Opportunities and challenges in personalization of online hotel search

Size: px
Start display at page:

Download "Opportunities and challenges in personalization of online hotel search"

Transcription

1 Opportunities and challenges in personalization of online hotel search David Zibriczky Data Science & Analytics Lead, User Profiling

2 Introduction 2

3 Introduction About Mission: Helping the travelers to find their ideal hotel at the best price Main Product: Hotel Metasearch Aggregates hotels and advertisers Availability and price comparison User interface for hotel search Redirecting users to advertisers Company facts: 1.8M+ hotels 400+ advertisers (booking sites) 190 countries HQ in Düsseldorf, Germany 3

4 Introduction Hotel Metasearch vs. OTA Metasearch!= Online Travel Agency (OTA) Aggregator of OTAs Redirecting visitors to OTAs Price comparison No direct feedback about hotels Common Booking is the ultimate goal Traditional booking online booking Helps users in hotel search Source: 4

5 Introduction CPC Referral revenue model: CPC (Cost-per-click) CPC bidding per each hotel by the advertisers Features: Simple model to calculate revenue No influence on measurement by advertisers CPC ~ expected value after clicking Difficulties: Effect on CPC bidding takes time to measure Easy to cheat on short-term revenue Indirect measure of performance 5

6 Introduction Business Goals One of the main goals is to increase the revenue By increasing the following factors: CPC bidding (per hotel) Price of clicked hotels Number of clicks (bookings) Number of visitors Challenges: CPC vs. number of clicks click-boosters doesn t help Hotel price vs. number of bookings Short-term vs. long-term optimization Multi-criteria optimization Bouncers 6

7 Introduction User Value From user perspective: 1. Utility function 2. Effort to find the hotel Assumption: Increasing user value KPI improvement Goals: Maximize the utility of the hotel Bigger likelihood to book, higher CPC Better representation of value for price Increase in clicked price Minimize the effort for finding the hotel Better churn rate Increase the user experience Higher user retention 7

8 Introduction Personalization Personalization: Tailoring the hotel search process to individual preferences Goal: Adding value to a non-personalized solution usability, serendipity, decision support Techniques: Personalized recommendations User interface Improving search process Visualizing relevant features Personal campaigns, targeting Product: Personalization service that learns real-time and adapt to context 8

9 Potential Use Cases for Personalization 9

10 Use Cases Destinations 1. Function: Type/select a destination Goal of Personalization: 1. Best destination to travel 2. List of best cities/destinations to travel Challenges: User cold start Difficult to predict the next best destination One suggestion for use case #

11 Use Cases Search Suggestions Function: Autocomplete of search terms Goal of Personalization: Suggesting cities, POIs or keywords Challenges: User cold start Diversity of suggestions 11

12 Use Cases Hotel listing Function: List of hotels Goal of Personalization: Personalized sorting of hotels Matching the search criteria Challenges: Depends on the deals and CPC Positional bias Ranking method for any filtering Influence of context 12

13 Use Cases Advertisers Function: List of advertisers Goal of Personalization: 1. Best advertiser at View Deal button 2. Ranking all advertisers Challenges: Brand awareness Influence of CPC Price vs. brand? 13

14 Use Cases Images 1. Function: Images about the hotel Goal of Personalization: Image rec. 1. Top image 2. Images in details 2. Challenges: Labeling of images Diversity of topics Redundancy Positional bias 14

15 Use Cases Hotel listing on Map Function: Showing hotels on map Goal of Personalization: Most relevant hotels Visualization of relevance Challenges: Geospatial dependence Influence of POI Ranking is not trivial Number of hotels to show 15

16 Use Cases Explanation Function: Explanation of recommendations Goal of Personalization: Distance from a POI Amenities or other keywords Challenges: Trivial explanation doesn t add value Optimal number of explanations No feedback on that 16

17 Use Cases Search Criteria Function: Filter boxes Goal of Personalization: Search criteria suggestions Challenges: Personalization vs. default settings How to visualize suggestions? 6. 17

18 Common challenges in hotel industry 1. Episodic interactions (next travel, in-session modeling) 2. Unstable preference (seasonality, context, lack of domain knowledge) 3. Tracking (limited tracking, less registration, lack of feedback, cold start) 4. User Engagement (redirection, bouncers) 5. Price Sensitivity 6. Online booking vs. real world 18

19 19 How? A quick overview

20 How Data User interactions: Identification: cookie, members Actions: search criteria, hotel interactions, booking, navigation frontend/backend logging Hotel inventory: Static: metadata, amenities, images, ratings partner API, crawler Dynamic: availability, price, advertiser deals, CPC Other entities: destinations, POIs, filters Context: time, seasonality, device, platform, referrer, location, parameter box 20

21 How Application of ML Overview Classification: Visitor classification, churn, filter usage prediction (XGB, GBDT, NN, RF, SVM, LOGR) Regression: Price preference, expected LTV, value for price, CPC bidding (GBRT, RFR, SVR, LR) Clustering: User/hotel segmenting, discriminative features (K-Means, K-Medoid, DBSCAN) Association Rule Mining: Next best hotels, filters, destinations (Apriori) Feature Engineering: Image features (CNN), entity embedding (PCA, t-sne, MF) Natural Language Processing: Sentiment analysis, topic modeling (Word2vec, LDA) Ensemble learning: Combining multiple algorithms (boosting, stacking, linear comb.) 21

22 How Application of ML RecSys Segment-based popularity: Most popular destinations/hotels/filters in a specific user segment Case-based Reasoning: Actions of other users in the same/similar contexts Content-based Filtering: Similar hotels, most preferred hotel features Collaborative Filtering: K-Nearest Neighbors: Next best destinations, similar hotels, clustering (Item-KNN, User-KNN) Matrix Factorization: Personalized rec., user/hotel modeling, tensors (SGD, IALS, SVD, ) Deep Learning: Next best hotels or actions (RNN, GRU4Rec) Knowledge-based RS: Conversational recommenders, domain knowledge representation 22

23 How Evaluation Goal: Offline evaluation Goal: Online evaluation Reducing the cost of experiments Prototyping Evidence Good-enough candidates Techniques: Data Analysis and Insights Finding offline metrics Finding a Ground Truth Avoid over-optimization (offline!= online) Testing the feature in production KPI optimization Monitoring Accept/reject Techniques: Real-time manual testing A/B testing Surveys Parameter tuning 23

24 How Limitations/risks of Personalization 1. Data-driven solution (quality of the data) 2. User cold start 3. Misprediction 4. Self-reinforcement loop 5. Over-personalization 6. Cost of experiments 24

25 Thank You! Questions?

26 Appendix Abbreviations XGB GDT NN RF SVM LOGR GBRT RFR SVR LR K-Means K-Medoid DBSCAN PCA t-sne CNN MF Apriori Word2vec LDA Extreme Gradient Boosting Gradient Boosted Decision Trees Neural Network Random Forest Support Vector Machine Logistic Regression Gradient Boosted Regression Trees Random Forest Regressor Support Vector Regression Linear Regression K-Means Clustering K-Medoid Clustering Density-based spatial clustering of applications with noise Principal Component Analysis t-distributed Stochastic Neighbor Embedding Convolutional Neural Network Matrix Factorization Apriori algorithm Word2vec embedding Latent Dirichlet Allocation Item-KNN User-KNN SGD IALS SVD RNN GRU4Rec Item-based k-nearest-neighbor algorithm User-based k-nearest-neighbor algorithm Stochastic Gradient Descent Implicit Alternating Least Squares Singular Value Decomposition Recurrent neural network Recurrent neural network with Gated Recurrent Units for Recommender Systems 26

Deep Learning for Recommender Systems

Deep Learning for Recommender Systems join at Slido.com with #bigdata2018 Deep Learning for Recommender Systems Oliver Gindele @tinyoli oliver.gindele@datatonic.com Big Data Conference Vilnius 28.11.2018 Who is Oliver? + Head of Machine Learning

More information

The exam is closed book, closed notes except your one-page (two-sided) cheat sheet.

The exam is closed book, closed notes except your one-page (two-sided) cheat sheet. CS 189 Spring 2015 Introduction to Machine Learning Final You have 2 hours 50 minutes for the exam. The exam is closed book, closed notes except your one-page (two-sided) cheat sheet. No calculators or

More information

Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1

Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1 Preface to the Second Edition Preface to the First Edition vii xi 1 Introduction 1 2 Overview of Supervised Learning 9 2.1 Introduction... 9 2.2 Variable Types and Terminology... 9 2.3 Two Simple Approaches

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Sept 22, 2016 Course Information Website: http://www.stat.ucdavis.edu/~chohsieh/teaching/ ECS289G_Fall2016/main.html My office: Mathematical Sciences

More information

Part I: Data Mining Foundations

Part I: Data Mining Foundations Table of Contents 1. Introduction 1 1.1. What is the World Wide Web? 1 1.2. A Brief History of the Web and the Internet 2 1.3. Web Data Mining 4 1.3.1. What is Data Mining? 6 1.3.2. What is Web Mining?

More information

Machine Learning Techniques

Machine Learning Techniques Machine Learning Techniques ( 機器學習技法 ) Lecture 16: Finale Hsuan-Tien Lin ( 林軒田 ) htlin@csie.ntu.edu.tw Department of Computer Science & Information Engineering National Taiwan University ( 國立台灣大學資訊工程系

More information

Using Machine Learning to Optimize Storage Systems

Using Machine Learning to Optimize Storage Systems Using Machine Learning to Optimize Storage Systems Dr. Kiran Gunnam 1 Outline 1. Overview 2. Building Flash Models using Logistic Regression. 3. Storage Object classification 4. Storage Allocation recommendation

More information

Machine Learning. Chao Lan

Machine Learning. Chao Lan Machine Learning Chao Lan Machine Learning Prediction Models Regression Model - linear regression (least square, ridge regression, Lasso) Classification Model - naive Bayes, logistic regression, Gaussian

More information

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2016

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2016 CPSC 340: Machine Learning and Data Mining Principal Component Analysis Fall 2016 A2/Midterm: Admin Grades/solutions will be posted after class. Assignment 4: Posted, due November 14. Extra office hours:

More information

Recommendation Systems

Recommendation Systems Recommendation Systems CS 534: Machine Learning Slides adapted from Alex Smola, Jure Leskovec, Anand Rajaraman, Jeff Ullman, Lester Mackey, Dietmar Jannach, and Gerhard Friedrich Recommender Systems (RecSys)

More information

Using Machine Learning to Identify Security Issues in Open-Source Libraries. Asankhaya Sharma Yaqin Zhou SourceClear

Using Machine Learning to Identify Security Issues in Open-Source Libraries. Asankhaya Sharma Yaqin Zhou SourceClear Using Machine Learning to Identify Security Issues in Open-Source Libraries Asankhaya Sharma Yaqin Zhou SourceClear Outline - Overview of problem space Unidentified security issues How Machine Learning

More information

Tutorial on Machine Learning Tools

Tutorial on Machine Learning Tools Tutorial on Machine Learning Tools Yanbing Xue Milos Hauskrecht Why do we need these tools? Widely deployed classical models No need to code from scratch Easy-to-use GUI Outline Matlab Apps Weka 3 UI TensorFlow

More information

Machine Learning in Action

Machine Learning in Action Machine Learning in Action PETER HARRINGTON Ill MANNING Shelter Island brief contents PART l (~tj\ssification...,... 1 1 Machine learning basics 3 2 Classifying with k-nearest Neighbors 18 3 Splitting

More information

Introduction p. 1 What is the World Wide Web? p. 1 A Brief History of the Web and the Internet p. 2 Web Data Mining p. 4 What is Data Mining? p.

Introduction p. 1 What is the World Wide Web? p. 1 A Brief History of the Web and the Internet p. 2 Web Data Mining p. 4 What is Data Mining? p. Introduction p. 1 What is the World Wide Web? p. 1 A Brief History of the Web and the Internet p. 2 Web Data Mining p. 4 What is Data Mining? p. 6 What is Web Mining? p. 6 Summary of Chapters p. 8 How

More information

F-SECURE S UNIQUE CAPABILITIES IN DETECTION & RESPONSE

F-SECURE S UNIQUE CAPABILITIES IN DETECTION & RESPONSE TECHNOLOGY F-SECURE S UNIQUE CAPABILITIES IN DETECTION & RESPONSE Jyrki Tulokas, EVP, Cyber security products & services UNDERSTANDING THE THREAT LANDSCAPE Human orchestration NATION STATE ATTACKS Nation

More information

Overture Advertiser Workbook. Chapter 4: Tracking Your Results

Overture Advertiser Workbook. Chapter 4: Tracking Your Results Overture Advertiser Workbook Chapter 4: Tracking Your Results Tracking Your Results TRACKING YOUR RESULTS Tracking the performance of your keywords enables you to effectively analyze your results, adjust

More information

CS145: INTRODUCTION TO DATA MINING

CS145: INTRODUCTION TO DATA MINING CS145: INTRODUCTION TO DATA MINING Clustering Evaluation and Practical Issues Instructor: Yizhou Sun yzsun@cs.ucla.edu November 7, 2017 Learnt Clustering Methods Vector Data Set Data Sequence Data Text

More information

Data Science Bootcamp Curriculum. NYC Data Science Academy

Data Science Bootcamp Curriculum. NYC Data Science Academy Data Science Bootcamp Curriculum NYC Data Science Academy 100+ hours free, self-paced online course. Access to part-time in-person courses hosted at NYC campus Machine Learning with R and Python Foundations

More information

Beacon Catalog. Categories:

Beacon Catalog. Categories: Beacon Catalog Find the Data Beacons you need to build Custom Dashboards to answer your most pressing digital marketing questions, enable you to drill down for more detailed analysis and provide the data,

More information

Recommender Systems. Master in Computer Engineering Sapienza University of Rome. Carlos Castillo

Recommender Systems. Master in Computer Engineering Sapienza University of Rome. Carlos Castillo Recommender Systems Class Program University Semester Slides by Data Mining Master in Computer Engineering Sapienza University of Rome Fall 07 Carlos Castillo http://chato.cl/ Sources: Ricci, Rokach and

More information

KDD 10 Tutorial: Recommender Problems for Web Applications. Deepak Agarwal and Bee-Chung Chen Yahoo! Research

KDD 10 Tutorial: Recommender Problems for Web Applications. Deepak Agarwal and Bee-Chung Chen Yahoo! Research KDD 10 Tutorial: Recommender Problems for Web Applications Deepak Agarwal and Bee-Chung Chen Yahoo! Research Agenda Focus: Recommender problems for dynamic, time-sensitive applications Content Optimization

More information

Contents. Preface to the Second Edition

Contents. Preface to the Second Edition Preface to the Second Edition v 1 Introduction 1 1.1 What Is Data Mining?....................... 4 1.2 Motivating Challenges....................... 5 1.3 The Origins of Data Mining....................

More information

Mining Web Data. Lijun Zhang

Mining Web Data. Lijun Zhang Mining Web Data Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Outline Introduction Web Crawling and Resource Discovery Search Engine Indexing and Query Processing Ranking Algorithms Recommender Systems

More information

Bing Liu. Web Data Mining. Exploring Hyperlinks, Contents, and Usage Data. With 177 Figures. Springer

Bing Liu. Web Data Mining. Exploring Hyperlinks, Contents, and Usage Data. With 177 Figures. Springer Bing Liu Web Data Mining Exploring Hyperlinks, Contents, and Usage Data With 177 Figures Springer Table of Contents 1. Introduction 1 1.1. What is the World Wide Web? 1 1.2. A Brief History of the Web

More information

D B M G Data Base and Data Mining Group of Politecnico di Torino

D B M G Data Base and Data Mining Group of Politecnico di Torino DataBase and Data Mining Group of Data mining fundamentals Data Base and Data Mining Group of Data analysis Most companies own huge databases containing operational data textual documents experiment results

More information

Facial Expression Classification with Random Filters Feature Extraction

Facial Expression Classification with Random Filters Feature Extraction Facial Expression Classification with Random Filters Feature Extraction Mengye Ren Facial Monkey mren@cs.toronto.edu Zhi Hao Luo It s Me lzh@cs.toronto.edu I. ABSTRACT In our work, we attempted to tackle

More information

Applying Supervised Learning

Applying Supervised Learning Applying Supervised Learning When to Consider Supervised Learning A supervised learning algorithm takes a known set of input data (the training set) and known responses to the data (output), and trains

More information

Introduction to Data Science. Introduction to Data Science with Python. Python Basics: Basic Syntax, Data Structures. Python Concepts (Core)

Introduction to Data Science. Introduction to Data Science with Python. Python Basics: Basic Syntax, Data Structures. Python Concepts (Core) Introduction to Data Science What is Analytics and Data Science? Overview of Data Science and Analytics Why Analytics is is becoming popular now? Application of Analytics in business Analytics Vs Data

More information

MLlib and Distributing the " Singular Value Decomposition. Reza Zadeh

MLlib and Distributing the  Singular Value Decomposition. Reza Zadeh MLlib and Distributing the " Singular Value Decomposition Reza Zadeh Outline Example Invocations Benefits of Iterations Singular Value Decomposition All-pairs Similarity Computation MLlib + {Streaming,

More information

The Future of Intermediaries and the Consequential Ripple Effect

The Future of Intermediaries and the Consequential Ripple Effect The Future of Intermediaries and the Consequential Ripple Effect Presented by: Max Starkov President and CEO HeBS Digital Offices in: New York City, Las Vegas, Europe First, Hospitality & OTAs in Numbers

More information

Using Existing Numerical Libraries on Spark

Using Existing Numerical Libraries on Spark Using Existing Numerical Libraries on Spark Brian Spector Chicago Spark Users Meetup June 24 th, 2015 Experts in numerical algorithms and HPC services How to use existing libraries on Spark Call algorithm

More information

CPSC 340: Machine Learning and Data Mining. Multi-Dimensional Scaling Fall 2017

CPSC 340: Machine Learning and Data Mining. Multi-Dimensional Scaling Fall 2017 CPSC 340: Machine Learning and Data Mining Multi-Dimensional Scaling Fall 2017 Assignment 4: Admin 1 late day for tonight, 2 late days for Wednesday. Assignment 5: Due Monday of next week. Final: Details

More information

Intro to Analytics Learning Web Analytics

Intro to Analytics Learning Web Analytics Intro to Analytics 100 - Learning Web Analytics When you hear the word analytics, what does this mean to you? Analytics is the discovery, interpretation and communication of meaningful patterns in data.

More information

Predictive Analytics: Demystifying Current and Emerging Methodologies. Tom Kolde, FCAS, MAAA Linda Brobeck, FCAS, MAAA

Predictive Analytics: Demystifying Current and Emerging Methodologies. Tom Kolde, FCAS, MAAA Linda Brobeck, FCAS, MAAA Predictive Analytics: Demystifying Current and Emerging Methodologies Tom Kolde, FCAS, MAAA Linda Brobeck, FCAS, MAAA May 18, 2017 About the Presenters Tom Kolde, FCAS, MAAA Consulting Actuary Chicago,

More information

CS 229 Final Project - Using machine learning to enhance a collaborative filtering recommendation system for Yelp

CS 229 Final Project - Using machine learning to enhance a collaborative filtering recommendation system for Yelp CS 229 Final Project - Using machine learning to enhance a collaborative filtering recommendation system for Yelp Chris Guthrie Abstract In this paper I present my investigation of machine learning as

More information

ADVANCED ANALYTICS USING SAS ENTERPRISE MINER RENS FEENSTRA

ADVANCED ANALYTICS USING SAS ENTERPRISE MINER RENS FEENSTRA INSIGHTS@SAS: ADVANCED ANALYTICS USING SAS ENTERPRISE MINER RENS FEENSTRA AGENDA 09.00 09.15 Intro 09.15 10.30 Analytics using SAS Enterprise Guide Ellen Lokollo 10.45 12.00 Advanced Analytics using SAS

More information

Practical Methodology. Lecture slides for Chapter 11 of Deep Learning Ian Goodfellow

Practical Methodology. Lecture slides for Chapter 11 of Deep Learning  Ian Goodfellow Practical Methodology Lecture slides for Chapter 11 of Deep Learning www.deeplearningbook.org Ian Goodfellow 2016-09-26 What drives success in ML? Arcane knowledge of dozens of obscure algorithms? Mountains

More information

CSE 158 Lecture 8. Web Mining and Recommender Systems. Extensions of latent-factor models, (and more on the Netflix prize)

CSE 158 Lecture 8. Web Mining and Recommender Systems. Extensions of latent-factor models, (and more on the Netflix prize) CSE 158 Lecture 8 Web Mining and Recommender Systems Extensions of latent-factor models, (and more on the Netflix prize) Summary so far Recap 1. Measuring similarity between users/items for binary prediction

More information

Gradient Descent. Wed Sept 20th, James McInenrey Adapted from slides by Francisco J. R. Ruiz

Gradient Descent. Wed Sept 20th, James McInenrey Adapted from slides by Francisco J. R. Ruiz Gradient Descent Wed Sept 20th, 2017 James McInenrey Adapted from slides by Francisco J. R. Ruiz Housekeeping A few clarifications of and adjustments to the course schedule: No more breaks at the midpoint

More information

Machine Learning Techniques for Data Mining

Machine Learning Techniques for Data Mining Machine Learning Techniques for Data Mining Eibe Frank University of Waikato New Zealand 10/25/2000 1 PART VII Moving on: Engineering the input and output 10/25/2000 2 Applying a learner is not all Already

More information

CS5670: Computer Vision

CS5670: Computer Vision CS5670: Computer Vision Noah Snavely Lecture 33: Recognition Basics Slides from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/ Announcements Quiz moved to Tuesday Project 4

More information

Google Analytics. powerful simplicity, practical insight

Google Analytics. powerful simplicity, practical insight Google Analytics powerful simplicity, practical insight 1 Overview Google Analytics Improve your site and increase marketing ROI Free, hosted web analytics service View over 80+ reports online, for download,

More information

BUYER S GUIDE WEBSITE DEVELOPMENT

BUYER S GUIDE WEBSITE DEVELOPMENT BUYER S GUIDE WEBSITE DEVELOPMENT At Curzon we understand the importance of user focused design. EXECUTIVE SUMMARY This document is designed to provide prospective clients with a short guide to website

More information

Machine Learning in the Process Industry. Anders Hedlund Analytics Specialist

Machine Learning in the Process Industry. Anders Hedlund Analytics Specialist Machine Learning in the Process Industry Anders Hedlund Analytics Specialist anders@binordic.com Artificial Specific Intelligence Artificial General Intelligence Strong AI Consciousness MEDIA, NEWS, CELEBRITIES

More information

CS6375: Machine Learning Gautam Kunapuli. Mid-Term Review

CS6375: Machine Learning Gautam Kunapuli. Mid-Term Review Gautam Kunapuli Machine Learning Data is identically and independently distributed Goal is to learn a function that maps to Data is generated using an unknown function Learn a hypothesis that minimizes

More information

The exam is closed book, closed notes except your one-page (two-sided) cheat sheet.

The exam is closed book, closed notes except your one-page (two-sided) cheat sheet. CS 189 Spring 2015 Introduction to Machine Learning Final You have 2 hours 50 minutes for the exam. The exam is closed book, closed notes except your one-page (two-sided) cheat sheet. No calculators or

More information

Scaled Machine Learning at Matroid

Scaled Machine Learning at Matroid Scaled Machine Learning at Matroid Reza Zadeh @Reza_Zadeh http://reza-zadeh.com Machine Learning Pipeline Learning Algorithm Replicate model Data Trained Model Serve Model Repeat entire pipeline Scaling

More information

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor COSC160: Detection and Classification Jeremy Bolton, PhD Assistant Teaching Professor Outline I. Problem I. Strategies II. Features for training III. Using spatial information? IV. Reducing dimensionality

More information

Advanced Marketing Lab

Advanced Marketing Lab Advanced Marketing Lab The online tools for a performance e-marketing strategy Serena Pasqualetto serena.pasqualetto@unipd.it LESSON #1: AN OVERVIEW OF PERFORMANCE MARKETING About Serena Pasqualetto Serena

More information

Web Usage Mining. Overview Session 1. This material is inspired from the WWW 16 tutorial entitled Analyzing Sequential User Behavior on the Web

Web Usage Mining. Overview Session 1. This material is inspired from the WWW 16 tutorial entitled Analyzing Sequential User Behavior on the Web Web Usage Mining Overview Session 1 This material is inspired from the WWW 16 tutorial entitled Analyzing Sequential User Behavior on the Web 1 Outline 1. Introduction 2. Preprocessing 3. Analysis 2 Example

More information

Slides for Data Mining by I. H. Witten and E. Frank

Slides for Data Mining by I. H. Witten and E. Frank Slides for Data Mining by I. H. Witten and E. Frank 7 Engineering the input and output Attribute selection Scheme-independent, scheme-specific Attribute discretization Unsupervised, supervised, error-

More information

Event: PASS SQL Saturday - DC 2018 Presenter: Jon Tupitza, CTO Architect

Event: PASS SQL Saturday - DC 2018 Presenter: Jon Tupitza, CTO Architect Event: PASS SQL Saturday - DC 2018 Presenter: Jon Tupitza, CTO Architect BEOP.CTO.TP4 Owner: OCTO Revision: 0001 Approved by: JAT Effective: 08/30/2018 Buchanan & Edwards Proprietary: Printed copies of

More information

SUPERVISED LEARNING METHODS. Stanley Liang, PhD Candidate, Lassonde School of Engineering, York University Helix Science Engagement Programs 2018

SUPERVISED LEARNING METHODS. Stanley Liang, PhD Candidate, Lassonde School of Engineering, York University Helix Science Engagement Programs 2018 SUPERVISED LEARNING METHODS Stanley Liang, PhD Candidate, Lassonde School of Engineering, York University Helix Science Engagement Programs 2018 2 CHOICE OF ML You cannot know which algorithm will work

More information

ML 프로그래밍 ( 보충 ) Scikit-Learn

ML 프로그래밍 ( 보충 ) Scikit-Learn ML 프로그래밍 ( 보충 ) Scikit-Learn 2017.5 Scikit-Learn? 특징 a Python module integrating classic machine learning algorithms in the tightly-knit world of scientific Python packages (NumPy, SciPy, matplotlib).

More information

Why do we need graph processing?

Why do we need graph processing? Why do we need graph processing? Community detection: suggest followers? Determine what products people will like Count how many people are in different communities (polling?) Graphs are Everywhere Group

More information

CPSC 340: Machine Learning and Data Mining. Recommender Systems Fall 2017

CPSC 340: Machine Learning and Data Mining. Recommender Systems Fall 2017 CPSC 340: Machine Learning and Data Mining Recommender Systems Fall 2017 Assignment 4: Admin Due tonight, 1 late day for Monday, 2 late days for Wednesday. Assignment 5: Posted, due Monday of last week

More information

Unsupervised Learning

Unsupervised Learning Networks for Pattern Recognition, 2014 Networks for Single Linkage K-Means Soft DBSCAN PCA Networks for Kohonen Maps Linear Vector Quantization Networks for Problems/Approaches in Machine Learning Supervised

More information

Mining Web Data. Lijun Zhang

Mining Web Data. Lijun Zhang Mining Web Data Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Outline Introduction Web Crawling and Resource Discovery Search Engine Indexing and Query Processing Ranking Algorithms Recommender Systems

More information

Oracle Machine Learning Notebook

Oracle Machine Learning Notebook Oracle Machine Learning Notebook Included in Autonomous Data Warehouse Cloud Charlie Berger, MS Engineering, MBA Sr. Director Product Management, Machine Learning, AI and Cognitive Analytics charlie.berger@oracle.com

More information

On Classification: An Empirical Study of Existing Algorithms Based on Two Kaggle Competitions

On Classification: An Empirical Study of Existing Algorithms Based on Two Kaggle Competitions On Classification: An Empirical Study of Existing Algorithms Based on Two Kaggle Competitions CAMCOS Report Day December 9th, 2015 San Jose State University Project Theme: Classification The Kaggle Competition

More information

Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective. Kim Hazelwood Facebook AI Infrastructure

Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective. Kim Hazelwood Facebook AI Infrastructure Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective Kim Hazelwood Facebook AI Infrastructure Citation Count Re-Emergence of Machine Learning 3000 Gradient-Based Learning Applied

More information

CSE 258. Web Mining and Recommender Systems. Advanced Recommender Systems

CSE 258. Web Mining and Recommender Systems. Advanced Recommender Systems CSE 258 Web Mining and Recommender Systems Advanced Recommender Systems This week Methodological papers Bayesian Personalized Ranking Factorizing Personalized Markov Chains Personalized Ranking Metric

More information

6 TOOLS FOR A COMPLETE MARKETING WORKFLOW

6 TOOLS FOR A COMPLETE MARKETING WORKFLOW 6 S FOR A COMPLETE MARKETING WORKFLOW 01 6 S FOR A COMPLETE MARKETING WORKFLOW FROM ALEXA DIFFICULTY DIFFICULTY MATRIX OVERLAP 6 S FOR A COMPLETE MARKETING WORKFLOW 02 INTRODUCTION Marketers use countless

More information

Machine Learning Part 1

Machine Learning Part 1 Data Science Weekend Machine Learning Part 1 KMK Online Analytic Team Fajri Koto Data Scientist fajri.koto@kmklabs.com Machine Learning Part 1 Outline 1. Machine Learning at glance 2. Vector Representation

More information

MLI - An API for Distributed Machine Learning. Sarang Dev

MLI - An API for Distributed Machine Learning. Sarang Dev MLI - An API for Distributed Machine Learning Sarang Dev MLI - API Simplify the development of high-performance, scalable, distributed algorithms. Targets common ML problems related to data loading, feature

More information

The Importance of Tracking Internal Communications HOW ORGANIZATIONS BENEFIT FROM ANALYTICS

The Importance of Tracking Internal  Communications HOW ORGANIZATIONS BENEFIT FROM  ANALYTICS The Importance of Tracking Internal Email Communications HOW ORGANIZATIONS BENEFIT FROM EMAIL ANALYTICS Why is it important to measure internal emails in large companies? Although internal communicators

More information

Neural Networks. Single-layer neural network. CSE 446: Machine Learning Emily Fox University of Washington March 10, /10/2017

Neural Networks. Single-layer neural network. CSE 446: Machine Learning Emily Fox University of Washington March 10, /10/2017 3/0/207 Neural Networks Emily Fox University of Washington March 0, 207 Slides adapted from Ali Farhadi (via Carlos Guestrin and Luke Zettlemoyer) Single-layer neural network 3/0/207 Perceptron as a neural

More information

Domain Adaptation For Mobile Robot Navigation

Domain Adaptation For Mobile Robot Navigation Domain Adaptation For Mobile Robot Navigation David M. Bradley, J. Andrew Bagnell Robotics Institute Carnegie Mellon University Pittsburgh, 15217 dbradley, dbagnell@rec.ri.cmu.edu 1 Introduction An important

More information

Large-Scale Lasso and Elastic-Net Regularized Generalized Linear Models

Large-Scale Lasso and Elastic-Net Regularized Generalized Linear Models Large-Scale Lasso and Elastic-Net Regularized Generalized Linear Models DB Tsai Steven Hillion Outline Introduction Linear / Nonlinear Classification Feature Engineering - Polynomial Expansion Big-data

More information

Building a Formula For Success Why Online Sales Matter p. 1 First Things First p. 2 Internet Research Equals Internet Sales p.

Building a Formula For Success Why Online Sales Matter p. 1 First Things First p. 2 Internet Research Equals Internet Sales p. Building a Formula For Success Why Online Sales Matter p. 1 First Things First p. 2 Internet Research Equals Internet Sales p. 2 Advantages of Internet Marketing p. 3 The Bird's Eye View p. 4 Standard

More information

Table Of Contents: xix Foreword to Second Edition

Table Of Contents: xix Foreword to Second Edition Data Mining : Concepts and Techniques Table Of Contents: Foreword xix Foreword to Second Edition xxi Preface xxiii Acknowledgments xxxi About the Authors xxxv Chapter 1 Introduction 1 (38) 1.1 Why Data

More information

TURN DATA INTO ACTIONABLE INSIGHTS. Google Analytics Workshop

TURN DATA INTO ACTIONABLE INSIGHTS. Google Analytics Workshop TURN DATA INTO ACTIONABLE INSIGHTS Google Analytics Workshop The Value of Analytics Google Analytics is more than just numbers and stats. It tells the story of how people are interacting with your brand

More information

Code Mania Artificial Intelligence: a. Module - 1: Introduction to Artificial intelligence and Python:

Code Mania Artificial Intelligence: a. Module - 1: Introduction to Artificial intelligence and Python: Code Mania 2019 Artificial Intelligence: a. Module - 1: Introduction to Artificial intelligence and Python: 1. Introduction to Artificial Intelligence 2. Introduction to python programming and Environment

More information

CURZON PR BUYER S GUIDE WEBSITE DEVELOPMENT

CURZON PR BUYER S GUIDE WEBSITE DEVELOPMENT CURZON PR BUYER S GUIDE WEBSITE DEVELOPMENT Website Development WHAT IS WEBSITE DEVELOPMENT? This is the development of a website for the Internet (World Wide Web) Website development can range from developing

More information

Using Numerical Libraries on Spark

Using Numerical Libraries on Spark Using Numerical Libraries on Spark Brian Spector London Spark Users Meetup August 18 th, 2015 Experts in numerical algorithms and HPC services How to use existing libraries on Spark Call algorithm with

More information

Reddit Recommendation System Daniel Poon, Yu Wu, David (Qifan) Zhang CS229, Stanford University December 11 th, 2011

Reddit Recommendation System Daniel Poon, Yu Wu, David (Qifan) Zhang CS229, Stanford University December 11 th, 2011 Reddit Recommendation System Daniel Poon, Yu Wu, David (Qifan) Zhang CS229, Stanford University December 11 th, 2011 1. Introduction Reddit is one of the most popular online social news websites with millions

More information

Capital Markets Seminar Hendrik Klindworth, Founder & CEO

Capital Markets Seminar Hendrik Klindworth, Founder & CEO Capital Markets Seminar 2017 Hendrik Klindworth, Founder & CEO COMPANY SNAPSHOT Founded 2007 In Germany 420 employees in two offices Located in Hamburg & Düsseldorf 200m registered users >30 language versions

More information

SCIENCE. An Introduction to Python Brief History Why Python Where to use

SCIENCE. An Introduction to Python Brief History Why Python Where to use DATA SCIENCE Python is a general-purpose interpreted, interactive, object-oriented and high-level programming language. Currently Python is the most popular Language in IT. Python adopted as a language

More information

Practical Machine Learning Agenda

Practical Machine Learning Agenda Practical Machine Learning Agenda Starting From Log Management Moving To Machine Learning PunchPlatform team Thales Challenges Thanks 1 Starting From Log Management 2 Starting From Log Management Data

More information

Marketing COURSE NUMBER: 22:630:679 COURSE TITLE: Web Analytics with Real World Applications

Marketing COURSE NUMBER: 22:630:679 COURSE TITLE: Web Analytics with Real World Applications Marketing COURSE NUMBER: 22:630:679 COURSE TITLE: Web Analytics with Real World Applications COURSE DESCRIPTION To survive and excel in today s economy, companies need to focus on spending their marketing

More information

CPSC 340: Machine Learning and Data Mining. Deep Learning Fall 2018

CPSC 340: Machine Learning and Data Mining. Deep Learning Fall 2018 CPSC 340: Machine Learning and Data Mining Deep Learning Fall 2018 Last Time: Multi-Dimensional Scaling Multi-dimensional scaling (MDS): Non-parametric visualization: directly optimize the z i locations.

More information

Contents Machine Learning concepts 4 Learning Algorithm 4 Predictive Model (Model) 4 Model, Classification 4 Model, Regression 4 Representation

Contents Machine Learning concepts 4 Learning Algorithm 4 Predictive Model (Model) 4 Model, Classification 4 Model, Regression 4 Representation Contents Machine Learning concepts 4 Learning Algorithm 4 Predictive Model (Model) 4 Model, Classification 4 Model, Regression 4 Representation Learning 4 Supervised Learning 4 Unsupervised Learning 4

More information

Machine Learning with Python

Machine Learning with Python DEVNET-2163 Machine Learning with Python Dmitry Figol, SE WW Enterprise Sales @dmfigol Cisco Spark How Questions? Use Cisco Spark to communicate with the speaker after the session 1. Find this session

More information

11. How many users are currently using the Beta today? How many do you expect to sign up over the next 3 months?

11. How many users are currently using the Beta today? How many do you expect to sign up over the next 3 months? Microsoft adcenter Analytics Beta Frequently Asked Questions (FAQs) Understand audience engagement from click to conversion. Microsoft adcenter Analytics Beta is a free Web analytics application that helps

More information

Machine Learning Lecture 3

Machine Learning Lecture 3 Machine Learning Lecture 3 Probability Density Estimation II 19.10.2017 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Announcements Exam dates We re in the process

More information

Business Cases for Machine Learning

Business Cases for Machine Learning Business Cases for Machine Learning Matching Predictive Algorithms to Usage Overview Outline basic problem Predictive modeling templates Discussion of common business problems What algorithms fit? Factors

More information

Table of Contents. What Really is a Hidden Unit? Visualizing Feed-Forward NNs. Visualizing Convolutional NNs. Visualizing Recurrent NNs

Table of Contents. What Really is a Hidden Unit? Visualizing Feed-Forward NNs. Visualizing Convolutional NNs. Visualizing Recurrent NNs Table of Contents What Really is a Hidden Unit? Visualizing Feed-Forward NNs Visualizing Convolutional NNs Visualizing Recurrent NNs Visualizing Attention Visualizing High Dimensional Data What do visualizations

More information

Matrix Computations and " Neural Networks in Spark

Matrix Computations and  Neural Networks in Spark Matrix Computations and " Neural Networks in Spark Reza Zadeh Paper: http://arxiv.org/abs/1509.02256 Joint work with many folks on paper. @Reza_Zadeh http://reza-zadeh.com Training Neural Networks Datasets

More information

Predicting Computing Prices Dynamically Using Machine Learning

Predicting Computing Prices Dynamically Using Machine Learning Technical Disclosure Commons Defensive Publications Series December 07, 2017 Predicting Computing Prices Dynamically Using Machine Learning Thomas Price Follow this and additional works at: http://www.tdcommons.org/dpubs_series

More information

Lecture 27: Review. Reading: All chapters in ISLR. STATS 202: Data mining and analysis. December 6, 2017

Lecture 27: Review. Reading: All chapters in ISLR. STATS 202: Data mining and analysis. December 6, 2017 Lecture 27: Review Reading: All chapters in ISLR. STATS 202: Data mining and analysis December 6, 2017 1 / 16 Final exam: Announcements Tuesday, December 12, 8:30-11:30 am, in the following rooms: Last

More information

The exam is closed book, closed notes except your one-page cheat sheet.

The exam is closed book, closed notes except your one-page cheat sheet. CS 189 Fall 2015 Introduction to Machine Learning Final Please do not turn over the page before you are instructed to do so. You have 2 hours and 50 minutes. Please write your initials on the top-right

More information

Measurement and evaluation: Web analytics and data mining. MGMT 230 Week 10

Measurement and evaluation: Web analytics and data mining. MGMT 230 Week 10 Measurement and evaluation: Web analytics and data mining MGMT 230 Week 10 After today s class you will be able to: Explain the types of information routinely gathered by web servers Understand how analytics

More information

Digital Audience Analysis: Understanding Online Car Shopping Behavior & Sources of Traffic to Dealer Websites

Digital Audience Analysis: Understanding Online Car Shopping Behavior & Sources of Traffic to Dealer Websites October 2012 Digital Audience Analysis: Understanding Online Car Shopping Behavior & Sources of Traffic to Dealer Websites The Internet has rapidly equipped shoppers with more tools, resources, and overall

More information

Exploiting the OpenPOWER Platform for Big Data Analytics and Cognitive. Rajesh Bordawekar and Ruchir Puri IBM T. J. Watson Research Center

Exploiting the OpenPOWER Platform for Big Data Analytics and Cognitive. Rajesh Bordawekar and Ruchir Puri IBM T. J. Watson Research Center Exploiting the OpenPOWER Platform for Big Data Analytics and Cognitive Rajesh Bordawekar and Ruchir Puri IBM T. J. Watson Research Center 3/17/2015 2014 IBM Corporation Outline IBM OpenPower Platform Accelerating

More information

NMLRG #4 meeting in Berlin. Mobile network state characterization and prediction. P.Demestichas (1), S. Vassaki (2,3), A.Georgakopoulos (2,3)

NMLRG #4 meeting in Berlin. Mobile network state characterization and prediction. P.Demestichas (1), S. Vassaki (2,3), A.Georgakopoulos (2,3) NMLRG #4 meeting in Berlin Mobile network state characterization and prediction P.Demestichas (1), S. Vassaki (2,3), A.Georgakopoulos (2,3) (1)University of Piraeus (2)WINGS ICT Solutions, www.wings-ict-solutions.eu/

More information

on learned visual embedding patrick pérez Allegro Workshop Inria Rhônes-Alpes 22 July 2015

on learned visual embedding patrick pérez Allegro Workshop Inria Rhônes-Alpes 22 July 2015 on learned visual embedding patrick pérez Allegro Workshop Inria Rhônes-Alpes 22 July 2015 Vector visual representation Fixed-size image representation High-dim (100 100,000) Generic, unsupervised: BoW,

More information

Enterprise Miner Software: Changes and Enhancements, Release 4.1

Enterprise Miner Software: Changes and Enhancements, Release 4.1 Enterprise Miner Software: Changes and Enhancements, Release 4.1 The correct bibliographic citation for this manual is as follows: SAS Institute Inc., Enterprise Miner TM Software: Changes and Enhancements,

More information

CAMCOS Report Day. December 9 th, 2015 San Jose State University Project Theme: Classification

CAMCOS Report Day. December 9 th, 2015 San Jose State University Project Theme: Classification CAMCOS Report Day December 9 th, 2015 San Jose State University Project Theme: Classification On Classification: An Empirical Study of Existing Algorithms based on two Kaggle Competitions Team 1 Team 2

More information

Spice UK. Susan Hallam. Susan Hallam Page 1. Spice UK. Agenda for Today

Spice UK. Susan Hallam. Susan Hallam Page 1. Spice UK. Agenda for Today UK UK www.shcl.co.uk susan@shcl.co.uk Agenda for Today Getting Found in Google Social Media Marketing Adwords Pay Per Click Advertising Promotion Techniques Google Analytics susan@shcl.co.uk Page 1 UK

More information

Establishing Virtual Private Network Bandwidth Requirement at the University of Wisconsin Foundation

Establishing Virtual Private Network Bandwidth Requirement at the University of Wisconsin Foundation Establishing Virtual Private Network Bandwidth Requirement at the University of Wisconsin Foundation by Joe Madden In conjunction with ECE 39 Introduction to Artificial Neural Networks and Fuzzy Systems

More information