REJ6B476-/Rev.. March 5 Page of 5

4 SH78/SH746/SH75/SH7 Series The timer counter_/s (TCNT_/S) is a 6-bit readable/writable counter. This counter cannot be accessed in 8- bit units and must be accessed in 6-bit units. The timer general register A_/S (TGRA_/S) is a 6-bit readable/writable register. TGRA_/S operates as a compare register that is always compared with TCNT_. The timer I/O control register L_/S (TIORL_/S) is a 6-bit readable/writable register. TIORL_/S sets the functions of the TGRA_/S and the TIOCA/AS pin. The timer start register/s (TSTR/S) is an 8-bit readable/writable register. TSTR/S starts/stops counting by TCNT_/S. The timer counter synchronous start register (TCSYSTR) is an 8-bit readable/writable register. TCSYSTR enables synchronous starting of the MTU and MTUS counters. When the bit in TCSYSTR for the counter to be started synchronously is set to, the corresponding bit in TSTR of the MTU or MTUS is set. The bit in TCSYSTR is automatically cleared after the relevant counter of the MTU or MTUS has been started. REJ6B476-/Rev.. March 5 Page 4 of 5

5 . Description of Operation Figure explains how the MTU and MTUS timers start synchronously. SH78/SH746/SH75/SH7 Series MPφ, MIφ H' TCSYSTR H' H' TSTR H' H'4 TSTRS H' H'4 TCNT_ H' H' H' TCNT_S H' H' H' Software processing Hardware processing Hardware processing Hardware processing Set any desired bit in TCSYSTR to. Set the start bit of the channel selected by TCSYSTR to. Clear TCSYSTR. Start counting. Notes:. The counter clock for TCNT_ is MPφ/ and that for TCNT_S is MIφ /.. The counters count the rising edges.. Since TCSYSTR is a register in the MTU module, it operates synchronously with MPφ. 4. To stop the timer, clear the corresponding bit in the TSTR register. Figure Synchronous Starting of MTU and MTUS Timers REJ6B476-/Rev.. March 5 Page 5 of 5

6 SH78/SH746/SH75/SH7 Series 4. Description of Software 4. Modules Table describes the module of this sample task. Table Description of Modules Module Name Label Name Functions Main routine main() Makes initial settings of the MTU and MTUS and starts the timer counters. 4. Internal Registers Table shows the registers used in this sample task. Note that the settings in the tables are the values used in this sample task, and are different from the initial values. Table Description of Internal Registers Register Bit Bit Name Function Setting FRQCR Frequency Control Register H'49 Specifies the ratios for dividing the output frequency of the PLL circuit to generate operating clocks. FRQCR = H'49 sets the division ratios as follows. Internal clock: Bus clock: / Peripheral clock: / MTUS clock: / MTU clock: / STBCR4 Standby Control Register 4 H'F 7 MSTP Module Stop Clock is supplied to MTUS when MSTP = b'. 6 MSTP Module Stop Clock is supplied to MTU when MSTP = b'. PECRL Port E Control Register L H' 5 Reserved 4 PEMD PEMD PEMD PE Mode Selects PE (general I/O) as the pin function when PEMD to PEMD = b'. Reserved PEMD PE Mode 9 PEMD Selects PE (general I/O) as the pin function when 8 PEMD PEMD to PEMD = b' REJ6B476-/Rev.. March 5 Page 6 of 5

7 SH78/SH746/SH75/SH7 Series Register Bit Bit Name Function Setting PECRL 7 Reserved PE9MD PE9MD PE9MD PE9 Mode Selects PE9 (general I/O) as the pin function when PE9MD to PE9MD = b'. Reserved PDCRH PE8MD PE8MD PE8MD PDMD PDMD PDMD PDMD PD9MD PD9MD PD8MD PD8MD PE8 Mode Selects TIOCA as the pin function when PE8MD to PE8MD = b'. Port D Control Register H4 Reserved PD Mode Selects TIOCAS as the pin function when PDMD and PDMD = b'. Reserved PD Mode Selects PD (general I/O) as the pin function when PDMD and PDMD = b'. Reserved PD9 Mode Selects PD9 (general I/O) as the pin function when PD9MD and PD9MD = b'. Reserved PD8 Mode Selects PD8 (general I/O) as the pin function when PD8MD and PD8MD = b'. H' REJ6B476-/Rev.. March 5 Page 7 of 5

8 SH78/SH746/SH75/SH7 Series Register Bit Bit Name Function Setting TSTR Timer Start Register H' 7 CTS4 Counter Start 4 When CTS4 = b', TCNT_4 stops counting. 6 CTS Counter Start When CTS = b', TCNT_ stops counting. 5 4 Reserved CTS Counter Start When CTS = b', TCNT_ stops counting. CTS Counter Start When CTS = b', TCNT_ stops counting. CTS Counter Start When CTS = b', TCNT_ stops counting. TCR_ Timer Control Register_ H' TMDR_ CCLR CCLR CCLR CKEG CKEG TPSC TPSC TPSC Counter Clear,, Clears TCNT_ on compare-match with TGRA_ when CCLR to CCLR = b'. Clock Edge, When CKEG and CKEG = b', TCNT_ counts rising edges of the internal clock. Timer Prescaler,, When TPSC to TPSC = b', the clock source for TCNT_ is MPφ/. Timer Mode Register_ 7 Reserved 6 Reserved 5 BFB Buffer Operation B When BFB = b', TGRB_ and TGRD_ operate normally. 4 BFA Buffer Operation A When BFA=b', TGRA_ and TGRC_ operate normally. MD Mode,,, MD When MD to MD = b', the MTU operates in MD normal operation mode. MD H' REJ6B476-/Rev.. March 5 Page 8 of 5

9 SH78/SH746/SH75/SH7 Series Register Bit Bit Name Function Setting TIORH_ Timer I/O Control Register H_ H'7 7 6 IOB IOB I/O control B to B When IOB to IOB = b', TGRB_ operates as an 5 IOB output compare register and the output on the TIOCB pin 4 IOB is held. TGRA_ IOA IOA IOA IOA I/O control A to A When IOA to IOA = b', TGRA_ operates as an output compare register and the TIOCA pin initially outputs high level and toggles the output on comparematch. Timer General Register A_ Sets the period of compare-match with TCNT_ H'A TCNT_ Timer Counter _ H' TSTRS Timer Start Register S H' 7 CTS4 Counter Start 4 When CTS4 = b', TCNT_4S stops counting 6 CTS Counter Start When CTS = b', TCNT_S stops counting. 5 4 Reserved TCR_S Timer Control Register_S H' CCLR CCLR CCLR CKEG CKEG TPSC TPSC TPSC Counter Clear,, Clears TCNT_S on compare match with TGRA_S when CCLR to CCLR = b'. Clock Edge, When CKEG and CKEG = b', TCNT_S counts rising edges of the internal clock. Timer Prescaler,, When TPSC to TPSC = b', the clock source for TCNT_S is MIφ/. REJ6B476-/Rev.. March 5 Page 9 of 5

10 SH78/SH746/SH75/SH7 Series Register Bit Bit Name Function Setting TMDR_S Timer Mode Register_S H' 7 Reserved 6 Reserved 5 BFB Buffer Operation B When BFB = b', TGRB_S and TGRD_S operate normally. 4 BFA Buffer Operation A When BFA=b', TGRA_S and TGRC_S operate normally. MD MD MD MD Mode,,, When MD to MD = b', the MTUS operates in normal mode. TIORH_S Timer I/O Control Register H_S H'7 TGRA_S IOB IOB IOB IOB IOA IOA IOA IOA I/O control B to B When IOB to IOB = b', MTUS_TGRB_ operates as an output compare register and the output on the TIOCB pin is held. I/O control A to A When IOA to IOA = b', TGRA_S operates as an output compare register and the TIOCA pin initially outputs high level and toggles the output on comparematch. Timer General Register A_S Sets the period of compare-match with TCNT_S H'A TCNT_S Timer Counter_S H' REJ6B476-/Rev.. March 5 Page of 5

11 SH78/SH746/SH75/SH7 Series Register Bit Bit Name Function Setting TCSYSTR Timer Counter Synchronous Start Register H' 7 SCH Synchronous Start When SCH = b', TCNT_ of MTU doesn't start synchronously. 6 SCH Synchronous Start When SCH = b', TCNT_ of MTU doesn't start synchronously. 5 SCH Synchronous Start When SCH = b', TCNT_ of MTU doesn't start synchronously. 4 SCH Synchronous Start When SCH = b', TCNT_ of MTU starts synchronously. SCH4 Synchronous Start 4 When SCH4 = b', TCNT_4 of MTU doesn't start synchronously. Reserved SCHS Synchronous Start S When SCHS = b', TCNT_ of MTUS starts synchronously SCH4S Synchronous Start 4S When SCH4S = b', TCNT_4 of MTUS doesn't start synchronously. REJ6B476-/Rev.. March 5 Page of 5

12 SH78/SH746/SH75/SH7 Series 5. Flowchart main() MTU settings Set the operating frequencies. Cancel standby mode of the modules for use. Stop the timer counter of the MTU. Set up the operation of TCNT_. Set the operating mode for channel. Set the function of TGR. Set the / period of toggle output. <<FRQCR setting>> Internal clock = 8 MHz, Bus clock = 4 MHz, Peripheral clock = 4 MHz, MTUS clock = 4 MHz, MTU clock = 4 MHz <<STBCR4 setting>> Cancel mode standby mode of the MTU and MTUS. <<TCR_ setting>> - Select counter clearing by TGRA_. - Select MPφ/ as the counter clock. <<TMDR_ setting>> Specify normal operation mode. <<TIORH_ setting>> Enable toggle output from the TIOCA pin on compare-match with TGRA_. Clear the counter. MTUS settings Stop the timer counter of the MTUS. Set up the operation of TCNT_S. Set the operating mode for channel (MTUS). Set the function of TGR. Set the / period of toggle output. <<TCR_S setting>> - Select counter clearing by TGRA_S. - Select MIφ/ as the counter clock. <<TMDR_S setting>> Specify normal operation mode. <<TIORH_S setting>> Enable toggle output from the TIOCAS pin on compare-match with TGRA_S. Clear the counter. Set the pin function controller (PFC). <<Settings of PECRL, PDCRH4, PEIORL, and PDIORH >> Select the pin functions of TIOCA and TIOCAS. Execute synchronous starting of the timers. <<TCSYSTR setting>> Start counting on channel of the MTU and MTUS. REJ6B476-/Rev.. March 5 Page of 5

13 6. Website and Customer Support Center SH78/SH746/SH75/SH7 Series Renesas Technology, Corp. Website: Customer Support Center: Please the following address for information on products of Renesas Technology, Corp. REJ6B476-/Rev.. March 5 Page of 5

14 Revision Record Description Rev. Date Page Summary. Mar.4.5 First edition issued SH78/SH746/SH75/SH7 Series REJ6B476-/Rev.. March 5 Page 4 of 5

15 SH78/SH746/SH75/SH7 Series Keep safety first in your circuit designs!. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap. Notes regarding these materials. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any thirdparty's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page ( 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein. 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein. REJ6B476-/Rev.. March 5 Page 5 of 5

1. Specifications Conditions for Application Description of Modules Used Description of Operation... 7

1. Specifications Conditions for Application Description of Modules Used Description of Operation... 7 APPLICATION NOTE H8SX Family Introduction Relative phases of the two-phase pulse signal input from the two external clock pins are detected by the 6-bit timer pulse unit (TPU). Whether the timer counter

More information

SH7144/45 Group APPLICATION NOTE. 2-Phase Encoder Count. 1. Specifications

SH7144/45 Group APPLICATION NOTE. 2-Phase Encoder Count. 1. Specifications APPLICATION NOTE SH7144/45 Group 1. Specifications Two external clocks are input to channel 1 (ch1), and a counter is incremented or decremented according to the phase difference of the pulses, as shown

More information

H8SX Family APPLICATION NOTE. Vector Table Address Switching. Introduction. Target Devices. Contents

H8SX Family APPLICATION NOTE. Vector Table Address Switching. Introduction. Target Devices. Contents APPLICATION NOTE H8SX Family Introduction This application note describes how to change the vector table address. Target Devices H8SX family Contents 1. Overview... 2 2. Applicable Conditions... 2 3. Configuration...

More information

1. Specifications Operational Overview of Functions Used Principles of Operation Description of Software...

1. Specifications Operational Overview of Functions Used Principles of Operation Description of Software... APPLICATION NOTE SH7080 Group Introduction This application note describes the serial data transmission function that uses the transmit-fifo-data-empty interrupt source of the SCIF (Serial Communication

More information

In repeat transfer mode of DMAC, choose functions from those listed in Table 1. Operations of the checked items are described below.

In repeat transfer mode of DMAC, choose functions from those listed in Table 1. Operations of the checked items are described below. APPLICATION NOTE 1. Abstract In repeat transfer mode of DMAC, choose functions from those listed in Table 1. Operations of the checked items are described below. Table 1. Choosed Functions Item Transfer

More information

Interrupt Level Setting and Modification by Interrupt Controller

Interrupt Level Setting and Modification by Interrupt Controller Controller Introduction APPLICATION NOTE Interrupts of different levels are generated by specifying interrupt levels via the interrupt controller (INTC) of the SH7145F. Target Device SH7145F Contents 1.

More information

Multi-Bit Shift of 32-Bit Data (Arithmetic Right Shift)

Multi-Bit Shift of 32-Bit Data (Arithmetic Right Shift) SH7 Series APPLICATION NOTE Label: Functions Used: SHARN SHLR2 Instruction SHLR8 Instruction SHLR16 Instruction Contents 1. Function... 2 2. Arguments... 2 3. Internal Register Changes and Flag Changes...

More information

M16C/60 Series and M16C/20 Series

M16C/60 Series and M16C/20 Series APPLICATION NOTE M16C/60 Series and M16C/20 Series General-purpose Program for Converting from Uppercase Alphabet to Lowercase Alphabet 1. Abstract This program converts an uppercase English alphabet in

More information

This application note describes the time measurement function of Timer S with the gate function.

This application note describes the time measurement function of Timer S with the gate function. APPLICATION NOTE M16C/28, 29 Group Time Measuerment Function of Time S with Gate Function 1. Abstract This application note describes the time measurement function of Timer S with the gate function. 2.

More information

1. Specifications Functions Used Operation Software Flowcharts Program Listing... 13

1. Specifications Functions Used Operation Software Flowcharts Program Listing... 13 APPLICATION NOTE SH7145F Summary The SH7144 series is a single-chip microprocessor based on the SH-2 RISC (Reduced Instruction Set Computer) CPU core and integrating a number of peripheral functions. This

More information

M16C/62 APPLICATION NOTE. Using the M16C/62 CRC. 1.0 Abstract. 2.0 Introduction. 3.0 A Lesson in CRC and the CCITT Polynomial

M16C/62 APPLICATION NOTE. Using the M16C/62 CRC. 1.0 Abstract. 2.0 Introduction. 3.0 A Lesson in CRC and the CCITT Polynomial APPLICATION NOTE M16C/62 1.0 Abstract The register sets of the M16C/62 devices contain a Cyclic Redundancy Check (CRC) calculating peripheral. This gives the user the ability to quickly calculate a CRC

More information

This document describes how to set up and use the timer RA in timer mode on the R8C/25 Group device.

This document describes how to set up and use the timer RA in timer mode on the R8C/25 Group device. APPLICATION NOTE R8C/25 Group 1. Abstract This document describes how to set up and use the timer RA in timer mode on the R8C/25 Group device. 2. Introduction The application example described in this

More information

M16C/62 APPLICATION NOTE. Programming the M16C/62 in Flash Parallel Mode. 1.0 Abstract. 2.0 Introduction. 3.0 Setting Up the PGM1000 Programmer

M16C/62 APPLICATION NOTE. Programming the M16C/62 in Flash Parallel Mode. 1.0 Abstract. 2.0 Introduction. 3.0 Setting Up the PGM1000 Programmer APPLICATION NOTE M16C/62 1.0 Abstract The following article describes using the ATC (Advanced Transdata) PGM1000 programmer to parallel program the flash memory of the M16C/62 series of microcontrollers.

More information

M16C/62 Group APPLICATION NOTE. Signed 32 Bit Multiplication Library. 1. Abstract. 2. Introduction

M16C/62 Group APPLICATION NOTE. Signed 32 Bit Multiplication Library. 1. Abstract. 2. Introduction APPLICATION NOTE M16C/62 Group 1. Abstract This application note describes an operational library of the multiplicant (signed 32 bit) X the multiplication (signed 32 bit) = the product (signed 64 bit )

More information

This function allows the user to erase any Flash block within the MCU including the near area memory (below address 0xFFFF).

This function allows the user to erase any Flash block within the MCU including the near area memory (below address 0xFFFF). APPLICATION NOTE M16C/62P, M16C/26 1.0 Abstract A simple Application Program Interface (API) has been created to allow programmers of the M16C/62P (M30626FHP) and M16C/26 (M30262F8) to easily integrate

More information

This document describes how to set up and use the timer RB in programmable one-shot generation mode on the R8C/25 Group device.

This document describes how to set up and use the timer RB in programmable one-shot generation mode on the R8C/25 Group device. APPLICATION NOTE R8C/25 Group 1. Abstract This document describes how to set up and use the timer RB in programmable one-shot generation mode on the R8C/25 Group device. 2. Introduction The application

More information

RTE/L Return from Exception Handling with Data Restoration

RTE/L Return from Exception Handling with Data Restoration APPLICATION NOTE Introduction Shows an example of C compiler use of the RTE/L instruction Contents 1 Specifications 2 2 Functions Used 2 3 Principles of Operation 2 4 Development Environment 3 5 Description

More information

M16C/Tiny Series APPLICATION NOTE. Operation of Timer A. (2-Phase Pulse Signal Process in Event Counter Mode, Multiply-by-4 Mode) 1.

M16C/Tiny Series APPLICATION NOTE. Operation of Timer A. (2-Phase Pulse Signal Process in Event Counter Mode, Multiply-by-4 Mode) 1. APPLICATION NOTE 1. Abstract In processing 2-phase pulse signals in event counter mode, choose functions from those listed in Table 1. Operations of the selected items are described below. Figure 1 shows

More information

The following article describes how to use the M16C/62 timers A s as square wave generators (Pulse Output Mode).

The following article describes how to use the M16C/62 timers A s as square wave generators (Pulse Output Mode). APPLICATION NOTE M16C/62 1.0 Abstract The following article describes how to use the M16C/62 timers A s as square wave generators (Pulse Output Mode). 2.0 Introduction The M16C/62 is a 16-bit MCU, based

More information

32176 Group APPLICATION NOTE. Application of the CAN Module (Remote Frame Transmission) 1. Overview. 2. Introduction

32176 Group APPLICATION NOTE. Application of the CAN Module (Remote Frame Transmission) 1. Overview. 2. Introduction 32176 Group 1. Overview APPLICATION NOTE The sample task described in this document uses the 32176 Group microcomputer s on-chip CAN (Controller Area Network) module. 2. Introduction The sample task described

More information

M16C/26 APPLICATION NOTE. Using the DMAC with a Forward Source. 1.0 Abstract. 2.0 Introduction

M16C/26 APPLICATION NOTE. Using the DMAC with a Forward Source. 1.0 Abstract. 2.0 Introduction APPLICATION NOTE 1.0 Abstract The following article introduces and shows an example of how to use the DMAC function of the with a forward counting source address and fixed destination address. 2.0 Introduction

More information

M16C/62 APPLICATION NOTE. Using the M16C/62 DMAC in Forward Source Mode. 1.0 Abstract. 2.0 Introduction

M16C/62 APPLICATION NOTE. Using the M16C/62 DMAC in Forward Source Mode. 1.0 Abstract. 2.0 Introduction APPLICATION NOTE M16C/62 1.0 Abstract The following article introduces and shows an example of how to use the DMAC function of the M16C/62 with a forward counting source address and fixed destination address.

More information

M16C APPLICATION NOTE. Target Setup for the In-Circuit Debugger. 1.0 Abstract. 2.0 Introduction

M16C APPLICATION NOTE. Target Setup for the In-Circuit Debugger. 1.0 Abstract. 2.0 Introduction APPLICATION NOTE MC.0 Abstract The ICD (In-Circuit Debugger), or USB-Monitor, is a low cost, compact interface that has two functions for Renesas MC Flash microcontrollers: ) an in-circuit debugger tool

More information

M32C/84 Group APPLICATION NOTE. Operation of Key-Input Interrupt. 1. Abstract. 2. Introduction

M32C/84 Group APPLICATION NOTE. Operation of Key-Input Interrupt. 1. Abstract. 2. Introduction APPLICATION NOTE M32C/84 Group 1. Abstract The following is an operation of key-input interrupt. Figure 1 shows an example of a circuit that uses the key-input interrupt, Figure 2 shows an example of operation

More information

M16C R8C FoUSB/UART Debugger. User Manual REJ10J

M16C R8C FoUSB/UART Debugger. User Manual REJ10J REJ10J1725-0100 M16C R8C FoUSB/UART Debugger User Manual Renesas Microcomputer Development Environment System R8C Family R8C/2x Series Notes on Connecting R8C/2A, R8C/2B, R8C/2C, R8C/2D Rev.1.00 Issued

More information

M32C/84 Group APPLICATION NOTE. Operation of timer A (2-phase pulse signal process in event counter mode, normal mode selected) 1.

M32C/84 Group APPLICATION NOTE. Operation of timer A (2-phase pulse signal process in event counter mode, normal mode selected) 1. APPLICATION NOTE Operation of timer A (2-phase pulse signal process in event counter mode, normal mode selected) 1. Abstract In processing 2-phase pulse signals in event counter mode, choose functions

More information

Silicon Epitaxial Planar Zener Diode for Stabilized Power Supply. Type No. Mark Package Code HZS Series Type No. MHD B 7

Silicon Epitaxial Planar Zener Diode for Stabilized Power Supply. Type No. Mark Package Code HZS Series Type No. MHD B 7 Silicon Epitaxial Planar Zener Diode for Stabilized Power Supply Features REJ3G184-3Z (Previous: ADE-28-12B) Rev.3. Mar.11.24 Low leakage, low zener impedance and maximum power dissipation of 4 mw are

More information

M16C/26 APPLICATION NOTE. Using Timer B in Pulse Period/Width Measurement Mode. 1.0 Abstract. 2.0 Introduction

M16C/26 APPLICATION NOTE. Using Timer B in Pulse Period/Width Measurement Mode. 1.0 Abstract. 2.0 Introduction APPLICATION NOTE M16C/26 1.0 Abstract Measuring the frequency (1/period) or the pulse width of an input signal is useful in applications such as tachometers, DC motor control, power usage calculations,

More information

Renesas LIN Overview. White paper REU05B Introduction

Renesas LIN Overview. White paper REU05B Introduction White paper Introduction LIN is a communication and distributed processing bus system. It is characterized by low cost hardware and a relatively low data transmission speed and number of bus nodes. Only

More information

M16C R8C FoUSB/UART Debugger. User s Manual REJ10J

M16C R8C FoUSB/UART Debugger. User s Manual REJ10J REJ10J1217-0100 M16C R8C FoUSB/UART Debugger User s Manual RENESAS MICROCOMPUTER Development Environment System M16C Family R8C/Tiny Series Precautions on Connecting R8C/20, R8C/21, R8C/22, R8C/23 Rev.1.00

More information

M16C/26 APPLICATION NOTE. Using the M16C/26 Timer in Event Counter Mode. 1.0 Abstract. 2.0 Introduction

M16C/26 APPLICATION NOTE. Using the M16C/26 Timer in Event Counter Mode. 1.0 Abstract. 2.0 Introduction APPLICATION NOTE M16C/26 1.0 Abstract Event counters are useful in automated packaging lines, tachometers, and mechanical equipment monitoring. The event counters on the M16C/26 can be configured to interrupt

More information

Old Company Name in Catalogs and Other Documents

Old Company Name in Catalogs and Other Documents To our customers, Old Company Name in Catalogs and Other Documents On April st, 2, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over

More information

Regarding the change of names mentioned in the document, such as Hitachi Electric and Hitachi XX, to Renesas Technology Corp.

Regarding the change of names mentioned in the document, such as Hitachi Electric and Hitachi XX, to Renesas Technology Corp. To all our customers Regarding the change of names mentioned in the document, such as Hitachi Electric and Hitachi XX, to Renesas Technology Corp. The semiconductor operations of Mitsubishi Electric and

More information

Old Company Name in Catalogs and Other Documents

Old Company Name in Catalogs and Other Documents To our customers, Old Company Name in Catalogs and Other Documents On April 1 st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took

More information

M16C/26 APPLICATION NOTE. Measuring Computation Time of a Function Call. 1.0 Abstract. 2.0 Introduction. 3.0 Number of Function Call Returns

M16C/26 APPLICATION NOTE. Measuring Computation Time of a Function Call. 1.0 Abstract. 2.0 Introduction. 3.0 Number of Function Call Returns APPLICATION NOTE M16C/26 1.0 Abstract The following article discusses a technique for measuring computation time spent during a function call, which can be in C or Assembly, from a main C program for the

More information

Single Power Supply F-ZTAT On-Board Programming

Single Power Supply F-ZTAT On-Board Programming Single Power Supply F-ZTAT On-Board Programming Renesas F-ZTAT Microcomputer Rev.2.00 Revision Date: Dec 13, 2004 Keep safety first in your circuit designs! 1. Renesas Technology Corp. puts the maximum

More information

M16C APPLICATION NOTE. Firmware Requirements for In-Circuit Debugger. 1.0 Abstract. 2.0 Introduction

M16C APPLICATION NOTE. Firmware Requirements for In-Circuit Debugger. 1.0 Abstract. 2.0 Introduction APPLICATION NOTE M16C 1.0 Abstract The USB-Monitor is a low cost, compact interface that has two functions for Renesas M16C Flash microcontrollers 1) an in-circuit debugger tool with KD30 Debugger, and

More information

1. Specifications Applicable Conditions Operational Overview of Functions Used Principles of Operation...

1. Specifications Applicable Conditions Operational Overview of Functions Used Principles of Operation... APPLICATION NOTE SH7080 Group Introduction This application note provides information that may be useful in designing software. The note describes how to erase and program the flash memory when the flash

More information

APPLICATION NOTE R8C, M16C, M32C

APPLICATION NOTE R8C, M16C, M32C APPLICATION NOTE R8C, M16C, M32C 1. Abstract Since the internal flash of a Renesas R8C/M16C/M32C microcontroller can be erased and programmed in-circuit, an application has been created in order to eliminate

More information

The following article introduces and shows an example of how to set up and use the watchdog timer on the M16C/26 microcontroller (MCU).

The following article introduces and shows an example of how to set up and use the watchdog timer on the M16C/26 microcontroller (MCU). APPLICATION NOTE M16C/26 1.0 Abstract The following article introduces and shows an example of how to set up and use the watchdog timer on the M16C/26 microcontroller (MCU). 2.0 Introduction The Renesas

More information

VLA HYBRID IC ISOLATED TYPE DC-DC CONVERTER DESCRIPTION OUTLINE DRAWING FEATURES APPLICATIONS BLOCK DIAGRAM. +Vo +V IN.

VLA HYBRID IC ISOLATED TYPE DC-DC CONVERTER DESCRIPTION OUTLINE DRAWING FEATURES APPLICATIONS BLOCK DIAGRAM. +Vo +V IN. DESCRIPTION The is a DC-DC converter. Its output power is 1.5W and the input is isolated from the output. The over-current protection circuit is built-in and it is the best for on-board power supplies,

More information

Regarding the change of names mentioned in the document, such as Hitachi Electric and Hitachi XX, to Renesas Technology Corp.

Regarding the change of names mentioned in the document, such as Hitachi Electric and Hitachi XX, to Renesas Technology Corp. To all our customers Regarding the change of names mentioned in the document, such as Hitachi Electric and Hitachi XX, to Renesas Technology Corp. The semiconductor operations of Mitsubishi Electric and

More information

SCIF Asynchronous Serial Data Transfer Function Using the DTC. 1. Specifications Operational Overview of Functions Used...

SCIF Asynchronous Serial Data Transfer Function Using the DTC. 1. Specifications Operational Overview of Functions Used... Introduction APPLICATION NOTE This application note describes data transmission and reception that uses the internal SCIF (Serial Communication Interface with FIFO) for asynchronous serial transfer and

More information

SH7147 APPLICATION NOTE. Resolver Built-in DC Brushless Motor Control. 1. Abstract. 2. Introduction. 2.1 Specification

SH7147 APPLICATION NOTE. Resolver Built-in DC Brushless Motor Control. 1. Abstract. 2. Introduction. 2.1 Specification APPLICATION NOTE SH747. Abstract This application note is organized based on sample of resolver built-in DC brushless motor control, which uses SH747 embedded ADC_0, MTU2S_3,4, and CMT_0,, and is aimed

More information

Regarding the change of names mentioned in the document, such as Hitachi Electric and Hitachi XX, to Renesas Technology Corp.

Regarding the change of names mentioned in the document, such as Hitachi Electric and Hitachi XX, to Renesas Technology Corp. To all our customers Regarding the change of names mentioned in the document, such as Hitachi Electric and Hitachi XX, to Renesas Technology Corp. The semiconductor operations of Mitsubishi Electric and

More information

Data Transfer between On-chip RAM Areas with DMAC (Burst Mode) 1. Introduction Description of Sample Application... 3

Data Transfer between On-chip RAM Areas with DMAC (Burst Mode) 1. Introduction Description of Sample Application... 3 Introduction APPLICATION NOTE This application note describes the operation of the DMAC, and is intended for reference to help in the design of user software. Target Device SH7211 Contents 1. Introduction...

More information

M16C/62 APPLICATION NOTE. Using the Expanded Memory Mode with the M16C/ Abstract. 2.0 Introduction. 3.0 Memory Expansion Mode

M16C/62 APPLICATION NOTE. Using the Expanded Memory Mode with the M16C/ Abstract. 2.0 Introduction. 3.0 Memory Expansion Mode APPLICATION NOTE M16C/62 1.0 Abstract The following article introduces and shows an example of how to access external memory using the expanded memory mode of the M16C/62 series of microcontrollers. 2.0

More information

M16C/26 APPLICATION NOTE. Implementing Real Time Clock and WAIT Mode. 1.0 Abstract. 2.0 Introduction. 3.0 Real-Time Clock Setup and Implementation

M16C/26 APPLICATION NOTE. Implementing Real Time Clock and WAIT Mode. 1.0 Abstract. 2.0 Introduction. 3.0 Real-Time Clock Setup and Implementation APPLICATION NOTE M16C/26 1.0 Abstract The following article describes the implementation of a low-power, real time clock using the sub-clock circuit with a 32.768 khz crystal and Wait mode of the M16C/26

More information

VLA A HYBRID IC ISOLATED TYPE DC-DC CONVERTER DESCRIPTION FEATURES BLOCK DIAGRAM

VLA A HYBRID IC ISOLATED TYPE DC-DC CONVERTER DESCRIPTION FEATURES BLOCK DIAGRAM DESCRIPTION The is an isolated DC-DC converter designed to control the industrial equipment. It can input the DC400~850V directly and convert to low voltage. Total output power is 150W. FEATURES Input

More information

Old Company Name in Catalogs and Other Documents

Old Company Name in Catalogs and Other Documents To our customers, Old Company Name in Catalogs and Other Documents On April 1 st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took

More information

Old Company Name in Catalogs and Other Documents

Old Company Name in Catalogs and Other Documents To our customers, Old Company Name in Catalogs and Other Documents On April 1 st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took

More information

Example of Setting the SCIF for Clocked Synchronous Serial Communication (Full-Duplex Communication)

Example of Setting the SCIF for Clocked Synchronous Serial Communication (Full-Duplex Communication) APPLICATION NOTE Example of Setting the SCIF for Clocked Synchronous Serial Communication (Full-Duplex Communication) Introduction This application note presents an example of configuring the serial communication

More information

This document describes a program for timer RA in pulse period measurement mode.

This document describes a program for timer RA in pulse period measurement mode. APPLICATION NOTE R8C/25 Group. Abstract This document describes a program for timer RA in pulse period measurement mode. 2. Introduction The application example described in this document applies to the

More information

Application Note [AN-006] Liquid Crystal Display (LCD) Construction Methods

Application Note [AN-006] Liquid Crystal Display (LCD) Construction Methods Application Note [AN-006] Liquid Crystal Display () Construction Methods Introduction In a module the driver electronics, which control the voltage applied to each pixel need to be connected to the cell.

More information

M16C/26 APPLICATION NOTE. Interfacing with 1-Wire Devices. 1.0 Abstract. 2.0 Introduction Wire Interface. 3.1 Hardware

M16C/26 APPLICATION NOTE. Interfacing with 1-Wire Devices. 1.0 Abstract. 2.0 Introduction Wire Interface. 3.1 Hardware APPLICATION NOTE M16C/26 1.0 Abstract The following article introduces and shows an example of how to interface Renesas 16-bit microcontrollers (MCU) to a 1-wire device. A demo program developed for the

More information

M32C/84, 85, 86, 87, 88 Group

M32C/84, 85, 86, 87, 88 Group Version 1. Abstract APPLICATION NOTE The document describes how to reduce power consumption in the flash memory version and shows an application example. 2. Introduction The application example described

More information

Operation of Timer A (2-phase pulse signal process in event counter mode, multiply-by-4 processing operation)

Operation of Timer A (2-phase pulse signal process in event counter mode, multiply-by-4 processing operation) APPLICATION NOTE in event counter mode, multiply-by-4 processing operation) 1. Abstract In processing 2-phase pulse signals in event counter mode, choose functions from those listed in Table 1. Operations

More information

In timer mode, choose functions from those listed in Table 1. Operations of the circled items are described below.

In timer mode, choose functions from those listed in Table 1. Operations of the circled items are described below. APPLICATION NOTE M16C/64 Group 1. Abstract In timer mode, choose functions from those listed in Table 1. Operations of the circled items are described below. 2. Introduction This application note is applied

More information

This document describes a program for timer RF in pulse width measurement mode.

This document describes a program for timer RF in pulse width measurement mode. R8C/25 Group. Abstract This document describes a program for timer RF in pulse width measurement mode. 2. Introduction The application example described in this document applies to the following MCU and

More information

F-ZTAT Microcomputer On-Board Programming

F-ZTAT Microcomputer On-Board Programming F-ZTAT Microcomputer On-Board Programming Renesas F-ZTAT Microcomputer Rev.2.00 Revision Date: Dec 13, 2004 Keep safety first in your circuit designs! 1. Renesas Technology Corp. puts the maximum effort

More information

OUTLINE DRAWING. ABSOLUTE MAXIMUM RATINGS (Tc=25 C UNLESS OTHERWISE NOTED)

OUTLINE DRAWING. ABSOLUTE MAXIMUM RATINGS (Tc=25 C UNLESS OTHERWISE NOTED) DESCRIPTION is a MOS FET type transistor designed for VHF/UHF RF driver device. OUTLINE DRAWING FEATURES 1.High Power Gain and High Efficiency Pout>1.0W, Gp=15dB, Drain Effi. =70%typ @ f=527mhz, V DS =7.2V,

More information

M32C/84, 85, 86, 87, 88 Group

M32C/84, 85, 86, 87, 88 Group APPLICATION NOTE 1. Abstract The direct memory access controller (DMAC) function allows data to be transferred without using the CPU. DMAC transfers one data (8-bit or 16-bit) from a source address to

More information

1. Specification Applicable Conditions Description of Modules Used Principles of Operation... 9

1. Specification Applicable Conditions Description of Modules Used Principles of Operation... 9 APPLICATION NOTE H8SX Family Introduction The H8SX/1638F microcomputer has a deep software standby mode as one of its low-power states. This application note gives an example of employment of the deep

More information

Old Company Name in Catalogs and Other Documents

Old Company Name in Catalogs and Other Documents To our customers, Old Company Name in Catalogs and Other Documents On April 1 st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took

More information

< Silicon RF Power MOS FET (Discrete) > RD04LUS2

< Silicon RF Power MOS FET (Discrete) > RD04LUS2 DESCRIPTION is a MOS FET type transistor specifically designed for VHF/UHF RF power amplifiers applications. OUTLINE DRAWING FEATURES High power gain and High Efficiency. Pout=4Wtyp, Drain Effi. =65%typ

More information

Old Company Name in Catalogs and Other Documents

Old Company Name in Catalogs and Other Documents To our customers, Old Company Name in Catalogs and Other Documents On April 1 st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took

More information

( 2 / 26 ) * TR4943, R4945 and R4945A are trademarks of Advantest Corporation.

( 2 / 26 ) * TR4943, R4945 and R4945A are trademarks of Advantest Corporation. PCA4738F-42A PCA4738S-42A PCA4738F-64A PCA4738L-64A PCA4738S-64A PCA4738H-80A PCA4738G-80A PCA4738F-80A PCA4738L-80A PCA4738H-100A PCA4738G-100A PCA4738F-100A PCA4738L-100A PCA4738L-160A PCA4738F-176A

More information

Regarding the change of names mentioned in the document, such as Hitachi Electric and Hitachi XX, to Renesas Technology Corp.

Regarding the change of names mentioned in the document, such as Hitachi Electric and Hitachi XX, to Renesas Technology Corp. To all our customers Regarding the change of names mentioned in the document, such as Hitachi Electric and Hitachi XX, to Renesas Technology Corp. The semiconductor operations of Mitsubishi Electric and

More information

M16C/62 APPLICATION NOTE. Using the M16C/62 Power Saving Modes. 1.0 Abstract. 2.0 Introduction. 3.0 Power Conservation: Introduction

M16C/62 APPLICATION NOTE. Using the M16C/62 Power Saving Modes. 1.0 Abstract. 2.0 Introduction. 3.0 Power Conservation: Introduction APPLICATION NOTE M16C/62 1.0 Abstract This article discusses the various power saving modes of the M16C device. A short program is provided that can be run on the MSV3062 development board. Using an Amp

More information

Old Company Name in Catalogs and Other Documents

Old Company Name in Catalogs and Other Documents To our customers, Old Company Name in Catalogs and Other Documts On April 1 st, 2010, NEC Electronics Corporation merged with Resas Technology Corporation, and Resas Electronics Corporation took over all

More information

M3H Group(2) Application Note Asynchronous Serial Communication Circuit (UART-C)

M3H Group(2) Application Note Asynchronous Serial Communication Circuit (UART-C) M3H Group(2) Asynchronous Serial Communication Circuit (UART-C) Outlines This application note is a erence material for developing products using the asynchronous serial communication circuit (UART) function

More information

ROHM USB Type-C Power Delivery. Evaluation Board Manual BM92A15MWV-EVK-001

ROHM USB Type-C Power Delivery. Evaluation Board Manual BM92A15MWV-EVK-001 ROHM USB Type-C Power Delivery BM92A15MWV-EVK-001 Ver.1.00 Date:03-Mar,2017 1/8 Introduction This board is dedicated to receiving power with USB Type-C Power Delivery and requests the maximum voltage from

More information

ROHM USB Type-C Power Delivery. Evaluation Board Manual BM92A56MWV-EVK-001

ROHM USB Type-C Power Delivery. Evaluation Board Manual BM92A56MWV-EVK-001 ROHM USB Type-C Power Delivery BM92A56MWV-EVK-001 Ver.1.00 Date:03-Mar,2017 1/8 Introduction This board is dedicated to supplying power with USB Type-C Power Delivery, and voltage profile (PDO) is 5V,

More information

Old Company Name in Catalogs and Other Documents

Old Company Name in Catalogs and Other Documents To our customers, Old Company Name in Catalogs and Other Documents On April 1 st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took

More information

Old Company Name in Catalogs and Other Documents

Old Company Name in Catalogs and Other Documents To our customers, Old Company Name in Catalogs and Other Documents On April 1 st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took

More information

Old Company Name in Catalogs and Other Documents

Old Company Name in Catalogs and Other Documents To our customers, Old Company Name in Catalogs and Other Documents On April 1 st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took

More information

Old Company Name in Catalogs and Other Documents

Old Company Name in Catalogs and Other Documents To our customers, Old Company Name in Catalogs and Other Documents On April 1 st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took

More information

ROHM USB Type-C Power Delivery. Evaluation Board Manual BM92A21MWV-EVK-001

ROHM USB Type-C Power Delivery. Evaluation Board Manual BM92A21MWV-EVK-001 ROHM USB Type-C Power Delivery BM92A21MWV-EVK-001 Ver.1.00 Date:03-Mar,2017 1/6 Introduction This board is dedicated to supplying power with USB Type-C Power Delivery, and voltage profile (PDO) is 5V,

More information

SPI Overview and Operation

SPI Overview and Operation White Paper Abstract Communications between semiconductor devices is very common. Many different protocols are already defined in addition to the infinite ways to communicate with a proprietary protocol.

More information

Old Company Name in Catalogs and Other Documents

Old Company Name in Catalogs and Other Documents To our customers, Old Company Name in Catalogs and Other Documents On April 1 st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took

More information

Old Company Name in Catalogs and Other Documents

Old Company Name in Catalogs and Other Documents To our customers, Old Company Name in Catalogs and Other Documents On April 1 st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took

More information

MN101E50 Series. 8-bit Single-chip Microcontroller

MN101E50 Series. 8-bit Single-chip Microcontroller 8-bit Single-chip Microcontroller Overview The MN101E series of 8-bit single-chip microcomputers (the memory expansion version of MN101C series) incorporate multiple types of peripheral functions. This

More information

Old Company Name in Catalogs and Other Documents

Old Company Name in Catalogs and Other Documents To our customers, Old Company Name in Catalogs and Other Documents On April 1 st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took

More information

Dual PLL frequency synthesizer

Dual PLL frequency synthesizer Dual PLL frequency synthesizer The BU2630F/BU2630FV are a CMOS LSI with an internal dual PLL synthesizer. VCOs for transmission and reception can be controlled independently, and the reference frequency

More information

Old Company Name in Catalogs and Other Documents

Old Company Name in Catalogs and Other Documents To our customers, Old Company Name in Catalogs and Other Documents On April st,, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all

More information

Audio digital potentiometers

Audio digital potentiometers Audio digital potentiometers The is a digital potentiometer designed for use in audio devices. Its built-in 22kΩ resistance systems can be used to set the data from the microcomputer in 256 steps. Applications

More information

Old Company Name in Catalogs and Other Documents

Old Company Name in Catalogs and Other Documents To our customers, Old Company Name in Catalogs and Other Documents On April st, 00, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over

More information

Old Company Name in Catalogs and Other Documents

Old Company Name in Catalogs and Other Documents To our customers, Old Company Name in Catalogs and Other Documents On April st, 2, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over

More information

M37544 StarterKit. User s Manual REJ10J Z. RENESAS SINGLE-CHIP MICROCOMPUTER 740 Family 740 Series. Rev.1.00 Revision Date : Nov 26, 2004

M37544 StarterKit. User s Manual REJ10J Z. RENESAS SINGLE-CHIP MICROCOMPUTER 740 Family 740 Series. Rev.1.00 Revision Date : Nov 26, 2004 REJ10J0822-0100Z M37544 StarterKit User s Manual RENESAS SINGLE-CHIP MICROCOMPUTER 740 Family 740 Series Rev.1.00 Revision Date : Nov 26, 2004 Renesas Soluctions Corp. www.renesas.com Keep safety first

More information

DATA SHEET ZENER DIODES 1.0 W PLANAR TYPE 2-PIN SMALL POWER MINI MOLD. Parameter Symbol Ratings Unit Remarks

DATA SHEET ZENER DIODES 1.0 W PLANAR TYPE 2-PIN SMALL POWER MINI MOLD. Parameter Symbol Ratings Unit Remarks DATA SHEET ZENER DIODES RD2.0FS to RD20FS ZENER DIODES.0 W PLANAR TYPE 2-PIN SMALL POWER MINI MOLD DESCRIPTION Type RD2.0FS to RD20FS series are 2-pin small power mini mold package Zener diodes possessing

More information

M3H Group(2) Application Note 12-bit Analog to Digital Converter (ADC-A)

M3H Group(2) Application Note 12-bit Analog to Digital Converter (ADC-A) 12-bit Analog to Digital Converter (ADC-A) Outlines This application note is a erence material for developing products using the 12-bit analog to digital converter (ADC) function of M3H Group (2). This

More information

Old Company Name in Catalogs and Other Documents

Old Company Name in Catalogs and Other Documents To our customers, Old Company Name in Catalogs and Other Documents On April 1 st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took

More information

IrDA Infrared Communication Modules

IrDA Infrared Communication Modules IrDA Infrared Communication Modules CONTENTS IrDA Infrared Communication Module Selection Guide P.280 IrDA Infrared Communication Modules P.281 IrDA Infrared Communication Module Selection Guide Standard

More information

LAPIS Semiconductor Errata ML610Q400 Series

LAPIS Semiconductor Errata ML610Q400 Series LAPIS Semiconductor Errata ML610Q400 Series Issue date: 25 May, 2016 NOTES 1) The information contained herein is subject to change without notice. 2) Although LAPIS Semiconductor is continuously working

More information

38K2 Group User's Manual

38K2 Group User's Manual REJ9B338-2 8 User's Manual RENESAS 8-BIT SINGLE-CHIP MICROCOMPUTER 74 FAMILY / 38 SERIES All information contained in these materials, including products and product specifications, represents information

More information

Asynchronous Transfer of Data with Appended CRC Codes via an SCI Interface

Asynchronous Transfer of Data with Appended CRC Codes via an SCI Interface Introduction APPLICATION NOTE The SCI module and CRC calculator applied in the asynchronous transfer of four-byte data blocks. In transmission, a two-byte CRC is appended to every byte of transmitted data.

More information

Old Company Name in Catalogs and Other Documents

Old Company Name in Catalogs and Other Documents To our customers, Old Company Name in Catalogs and Other Documents On April 1 st,, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over

More information

M3H Group(1) Application Note. I 2 C Interface (I2C-B) MASTER/SLAVE

M3H Group(1) Application Note. I 2 C Interface (I2C-B) MASTER/SLAVE M3H Group(1) I 2 C Interface (I2C-B) MASTER/SLAVE Outlines This application note is a reference material for developing products using the Master/Slave function in I2C interface (I2C) functions of M3H

More information

Old Company Name in Catalogs and Other Documents

Old Company Name in Catalogs and Other Documents To our customers, Old Company Name in Catalogs and Other Documents On April 1 st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took

More information

Renesas E10A-USB Emulator

Renesas E10A-USB Emulator REJ06J0007-0100 Application Notes Renesas Single-Chip Microcomputer SuperH RISC engine Family SH/Tiny Series Rev.1.00 Feb. 15, 2007 Introduction Notes Renesas Technology Corp. (hereafter referred to as

More information