University of Groningen

Similar documents
Reproducibility of measurements in tablet-assisted, PC-aided, and manual cephalometric analysis

Three possible approaches may be used to

Anthropometric Investigation of Head Measurements for Indian Adults

Citation for published version (APA): Jorritsma, W. (2016). Human-computer interaction in radiology [Groningen]: Rijksuniversiteit Groningen

Available online at ScienceDirect. Procedia Computer Science 37 (2014 )

Fully automatic cephalometric evaluation using Random Forest regression-voting

Shadow casting. What is the problem? Cone Beam Computed Tomography THE OBJECTIVES OF DIAGNOSTIC IMAGING IDEAL DIAGNOSTIC IMAGING STUDY LIMITATIONS

Published in: 13TH EUROPEAN CONFERENCE ON SOFTWARE MAINTENANCE AND REENGINEERING: CSMR 2009, PROCEEDINGS

Dolphin 3D Imaging 11.7 beta

Automatic Cephalometric Analysis

Computerized Cephalometric Line Tracing Technique on X-ray Images


The Quantification of Volumetric Asymmetry by Dynamic Surface Topography. Thomas Shannon Oxford Brookes University Oxford, U.K.

THE APPLICATION OF THE 3D SURFACE SCANNING IN THE FACIAL FEATURES ANALYSIS 1. INTRODUCTION

Profound understanding of anatomy

Geometric approximation of curves and singularities of secant maps Ghosh, Sunayana

Assessing the Skeletal Age From a Hand Radiograph: Automating the Tanner-Whitehouse Method

PH-03: Clinical Photography Production Checklist With The Sony Cybershot T-9 Digital Camera

17. SEISMIC ANALYSIS MODELING TO SATISFY BUILDING CODES

X-ray Based Craniofacial Visualization and Surgery Simulation

Release Notes for FACAD, version 3.9.2

3 Graphical Displays of Data

Planmeca ProMax 3D Max CBCT unit

PLANMECA PROMAX 3D MID CBCT UNIT

Simultaneous surface texture classification and illumination tilt angle prediction

Planmeca ProMax 3D s CBCT unit

Information technology Biometric data interchange formats Part 5: Face image data

Pathology Hinting as the Combination of Automatic Segmentation with a Statistical Shape Model

Anatomic Growth Modelling of Cleft Palate Shape. S.K. Chua*, S.H. Ong*, K.W.C. Foong**

Opinion 02/2012 on facial recognition in online and mobile services

ANNUAL REPORT OF HAIL STUDIES NEIL G, TOWERY AND RAND I OLSON. Report of Research Conducted. 15 May May For. The Country Companies

Human craniofacial patterns were first analyzed

A comparative study of manual vs. computerized cephalometric analysis

One Machine... Mac OS Compatible! Multiple Modalities. ProMax 3D & 3D s

HIGH-SPEED THEE-DIMENSIONAL TOMOGRAPHIC IMAGING OF FRAGMENTS AND PRECISE STATISTICS FROM AN AUTOMATED ANALYSIS

3 Graphical Displays of Data

Image Acquisition Systems

DIRECT RADIOGRAPHY. flexible. Delivering. imaging excellence. DX-D Direct Radiography from Agfa HealthCare

University of Groningen. Towards Variable Service Compositions Using VxBPEL Sun, Chang-ai; Aiello, Marco

Maximum usability. Electronic capture request. Digitally signed approval. X-ray exposure. Image evaluation. 2D imaging. Digitally signed approval

The Vision To Advance Your Quality Of Care

True Advancements for Longitudinal Weld Pipe Inspection in PA

Wonsup Lee 1, 2, Baekhee Lee 2, Sungho Kim 2, Hayoung Jung 2, Ilguen Bok 3, Chulwoo Kim 3, Ochae Kwon 3, Teukgyu Choi 4, and Heecheon You 2

Quality Checking an fmri Group Result (art_groupcheck)

REAL-TIME ADAPTIVITY IN HEAD-AND-NECK AND LUNG CANCER RADIOTHERAPY IN A GPU ENVIRONMENT

A Mental Cutting Test on Female Students Using a Stereographic System

Themes in the Texas CCRS - Mathematics

SPSS INSTRUCTION CHAPTER 9

Pathology Hinting as the Combination of Automatic Segmentation with a Statistical Shape Model

OPTIMISATION OF PIN FIN HEAT SINK USING TAGUCHI METHOD

Citation for published version (APA): Kleefsman, K. M. T. (2005). Water impact loading on offshore structures. - A numerical study s.n.

AC9 A*C 2 : '/( 0/(1 (/2 3/4 / $ /" /7 $/ 68#/L $/ A/ 6(7 1. Downloaded from jida.ir at 21: on Friday March 22nd 2019

8/2/2016. Measures the degradation/distortion of the acquired image (relative to an ideal image) using a quantitative figure-of-merit

Extension of the expanded Nystagmus Acuity Function to Vertical and Multiplanar Data

icatvision Quick Reference

Advances in Forensic Anthropology

Release Notes for FACAD, version

3D head anthropometric analysis

Release Notes for FACAD, version version A (may 2010)

Maximizing Statistical Interactions Part II: Database Issues Provided by: The Biostatistics Collaboration Center (BCC) at Northwestern University

Improved Centroid Peak Detection and Mass Accuracy using a Novel, Fast Data Reconstruction Method

The results section of a clinicaltrials.gov file is divided into discrete parts, each of which includes nested series of data entry screens.

By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

How to Measure Wedge. Purpose. Introduction. Tools Needed

Optimization of CT Simulation Imaging. Ingrid Reiser Dept. of Radiology The University of Chicago

Position accuracy analysis of the stereotactic reference defined by the CBCT on Leksell Gamma Knife Icon

Mirrored LH Histograms for the Visualization of Material Boundaries

A novel 3D torso image reconstruction procedure using a pair of digital stereo back images

Test designs for evaluating the effectiveness of mail packs Received: 30th November, 2001

Week 7 Picturing Network. Vahe and Bethany

Using surface markings to enhance accuracy and stability of object perception in graphic displays

Detection of shape outliers, with an application to complete unilateral cleft lip and palate in humans

Eyes extraction from facial images using edge density

Edge Detection for Dental X-ray Image Segmentation using Neural Network approach

Tiops2005 user guide. Occlusograms from digital and analog pictures can be fitted to the cephalometric tracings.

UNIVERSITY OF SOUTHAMPTON

Ohio Tutorials are designed specifically for the Ohio Learning Standards to prepare students for the Ohio State Tests and end-ofcourse

Citation for published version (APA): Zoethout, K. (2006). Self-organising processes of task allocation: a multi-agent simulation study s.n.

Spot Analyzer TiVi80 User Manual User Manual 3.2 Version 3.2 October 2013

Working with Health IT Systems is available under a Creative Commons Attribution-NonCommercial- ShareAlike 3.0 Unported license.

DUAL energy X-ray radiography [1] can be used to separate

VXvue User Manual (For Human Use)

Models for Planning and Simulation in Computer Assisted Orthognatic Surgery

Motion artifact detection in four-dimensional computed tomography images

Applying Synthetic Images to Learning Grasping Orientation from Single Monocular Images

Comparison of observer reliability of threedimensional cephalometric landmark identification on subject images from Galileos and i-cat CBCT.

Visualisation : Lecture 1. So what is visualisation? Visualisation

Computer-Aided Diagnosis in Abdominal and Cardiac Radiology Using Neural Networks

Averages and Variation

A METHOD TO PREDICT ACCURACY OF LEAST SQUARES SURFACE MATCHING FOR AIRBORNE LASER SCANNING DATA SETS

GE Healthcare. Vivid 7 Dimension 08 Cardiovascular ultrasound system

Week 2: Frequency distributions

A Hybrid Method for Haemorrhage Segmentation in Trauma Brain CT

Automatic Landmark Detection in Cephalometry Using a Modified Active Shape Model with Sub Image Matching

4. Basic Mapping Techniques

A new method for improved standardisation in three-dimensional computed tomography cephalometry

ClinicalExpress Operator s Guide. version 6.1 for general radiography and mammography

BIOSTATISTICS LABORATORY PART 1: INTRODUCTION TO DATA ANALYIS WITH STATA: EXPLORING AND SUMMARIZING DATA

A R T A - A P P L I C A T I O N N O T E

Sage: Symmetry and Asymmetry in Geometric Data Version 1.21 (compiled 03/1114)

Transcription:

University of Groningen A comparison of the reproducibility of manual tracing and on-screen digitization for cephalometric profile variables Dvortsin, D. P.; Sandham, John; Pruim, G. J.; Dijkstra, Pieter U. Published in: European Journal of Orthodontics DOI: 10.1093/ejo/cjn041 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2008 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Dvortsin, D. P., Sandham, J., Pruim, G. J., & Dijkstra, P. U. (2008). A comparison of the reproducibility of manual tracing and on-screen digitization for cephalometric profile variables. European Journal of Orthodontics, 30(6), 586-591. DOI: 10.1093/ejo/cjn041 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 11-11-2018

European Journal of Orthodontics 30 (2008) 586 591 doi:10.1093/ejo/cjn041 Advance Access publication 21 August 2008 The Author 2008. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oxfordjournals.org. A comparison of the reproducibility of manual tracing and onscreen digitization for cephalometric profile variables D. P. Dvortsin, A. Sandham, G. J. Pruim and P. U. Dijkstra Department of Orthodontics, University Medical Center Groningen, The Netherlands SUMMARY The aim of this investigation was to analyse and compare the reproducibility of manual cephalometric tracings with on-screen digitization using a soft tissue analysis. A random sample of 20 lateral cephalometric radiographs, in the natural head posture, was selected. On-screen digitization using Viewbox 3.1.1.9 cephalometric software and manual tracing on a 1:1 printout of the image was carried out twice in different s 1 week apart. Differences were analysed using a repeated measurement analysis of variance with method,, and method interaction as explaining variables. The differences were expressed as an absolute percentage of the overall mean. The findings of the present study indicate that the two measurement methods differ significantly for 11 variables ( P = 0.001 to P = 0.042). The area around stomion was the least reproducible. Except for s n s unt, nasal protrusion, with the manual technique, all mean differences between s and between methods were less than 1 degree or 1 mm and were, on-screen, smaller for 13 variables compared with those traced manually. Absolute percentage differences of the overall mean were smaller for seven variables with the digital technique and three variables in the manual technique, while four manual variables and one on-screen variable exceeded 2 per cent of the overall mean. Although small significant differences were found, the clinical relevance remains questionable. Introduction Standardized lateral cephalometric radiographs ( Broadbent, 1931 ) are widely used as a diagnostic and clinical tool in orthodontics. The radiographic image shows not only the craniofacial and dental structures but also the soft tissue profile. This profile is important in treatment planning and evaluation because of its direct relationship with facial aesthetics. Soft tissue changes, as a result of treatment and growth, may be small in magnitude. It is therefore relevant to understand the errors which exist in the assessment of the soft tissue profile and to identify the most accurate method of analysis. Determination and interpretation of the various types of errors is relevant in cephalometric studies to ensure correct conclusions are drawn ( Houston, 1983 ; Kamoen and Dermaut, 2001 ; Schulze et al., 2002 ). Two types of traits are important in investigations determining errors in measurement: reproducibility which is the ability to produce similar or identical measurement results when measurements are repeated over time, and validity which is the ability to produce measurements which are identical to the actual values of the construct to be measured. The development of computer software for direct digital imaging and analysis of the soft tissue profile has brought new possibilities which enable manipulation of image quality for greater clarity together with automatic assessment of geometric forms and contrast edges. Few studies have been carried out to compare the measurement errors, using computer software ( Eppley and Sadove, 1991 ; Chen et al., 2000 ; Kazandjian et al., 2006 ). Comparison of conventional cephalograms and digital images, recorded simultaneously, shows more reproducible measurements for the digital images due to the better soft tissue visualization ( Eppley and Sadove, 1991 ). In turn, enhancement for on-screen quality has been found to improve the on-screen visibility of the soft tissues ( Oka and Trussell, 1978 ). Without image enhancement, reproducibility of landmark identification was found to be similar with manually traced radiographs, but significantly worse on images of poorer quality ( Macrì and Wenzel, 1993 ; Nimkarn and Miles, 1995 ). However, these images had not been acquired simultaneously, which might introduce bias because of quality differences between scanning and printing of the original. Regarding reproducibility of cephalometric variables in conventional (manual) tracings and digitally traced images, some authors emphasize the practical advantages of onscreen image enhancement because options are available to manipulate contrast, grey scale, and accentuate the edges of structures ( Oka and Trussell, 1978 ; Forsyth et al., 1996 ). However, poorer reproducibility for on-screen images was found compared with cephalometric films using several hard tissue landmarks ( Geelen et al., 1998 ). In contrast, Hagemann et al. (2000) found digitally traced images to have a higher reproducibility compared with manual tracings, which was determined by comparison of the means between two tracing s within each technique. Other researchers have concluded that image quality and landmark variation have a greater influence on validity than tracing

CEPHALOMETRIC PROFILE ANALYSIS technique ( Chen et al., 2000 ; Ongkosuwito et al., 2002 ). However, it is claimed that the reproducibility of landmark identification and the validity of the digitization method are equally important in all cephalometric studies ( Cooke and Wei, 1991 ; Doll et al., 2001 ). The aim of the present investigation was to compare the reproducibility of cephalometric soft tissue measurements, using on-screen digitization with image enhancement, and manual tracing. Materials and methods Lateral cephalometric images of patients recorded in a standardized head posture ( Solow and Tallgren, 1971 ) ( n = 20, 12 males, 8 females; mean age 12 years, standard deviation = 0.33) were selected at random from the digital archive of the University Medical Center Groningen. An alphabetical list of patients was scrutinized with inclusion criteria based on a skeletal Class I dental base relationship and availability of a complete radiographic image of the soft tissue profile. Every 10th patient who satisfied these guidelines was included. Standardized head posture cephalometric radiographs had been obtained by instructing the standing subject to relax and look into a distant mirror during exposure of the radiograph. No rigid fixation of the head took place, but light support from loose ear rods of the X-ray machine ensured there was no lateral rotation of the head. The radiographic images had been acquired digitally (ProMax, DiMax2 Digital Cephalometric Unit, Planmeca, Helsinki, Finland) with a resolution quality of 2272 pixels width and 2045 pixels height at a 24 bit depth. The 20 images were then printed out on high-quality paper (to avoid absorption spreading), at a scale of 1:1. Using acetate tracing paper and a 2H pencil, the radiographs were traced in daylight using the soft tissue analysis based on that proposed by Sarnäs and Solow (1980). This analysis was selected because it provides a detailed linear and angular dimensional analysis of the facial profile, which includes the lips, nose, and overall profile angle. A second tracing of the 20 radiographs was carried out 1 week later by the same clinician (DPD). The on-screen images were digitized and analysed according to the profile analysis ( Figure 1 ), using Viewbox 3.1.1.9 software (dhal, Kifissia, Greece), developed for handling digital cephalometric data. To assist point placement, where necessary, the images were zoomed, enhanced for contrast, and adapted for auto-grey levels. Point placement was then carried out using an on-screen cursor. Several points were located by novel computeraided techniques, e.g. geometric calculation of sella after digital contouring of sella turcica, visualization of the deepest points of curves, tangent lines, and contrast edge enhancement. Coordinate measurements were recorded for the defined soft tissue profile points ( Figure 1 ), and linear and angular 587 values were calculated from a variable definition file. The second digitizing was carried out 1 week later. Statistical analysis Data were analysed using the Statistical Package for Social Sciences version 12.0 for Windows (SPSS Inc., Chicago, Illinois, USA). Data were checked visually for normal distribution using normal probability plots. A repeated measure analysis of variance (ANOVA) was performed to analyse the influence of measurement conditions on measurement results: it also included tests for sphericity. Measurement conditions in this study were method (on-screen digitization and paper tracings) and s (first and second) for each method. The overall mean value for each variable was also calculated, which was the average of the four measurements. The difference between the s for both techniques and the overall mean was then expressed as an absolute percentage of the overall mean value per variable. Results The data were normally distributed and no violations in sphericity were found. For both the linear and angular variables, mean values with their standard deviations for the two s per method and the P values of the ANOVA analysis are presented in together with the differences between the s per method and their absolute percentage of the overall mean. When traced on-screen, 13 variables showed smaller mean differences between the s for each method, and for four variables, this value was smaller when traced by hand. The factor method was significant for 11 of the 17 variables and approached significance for one variable, sto (i) to ML ( P = 0.059). The factor was significant for seven of the 17 variables and approached significance for ss s n s sms and NFL/NCL ( P = 0.085 and P = 0.078, respectively). The interaction term method was significant for two variables, sto (i) to ML and sto (s) to OLs, and it approached significance for three variables prn to n s ss s (P = 0.070), s n s unt (P = 0.082), and NFL/NCL ( P = 0.067). Absolute percentage errors of the overall mean are summarized in Figure 1. These errors ranged from 0.01 to 2.16 per cent except for two obvious outliers, ls to NCL and li to NCL, which were not included due to the scale of the y -axis. For the remaining 15 variables, 12 showed smaller percentual errors for on-screen tracings and three errors were smaller for the manual tracing technique. Discussion In this study, the errors in on-screen digitization were compared with those in manual tracings at various levels.

588 Figure 1 Soft tissue points ct: chin tangent point. Lowest point on the NCL line; ft: frontal tangent point. Upper tangent point of NFL line; li: labrale inferius. Most prominent point on prolabium of the lower lip; ls: labrale superius. The most prominent point on the prolabium of the upper lip; lnt: lower nasal tangent point; n s : soft tissue nasion; pg s : soft tissue pogonion. The soft tissue point overlying pgn; prn: pronasale. The most prominent point on the apex of the nose; sn: subnasale. The deepest point of the nasolabial curvature; sm s : soft tissue supramentale. The deepest point of the mentolabial sulcus; ss s : soft tissue subspinale. The deepest point on the upper lip overlying ss; sto: stomion. The deepest point in the rima oris; unt: upper nasal tangent point. Reference planes NCL: nosechin line; NFL: nose-frontal line; OL s : upper occlusal plane; ML: tangent of lower border of mandible from gnathion. Linear variables height of the nose (n s sn), length of nose (n s prn), nasal prominence (prn to n s ss s ), upper lip height (sto (s) to NL), depth of nasolabial curvature (sn to lnt ls), upper lip prominence (ls to NCL), lower lip height (sto (i) to ML), depth of mental fold (sm s to li pgs ), lower lip prominence (li to NCL), upper lip contact position (sto (s) to OLs ), lower lip contact position (sto (i) to OL s ). Angular variables nasal protrusion (s ns unt), upper lip protrusion (s n s ss s ), lower lip protrusion (s n s sm s ), sagittal soft tissue relationship (ss s ns sms ), soft tissue chin protrusion (s n s pg s ), profile form (NFL/NCL). The mean differences between s and methods were, except for s n s unt in the manual technique, all less than 1 degree or 1 mm, which is in broad agreement with previous studies. Santoro et al. (2006) found the same rates using a sandwich technique for detailing an intracranial cephalometric analysis with both techniques. A mean difference of 1 mm for linear variables between s using the digital technique and 1.09 mm in the conventional technique were also found by Hagemann et al. (2000). This is also in the line with the results of Chen et al. (2000), who compared 10 scanned hardcopies with their originals using ANOVA and found differences of up to 1 mm between methods. D. P. DVORTSIN ET AL. Reproducibility still remains controversial as Geelen et al. (1998) found no significant differences for direct digital versus scanned or printed manual tracings of 20 radiographs. The reproducibility in that study for the digital modalities was slightly lower. It must be, however, borne in mind that the images for manual tracing had been digitally enhanced before printing, confirming the need for digital enhancement. The area around stomion was the least reproducible because some subjects had their lips in contact while in others the lips were slightly apart when relaxed. Stomion is difficult to define, particularly in subjects with a lips apart posture, where the lowest dependent point on the upper lip (sto s ) and the highest point on the lower lip (sto i ) have to be estimated. The cephalometric software auto-assists in defining a single stomion, but the positions of two profile curves had, in some of the cases, to be adapted manually. The two extreme outliers for percentual deviations (the prominence of the upper and the lower lips) included the most prominent points of the lips. This is in agreement with Cooke and Wei (1991), who found lip prominence points to be poor landmarks. As the profile form, NCL/NFL, shows a relatively low percentual deviation ( Table 1 and Figure 2 ), it may be assumed that lip distance to NCL is difficult to measure accurately. An interesting finding was the significant interaction between the and the measurement method for the height of the lower lip (sto (i) to ML) and the upper lip contact position (sto (s) to Ol s ). Although both variables contain the above landmarks, this significant difference cannot be satisfactorily explained. If the observer had a subjective preference for one measurement method, this may result in a systematic difference between the two methods. If a learning curve is present or if the observer is tired between the s, systematic difference may occur. There is no reason to assume that the behaviour of the observer changed per for the different measuring techniques for sto (i) to ML and sto (s) to Ol s and not for the other variables. These interactions might, however, also be the result of coincidence. ANOVA showed that significant differences existed between the two methods for 11 outcome variables and between s for seven outcome variables. Clinically, these findings indicate that the two measurement methods differ significantly for 11 variables. It is, however, not possible to distinguish which technique results in the most reproducible outcomes because of lack of a reference value or gold standard. This problem, earlier described by Houston (1983), still remains the main barrier for any statements on validity in cephalometrics. Additionally, ANOVA only analyses whether significant differences exist in the tracing results. The magnitude of the differences must be analysed in post hoc procedures. Nevertheless, Buschang et al. (1987) claimed that full factorial ANOVA was adequate to analyse reproducibility of a cephalometric analysis compared with the method error.

CEPHALOMETRIC PROFILE ANALYSIS 589 Table 1 Overview of the mean values per per measurement method, P values of the repeated measurements ANOVA with method,, and method and interactions. Significant values are shown in bold. The mean differences between the s per measurement technique are expressed as D Man (Manual) and D Dig (Digital), which are also expressed as the absolute percentage of the overall mean ( percent D ). Variable Manual 1 x (SD) Manual 2 x (SD) Digital 1 x (SD) Digital 2 x (SD) ANOVA, method ( P ) ANOVA, ( P ) ANOVA, method ( P ) Overall x D ManD Dig percent D Man percent D Dig n s sn 49.00 (3.43) 48.23 (3.69) 48.49 (3.63) 47.92 (3.44) 0.458 0.019 0.624 48.41 0.78 0.57 1.60 1.18 n s prn 41.38 (2.57) 40.58 (2.82) 41.26 (3.36) 40.88 (3.26) 0.855 0.008 0.110 41.02 0.8 0.39 1.95 0.94 prn to n s ss s 15.10 (1.58) 15.08 (1.62) 15.68 (1.71) 15.52 (1.80) 0.004 0.209 0.070 15.34 0.03 0.17 0.16 1.08 sto (s) to NL 24.20 (3.37) 24.05 (3.37) 23.56 (3.05) 23.83 (3.04) 0.008 0.596 0.147 23.91 0.15 0.27 0.63 1.13 sn to lnt ls 7.73 (0.88) 7.70 (0.92) 6.90 (0.95) 7.04 (0.93) <0.001 0.478 0.257 7.34 0.03 0.14 0.34 1.84 ls to NCL 1.33 (1.84) 1.30 (1.96) 1.39 (1.80) 1.29 (1.77) 0.004 0.575 0.236 0.01 0.03 0.1 222.22 888.89 sto (i) to ML 39.25 (3.67) 40.01 (3.59) 40.11 (3.68) 39.91 (3.52) 0.059 0.029 0.002 39.83 0.8 0.2 2.01 0.50 sms to li pgs 4.63 (1.41) 4.73 (1.41) 3.79 (1.79) 3.78 (1.70) <0.001 0.476 0.390 4.23 0.1 0.01 2.37 0.24 li to NCL 0.03 (2.53) 0.10 (2.54) 0.08 (2.48) 0.16 (2.46) 0.928 0.123 0.656 0.08 0.1 0.06 131.15 72.13 sto (s) to OL s 5.13 (1.71) 5.25 (1.61) 5.37 (1.91) 5.25 (1.96) 0.576 0.931 0.046 5.25 0.13 0.12 2.38 2.19 sto (i) to OL s 4.93 (1.87) 4.98 (1.81) 3.85 (3.08) 3.81 (3.04) 0.042 0.945 0.560 4.39 0.05 0.04 1.14 0.91 s n s unt 117.65 (5.31) 119.13 (4.91) 115.53 (4.97) 115.94 (4.14) 0.002 0.015 0.082 117.06 1.48 0.42 1.26 0.35 s n s ss s 93.45 (4.10) 94.33 (3.77) 92.01 (4.26) 92.33 (3.69) 0.001 0.020 0.213 93.03 0.88 0.32 0.94 0.34 s n s sms 84.10 (4.58) 84.70 (4.35) 83.02 (4.78) 83.24 (4.34) 0.002 0.023 0.190 83.76 0.6 0.22 0.72 0.26 ss s ns sms 9.38 (1.56) 9.58 (1.63) 8.99 (1.37) 9.11 (1.54) <0.001 0.085 0.575 9.26 0.2 0.12 2.16 1.24 s ns pgs 85.10 (4.81) 85.75 (4.62) 84.00 (5.01) 84.21 (4.63) 0.001 0.020 0.131 84.77 0.65 0.21 0.77 0.25 NFL/NCL 145.53 (4.63) 145.30 (4.67) 145.43 (4.70) 145.42 (4.75) 0.922 0.078 0.067 145.42 0.23 0.01 0.15 0.01

590 % of overall mean 2.5 2 1.5 1 0.5 0 Manual Digital ns sn ns prn prn to ns sss sto(s) to NL sn to lnt ls sto(i) to ML sms to li pgs Recorded variables sto(s) to OLs sto(i) to OLs s ns unt s ns sss s ns sms sss ns sms s ns pgs NFL / NCL Figure 2 Bar chart showing the assumed validities as percentages of the overall mean of each variable. The two outliers, the prominence of the upper and lower lips, were seen as invalid and omitted. The overall mean per variable might be considered as the gold standard as this value averages the most number of measurements. In fact, Chen et al. (2000) used a similar approach by averaging the measurements of the different operators. If this assumption is correct, the difference between s per method expressed as a percentage of the overall mean would be an assumption for the validity of that variable. In that case, the validity was better for the digital technique for 12 variables and for the manual technique for three variables (excluding the two outliers, ls to NCL and li to NCL) as these variables also showed a significant interaction between the methods. Although the differences were statistically significant for several variables, the clinical relevance of the differences is limited. Excluding the two outliers, only for a minority of measurements (four variables for the manual measuring technique and one variable for the digital measuring technique) did the difference exceed 2 per cent of the overall mean ( Table 1 ). This limit of a 2 per cent error was arbitrarily chosen as a clinically acceptable measurement error as previous assessments using this statistical technique are lacking. Theoretically incorrect landmark identification, performed twice during hand tracing and during on screen digitization, does not result in different measurement results between the methods. Thus, an excellent reproducibility exists combined with poor validity. This possible source of bias may be present in the present data but cannot be determined because of the lack of a gold standard. A qualityrelated bias might be hidden in the printing process of the original images. This problem is hard to quantify, but is recognized by the authors to be of possible presence and importance. Further, the size sample might be a limitation in this study, but a sample of 20 radiographs was chosen because this is comparable with other cephalometric D. P. DVORTSIN ET AL. research ( Battagel, 1993 ; Macrì and Wenzel, 1993 ; Lim and Foong, 1997 ; Ongkosuwito et al., 2002 ; Kazandjian et al., 2006 ). Thus, it appears that the main difficulties in the field of cephalometry remain the clinical relevance of the error and the lack of a gold standard for the cephalometric variables. The clinical relevance of the error can be dependent on the purpose of the analysis, whether this is for research or daily orthodontics, but may be limited. Moreover, the expertise of the operator has been claimed to impact on validity of measurements and the human errors introduced in the manual measurement procedure are reduced with the digital technique ( Chen et al., 2004 ). There is a decrease in the number of errors due to the reduction in the number of procedures with the digital technique ( Chen et al., 2004 ). The absence of a reference value, in turn, undermines many statistical statements concerning validity because of the individual variability of the human face. Finally, comparison of the manual tracing technique with on-screen digitization also has a number of practical aspects. Software with an automatic edge definition feature is a promising tool for more accurate and reproducible cephalometrics ( Kazandjian et al., 2006 ). Further advantages such as the progress in digital acquisition of cephalometric images and data handling and storage stimulate further development of the on-screen tracing technique. Conclusions The findings of the present study indicate that the two measurement methods were statistically significantly different for 11 variables ( P = 0.001 to P = 0.042). The area around stomion was the least reproducible. Except for s n s unt in the manual technique, all mean differences between s and between methods were less than 1 degree or 1 mm. More variables were reproducible on-screen than with the manual technique. The clinical relevance of the registered differences remains questionable. Address for correspondence Dimitri P. Dvortsin Department of Orthodontics University Medical Center Groningen Hanzeplein 1 P.O. Box 30.001 9700 RB Groningen The Netherlands E-mail:d.dvortsin@dmo.umcg.nl References Battagel J M 1993 A comparative assessment of cephalometric errors. European Journal of Orthodontics 15 : 305 314

CEPHALOMETRIC PROFILE ANALYSIS Broadbent B H 1931 A new X-ray technique and its application to orthodontia. Angle Orthodontist 1 : 45 66 Buschang P H, Tanguay R, Demirjian A 1987 Cephalometric reliability. A full ANOVA model for the estimation of true and error variance. Angle Orthodontist 57 : 168 175 Chen Y J, Chen S K, Chang H F, Chen K C 2000 Comparison of landmark identification in traditional versus computer-aided digital cephalometry. Angle Orthodontist 70 : 387 392 Chen Y J, Chen S K, Yao J C, Chang H F 2004 The effects of differences in landmark identification on the cephalometric measurements in traditional versus digitized cephalometry. Angle Orthodontist 74 : 155 161 Cooke M S, Wei S H 1991 Cephalometric errors: a comparison between repeat measurements and retaken radiographs. Australian Dental Journal, 36 : 38 43 Doll G M, Zentner A, Krummenauer F, Gärtner H 2001 Reliability and validity of the Digigraph 100 in orthodontic diagnosis. Journal of Orofacial Orthopedics 62 : 116 132 Eppley B L, Sadove A M 1991 Computerized digital enhancement in craniofacial cephalometric radiography. Journal of Oral and Maxillofacial Surgery 49 : 1038 1043 Forsyth D B, Shaw W C, Richmond S, Roberts C T 1996 Digital imaging of cephalometric radiographs. Part 2: image quality. Angle Orthodontist 66 : 43 50 Geelen W, Wenzel A, Gotfredsen E, Kruger M, Hansson L G 1998 Reproducibility of cephalometric landmarks on conventional film, hardcopy, and monitor-displayed images obtained by the storage phosphor technique. European Journal of Orthodontics 20 : 331 340 Hagemann K, Vollmer D, Niegel T, Ehmer U, Reuter I 2000 Prospective study on the reproducibility of cephalometric landmarks on conventional and digital lateral headfilms. Journal of Orofacial Orthopedics 61 : 91 99 Houston W J B 1983 The analysis of errors in orthodontic measurements. American Journal of Orthodontics 83 : 382 390 591 Kamoen A, Dermaut L 2001 The clinical significance of error measurement in the interpretation of treatment results. European Journal of Orthodontics 23 : 569 578 Kazandjian S, Kiliaridis S, Mavropoulos A 2006 Validity and reliability of a new edge-based computerized method for identification of cephalometric landmarks. Angle Orthodontist 76 : 619 624 Lim K F, Foong K W 1997 Phosphor-stimulated computed cephalometry: reliability of landmark identification. British Journal of Orthodontics 24 : 301 308 Macrì V, Wenzel A 1993 Reliability of landmark recording on film and digital lateral cephalograms. European Journal of Orthodontics 15 : 137 148 Nimkarn Y, Miles P G 1995 Reliability of computer-generated cephalometrics. International Journal of Adult Orthodontics and Orthognathic Surgery 10 : 43 52 Oka S W, Trussell H J 1978 Digital image enhancement of cephalograms. Angle Orthodontist 48 : 80 84 Ongkosuwito E M, Katsaros C, van t Hof M A, Bodegom J C, Kuijpers- Jagtman A M 2002 The reproducibility of cephalometric measurements: a comparison of analogue and digital methods.. European Journal of Orthodontics 24 : 655 665 Santoro M, Jarjoura K, Cangialosi T J 2006 Accuracy of digital and analogue cephalometric measurements assessed with the sandwich technique. American Journal of Orthodontics and Dentofacial Orthopedics 129 : 345 351 Sarnäs K V, Solow B 1980 Early adult changes in the skeletal and softtissue profile. European Journal of Orthodontics 2 : 1 12 Schulze R K, Gloede M B, Doll G M 2002 Landmark identification on direct digital versus film-based cephalometric radiographs: a human skull study. American Journal of Orthodontics and Dentofacial Orthopedics, 122 : 635 642 Solow B, Tallgren A 1971 Natural head position in standing subjects. Acta Odontologica Scandinavica 29 : 591 607