Anatomic Growth Modelling of Cleft Palate Shape. S.K. Chua*, S.H. Ong*, K.W.C. Foong**

Size: px
Start display at page:

Download "Anatomic Growth Modelling of Cleft Palate Shape. S.K. Chua*, S.H. Ong*, K.W.C. Foong**"

Transcription

1 ABSTRACT Anatomic Growth Modelling of Cleft Palate Shape S.K. Chua*, S.H. Ong*, K.W.C. Foong** *Dept of Electrical and Computer Engineering, **Dept of Preventive Dentistry, National University of Singapore The aim of this project is to utilize computer vision technology to develop algorithms for anatomic growth modelling of cleft lip and palate after surgical correction. Two plaster cleft models (3 months old, before surgery, and 9 months old, after surgery) from the same baby were first scanned with a Minolta VIVID 900 3D scanner. Landmark points were then indicated on the 3D images of each plaster model using the software RAPIDFORM Translation matrices (from 3 to 9 months) were then defined using these landmark points. It was observed that after surgical correction, the gap of the cleft lip and palate decreased in size, while the surface area of the major and minor segments increased. This project, using RAPIDFORM 2002, provides good visualisation and understanding of anatomic growth modelling of cleft lip and palate to the clinician. INTRODUCTION Cleft lip and cleft palate comprise the fourth most common birth defect in the United States, with 1 in 700 babies contracting this defect. Babies born with the cleft lip and palate deformity undergo surgical and dental correction of the palate, upper jaw and upper dentition from birth till 20 years of age. Plaster models of the palate of these babies are taken at defined intervals of postnatal life. The plaster models provide a 3 dimensional representation of the shape of the palate as determined by the actual deformity and as a consequence of surgical and dental treatment. Since a cleft palate child undergoes a series of definitive surgical and dental treatment within the first 10 years of life, the ability to visualize the future shape of the cleft palate while in infancy will permit the clinician to rationalize his treatment approach in the early infant years so as to minimize the likelihood of a poor palate shape in the later childhood. This project uses computer vision technology to develop algorithms for anatomic growth modelling of cleft lip and palate after surgical correction. EQUIPMENT Two cleft plaster models taken from the same baby are used in this project. One of the models was taken when the baby was 3 months old, before he underwent surgical correction, while the other was taken when the baby was 9 months old, after he underwent surgical correction. In this project, a Minolta VIVID 900 3D scanner is used to scan the plaster models, as its laser scanning is fast and able to output the 3D images on the computer accurately. The software RAPIDFORM 2002 is used for editing and measurement of the images. This software not only provides a good visualisation of 3D images, but also it is versatile and provides many functions. 1

2 METHOD This project can be divided into the following steps: 3D data acquisition, computer reconstruction, landmarking, and analysis. 3D Data Acquisition The plaster models were scanned using the Minolta scanner connected to a rotary table. By placing a model on the rotary table, it could be rotated 360 degrees, at an interval of 30 degrees, which allowed the scanner to scan almost every side of the model accurately. In order to scan concave and deep surfaces, the model had to be placed at a specific position for the scanner to have a one-shot scan. Computer Reconstruction Using RAPIDFORM 2002, the images of a model, which was captured at different angles, were merged to form a complete 3D image of the model. RAPIDFORM merged those images captured using the rotary table by locating the images overlapped areas. However, one-shot images had to be merged manually, by indicating more than two common points between the images. Figure 1 shows the complete 3D images of each model. Landmarking 18 common points were landmarked on the 3D images of each model (Figure 1), indicated by the green dots. There were 11 points on the major segment and 7 points on the minor segment of each model. These 18 points were chosen because 6 of these points were important points, while the rest were based on the common features found between the two models. For example, point m4 on the minor segment was chosen because it is at the edge of a significant line crack found on both models. Thus, through observation of the plaster models, 12 common features between the two models were located. The 6 important points, AC, AC, P, P, PC, PC were represented by points M1, m1, M8, m7, M11, m5 respectively. Figure 1. 3D images of the 2 cleft models with landmark points. 2

3 Analysis Initially, the images of the two models were out of position from one another, but the coordinates of their landmark points were with respect to the same origin, as they were in the same world co-ordinates. Therefore, the two models were superimposed to have an accurate observation of how the landmark points have moved from the 3-month to the 9-month models. Common reference points, using points M8, M11, m3 and m7 were then manually indicated to the software such that it would align the two models with respect to these points. These points were chosen because their co-ordinates were almost similar on the 3- and 9- month models. However, this method of superposition could only be an approximate alignment as the 2 models are of different shapes and sizes. Figure 2 shows an image of the 2 models after superposition. Vector lines were also drawn between the landmark points of the 2 models (i.e. point M1 of the 3 month model was connected to point M1 of the 9 month model) to provide a better visualisation for the clinician to observe the differences between the models, as shown in Figure 3. Coordinates of the landmark points were then obtained, and translation matrices and distances moved by the landmark points from the 3 month to the 9 month models could be found from these coordinates. Figure 2. 3D image of the 2 cleft models after superposition. Figure 3. 3D image of the superposition models with vector lines (red dots represent points from 3 month model and blue dots represent points from 9 month model). 3

4 RESULTS Figure 4a indicates how the landmark points have moved from the 3 month to the 9 month models in the x and y-directions, while Figure 4b indicates movements in the y and z-directions. The red points represent the 3 month model and the blue points represent the 9 month model. The vector lines are named according to the landmark points as shown in Figure 1. Figure 4a. X-Y co-ordinate graph of movement of landmark points from the 3 month (red) to the 9 month (blue) models. Figure 4b. Y-Z co-ordinate graph of movement of landmark points from the 3 month (red) to the 9 month (blue) models. 4

5 Table 1 shows the distances, measured in mm, moved by the landmark points from the 3- to 9- month models. The distances can be measured using RAPIDFORM. Table 1. Distances (mm) moved by the landmark points from 3 to 9 month models DISCUSSION Validation Points Distances (mm) Points Distances (mm) M M M M M m M m M m M m M m M m M m The measurement results of this project can be validated by using callipers to measure physically the distance between two points on a plaster model and compare with the computer measurement. Using RAPIDFORM, the distance between points M1 and m1 of the 3 months model is 9.65 mm, and the distance between points M11 and m5 is mm. Observation From Results From Figure 4a, it is observed that points M1, M2, M3 and M4 have moved significantly in the positive x-direction. This shows the success of surgical correction of the cleft lip as the gap caused by the cleft has almost closed up. Table 1 provides more evidence by showing that points M1, M2, M3 and M4 have moved considerably. Moreover, the distance between points M5 and M6 has increased from mm, when measured using the 3 month model, to mm, when measured using the 9-month model. This shows that the surface area of the major segment has increased in size. This is the same for the minor segment as point m4 has moved significantly in the positive x-direction. From Figure 4b, most of the points have moved toward the negative z-direction from the 3 month to 9 month models. This indicates that the hole at the centre of the cleft palate shrank in size due to surgery. Since the coordinates of the landmark points are known, it is possible to derive translation matrix for each point, as shown in Eq. (1) using point M1 as an example. 9 Month Pt. M1 3 Month Pt. M1 Translation _ = (1) 5

6 Given a different patient s 3-month cleft palate plaster model, its 9-month point M1 coordinates can be calculated using Eq. (2) given its 3 month point M1 coordinates (i.e. (x, y, z)) x y z 1 = x y + (-2.855) z + (-0.878) 1 (2) The translation matrix in Eq. (2) is obtained from Eq. (1). In order to find the translation matrices for the other landmark points, the same procedures can be applied. Thus, this method will be able to predict approximately other patients 9 month cleft palates shapes after surgery. Other Issues The two plaster models are inconsistent in shapes and sizes, thus it is difficult to superimpose the two models exactly. Due to this problem, the models have to be aligned many times using different reference points to find the most suitable superposition. It should be noted that the plaster models have very thick base and extra surfaces, which are not part of the cleft, thus it will not be appropriate to use reference points that are not part of the cleft surfaces during alignment. Therefore, one can only obtain approximate translation matrices and measured distances of the landmark points from the 3 month to the 9 month models. Moreover, the landmark points on the plaster models are located by the human eye and defined manually onto the 3D images in the computer, thus they will not be accurate. This method of finding the common points to visualise the anatomic growth from the 3 month to the 9 month model may not be suitable if other patient s cleft shapes and sizes are drastically different from the models used in this project. CONCLUSION This project, using RAPIDFORM 2002, provides good visualisation and comparison of 3D images of cleft palates, before surgery and after surgery, to the clinician. Significant differences between the models have been located and discussed in this paper. Translation matrices and measured distances between the landmark points of both models have also been obtained, which can aid patients with cleft lips and palates. REFERENCES Berkowitz, S. (1996), Cleft Lip and Palate - Perspectives in Management - Volume 1, Singular Publishing Group, San Diego, USA, Pages 29-40, 51-64, and INUS Technology, RAPIDFORM 2002 software Manual. 6

3D Scanning 101 The Fundamentals of the Structured Light 3D Scanning Process

3D Scanning 101 The Fundamentals of the Structured Light 3D Scanning Process 3D Scanning 101 The Fundamentals of the Structured Light 3D Scanning Process 3D3 Solutions is a developer of innovative structured light 3D scanners. Based in Vancouver, Canada with more than 20 distributors

More information

3D HEAD SURFACE SCANNING TECHNIQUES FOR ORTHODONTICS 1. INTRODUCTION

3D HEAD SURFACE SCANNING TECHNIQUES FOR ORTHODONTICS 1. INTRODUCTION JOURNAL OF MEDICAL INFORMATICS & TECHNOLOGIES Vol. 9/2005, ISSN 1642-6037 Agnieszka TOMAKA *, Leszek LUCHOWSKI *, Krzysztof SKABEK *, Michał TARNAWSKI ** 3D surface scanning, facial features analysis,

More information

R2CAD User Guide V1.7. Copyright All rights reserved.

R2CAD User Guide V1.7. Copyright All rights reserved. R2CAD User Guide V1.7 Copyright All rights reserved. Table of Contents 1. About R2CAD... 1 1.1 System Requirements... 1 2. User Interface... 2 2.1 Main menu... 2 2.2 Mouse Operation... 2 2.3 Setting...

More information

Computed tomography of simple objects. Related topics. Principle. Equipment TEP Beam hardening, artefacts, and algorithms

Computed tomography of simple objects. Related topics. Principle. Equipment TEP Beam hardening, artefacts, and algorithms Related topics Beam hardening, artefacts, and algorithms Principle The CT principle is demonstrated with the aid of simple objects. In the case of very simple targets, only a few images need to be taken

More information

PHOTOGRAMMETRIC TECHNIQUE FOR TEETH OCCLUSION ANALYSIS IN DENTISTRY

PHOTOGRAMMETRIC TECHNIQUE FOR TEETH OCCLUSION ANALYSIS IN DENTISTRY PHOTOGRAMMETRIC TECHNIQUE FOR TEETH OCCLUSION ANALYSIS IN DENTISTRY V. A. Knyaz a, *, S. Yu. Zheltov a, a State Research Institute of Aviation System (GosNIIAS), 539 Moscow, Russia (knyaz,zhl)@gosniias.ru

More information

Computed tomography (Item No.: P )

Computed tomography (Item No.: P ) Computed tomography (Item No.: P2550100) Curricular Relevance Area of Expertise: Biology Education Level: University Topic: Modern Imaging Methods Subtopic: X-ray Imaging Experiment: Computed tomography

More information

Detection of shape outliers, with an application to complete unilateral cleft lip and palate in humans

Detection of shape outliers, with an application to complete unilateral cleft lip and palate in humans Detection of shape outliers, with an application to complete unilateral cleft lip and palate in humans Stanislav Katina Department of Anthropology, University of Vienna, Austria, and Department of Applied

More information

Using Probability Maps for Multi organ Automatic Segmentation

Using Probability Maps for Multi organ Automatic Segmentation Using Probability Maps for Multi organ Automatic Segmentation Ranveer Joyseeree 1,2, Óscar Jiménez del Toro1, and Henning Müller 1,3 1 University of Applied Sciences Western Switzerland (HES SO), Sierre,

More information

PLANNING RECONSTRUCTION FOR FACIAL ASYMMETRY

PLANNING RECONSTRUCTION FOR FACIAL ASYMMETRY PLANNING RECONSTRUCTION FOR FACIAL ASYMMETRY ALLAN PONNIAH HELEN WITHEROW ROBERT EVANS DAVID DUNAWAY Craniofacial Unit Great Ormond Street Hospital London WC1N 3JH E-mail: a.ponniah@ucl.ac.uk ROBIN RICHARDS

More information

EXAMINATIONS 2017 TRIMESTER 2

EXAMINATIONS 2017 TRIMESTER 2 EXAMINATIONS 2017 TRIMESTER 2 CGRA 151 INTRODUCTION TO COMPUTER GRAPHICS Time Allowed: TWO HOURS CLOSED BOOK Permitted materials: Silent non-programmable calculators or silent programmable calculators

More information

Fast. Affordable. Complete. Desktop Scanning System from Great Lakes

Fast. Affordable. Complete. Desktop Scanning System from Great Lakes Desktop Scanning System from Great Lakes Fast Affordable Complete Create Virtual Bases Occlusal Mapping Complex Measurements Accurate Digital Study Models Desktop Scanning System Now you can easily convert

More information

A novel 3D torso image reconstruction procedure using a pair of digital stereo back images

A novel 3D torso image reconstruction procedure using a pair of digital stereo back images Modelling in Medicine and Biology VIII 257 A novel 3D torso image reconstruction procedure using a pair of digital stereo back images A. Kumar & N. Durdle Department of Electrical & Computer Engineering,

More information

MR-Guided Mixed Reality for Breast Conserving Surgical Planning

MR-Guided Mixed Reality for Breast Conserving Surgical Planning MR-Guided Mixed Reality for Breast Conserving Surgical Planning Suba Srinivasan (subashini7@gmail.com) March 30 th 2017 Mentors: Prof. Brian A. Hargreaves, Prof. Bruce L. Daniel MEDICINE MRI Guided Mixed

More information

Digital orthodontics. 3D model scanner orthox scan Page 24 Model holder for orthox scan Page 25

Digital orthodontics. 3D model scanner orthox scan Page 24 Model holder for orthox scan Page 25 3D model scanner orthox scan Page 24 Model holder for orthox scan Page 25 18 . Dentaurum Online Shop shop.dentaurum.com 19 The 3D model scanner. Pure digital orthodontics! The new 3D model scanner orthox

More information

EXAMINATIONS 2016 TRIMESTER 2

EXAMINATIONS 2016 TRIMESTER 2 EXAMINATIONS 2016 TRIMESTER 2 CGRA 151 INTRODUCTION TO COMPUTER GRAPHICS Time Allowed: TWO HOURS CLOSED BOOK Permitted materials: Silent non-programmable calculators or silent programmable calculators

More information

CT Reconstruction with Good-Orientation and Layer Separation for Multilayer Objects

CT Reconstruction with Good-Orientation and Layer Separation for Multilayer Objects 17th World Conference on Nondestructive Testing, 25-28 Oct 2008, Shanghai, China CT Reconstruction with Good-Orientation and Layer Separation for Multilayer Objects Tong LIU 1, Brian Stephan WONG 2, Tai

More information

Anatomic measurement accuracy: CT parameters and 3D rendering effects

Anatomic measurement accuracy: CT parameters and 3D rendering effects Anatomic measurement accuracy: CT parameters and 3D rendering effects Brian J Whyms a, E Michael Schimek a, Houri K Vorperian a, Lindell R Gentry b, and Edward T Bersu c University of Wisconsin-Madison

More information

Function Manual Intraoral Scanner i500

Function Manual Intraoral Scanner i500 Function Manual Intraoral Scanner i500 Revised Date: Feb 2019 Revision No.: 0 Contents 1 Introduction and overview... 3 1.1 Intended Use... 3 1.2 Indication for use... 3 1.3 Contraindications... 3 1.4

More information

SIMULATION OF POSTOPERATIVE 3D FACIAL MORPHOLOGY USING PHYSICS-BASED HEAD MODEL Yoshimitsu AOKI*, Shuji Hashimoto*, Masahiko Terajima**, Akihiko Nakasima** * Waseda University, Japan Department of Applied

More information

Segmentation and Modeling of the Spinal Cord for Reality-based Surgical Simulator

Segmentation and Modeling of the Spinal Cord for Reality-based Surgical Simulator Segmentation and Modeling of the Spinal Cord for Reality-based Surgical Simulator Li X.C.,, Chui C. K.,, and Ong S. H.,* Dept. of Electrical and Computer Engineering Dept. of Mechanical Engineering, National

More information

Technical aspects of SPECT and SPECT-CT. John Buscombe

Technical aspects of SPECT and SPECT-CT. John Buscombe Technical aspects of SPECT and SPECT-CT John Buscombe What does the clinician need to know? For SPECT What factors affect SPECT How those factors should be sought Looking for artefacts For SPECT-CT Issues

More information

Interactive Simulation of Teeth Cleaning

Interactive Simulation of Teeth Cleaning Gockel, Tilo 1 /6 Interactive Simulation of Teeth Cleaning T. Gockel, T. Salb, T. Weyrich, O. Burgert, R. Dillmann Institute for Process Control and Robotics Universität Karlsruhe (TH), Department for

More information

2 Michael E. Leventon and Sarah F. F. Gibson a b c d Fig. 1. (a, b) Two MR scans of a person's knee. Both images have high resolution in-plane, but ha

2 Michael E. Leventon and Sarah F. F. Gibson a b c d Fig. 1. (a, b) Two MR scans of a person's knee. Both images have high resolution in-plane, but ha Model Generation from Multiple Volumes using Constrained Elastic SurfaceNets Michael E. Leventon and Sarah F. F. Gibson 1 MIT Artificial Intelligence Laboratory, Cambridge, MA 02139, USA leventon@ai.mit.edu

More information

Computational Medical Imaging Analysis Chapter 4: Image Visualization

Computational Medical Imaging Analysis Chapter 4: Image Visualization Computational Medical Imaging Analysis Chapter 4: Image Visualization Jun Zhang Laboratory for Computational Medical Imaging & Data Analysis Department of Computer Science University of Kentucky Lexington,

More information

Multiple View Geometry

Multiple View Geometry Multiple View Geometry Martin Quinn with a lot of slides stolen from Steve Seitz and Jianbo Shi 15-463: Computational Photography Alexei Efros, CMU, Fall 2007 Our Goal The Plenoptic Function P(θ,φ,λ,t,V

More information

Measurements using three-dimensional product imaging

Measurements using three-dimensional product imaging ARCHIVES of FOUNDRY ENGINEERING Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences ISSN (1897-3310) Volume 10 Special Issue 3/2010 41 46 7/3 Measurements using

More information

An Algorithm for Characteristic Length Measurement from Point Cloud Data

An Algorithm for Characteristic Length Measurement from Point Cloud Data An Algorithm for Characteristic Length Measurement from Point Cloud Data Matthew T. Moraguez 1 University of Florida, Gainesville, FL, 32611 The DebriSat project aims to characterize debris fragments produced

More information

(Refer Slide Time 00:17) Welcome to the course on Digital Image Processing. (Refer Slide Time 00:22)

(Refer Slide Time 00:17) Welcome to the course on Digital Image Processing. (Refer Slide Time 00:22) Digital Image Processing Prof. P. K. Biswas Department of Electronics and Electrical Communications Engineering Indian Institute of Technology, Kharagpur Module Number 01 Lecture Number 02 Application

More information

Video Endoscopic Metrology for Pipeline Welding

Video Endoscopic Metrology for Pipeline Welding SINCE2013 Singapore International NDT Conference & Exhibition 2013, 19-20 July 2013 Video Endoscopic Metrology for Pipeline Welding Alfred Ng GE Measurement & Control, Inspection Technologies, a.ng@ge.com

More information

DARWIN 8.1 Release Notes

DARWIN 8.1 Release Notes DARWIN 8.1 Release Notes March 2015 Southwest Research Institute Summary of New Capabilities DARWIN 8.1 includes the following new features: Autozoning with inspection Random FE residual stress Anomaly

More information

Reconstruction of 3D Tooth Images

Reconstruction of 3D Tooth Images Reconstruction of 3D Tooth Images Stéphanie Buchaillard, Sim Heng Ong, Yohan Payan, Kelvin Foong To cite this version: Stéphanie Buchaillard, Sim Heng Ong, Yohan Payan, Kelvin Foong. Tooth Images. 2004,

More information

Automatic Modelling Image Represented Objects Using a Statistic Based Approach

Automatic Modelling Image Represented Objects Using a Statistic Based Approach Automatic Modelling Image Represented Objects Using a Statistic Based Approach Maria João M. Vasconcelos 1, João Manuel R. S. Tavares 1,2 1 FEUP Faculdade de Engenharia da Universidade do Porto 2 LOME

More information

Interactive Collision Detection for Engineering Plants based on Large-Scale Point-Clouds

Interactive Collision Detection for Engineering Plants based on Large-Scale Point-Clouds 1 Interactive Collision Detection for Engineering Plants based on Large-Scale Point-Clouds Takeru Niwa 1 and Hiroshi Masuda 2 1 The University of Electro-Communications, takeru.niwa@uec.ac.jp 2 The University

More information

A Full-Range of 3D Body Scanning Solutions

A Full-Range of 3D Body Scanning Solutions Abstract A Full-Range of 3D Body Scanning Solutions Jean-Loup RENNESSON TELMAT Industrie SA, Soultz, France TELMAT extends its range of 3D body scanning solutions named SYMCAD to fulfill a wide scope of

More information

Accommodation Assessments for Vehicle Occupants using Augmented Reality

Accommodation Assessments for Vehicle Occupants using Augmented Reality Accommodation Assessments for Vehicle Occupants using Augmented Reality Byoung-keon Daniel Park 1 and Matthew P. Reed 1 1 University of Michigan, Ann Arbor, MI 48109, USA keonpark@umich.edu Abstract. This

More information

What You ll Learn. Why It s Important

What You ll Learn. Why It s Important First Nations artists use their artwork to preserve their heritage. Haida artist Don Yeomans is one of the foremost Northwest Coast artists. Look at this print called The Benefit, created by Don Yeomans.

More information

Landmark Detection on 3D Face Scans by Facial Model Registration

Landmark Detection on 3D Face Scans by Facial Model Registration Landmark Detection on 3D Face Scans by Facial Model Registration Tristan Whitmarsh 1, Remco C. Veltkamp 2, Michela Spagnuolo 1 Simone Marini 1, Frank ter Haar 2 1 IMATI-CNR, Genoa, Italy 2 Dept. Computer

More information

3/27/2012 WHY SPECT / CT? SPECT / CT Basic Principles. Advantages of SPECT. Advantages of CT. Dr John C. Dickson, Principal Physicist UCLH

3/27/2012 WHY SPECT / CT? SPECT / CT Basic Principles. Advantages of SPECT. Advantages of CT. Dr John C. Dickson, Principal Physicist UCLH 3/27/212 Advantages of SPECT SPECT / CT Basic Principles Dr John C. Dickson, Principal Physicist UCLH Institute of Nuclear Medicine, University College London Hospitals and University College London john.dickson@uclh.nhs.uk

More information

Breast Curvature of the Upper and Lower Breast Mound: 3D Analysis of Patients who Underwent Breast Reconstruction

Breast Curvature of the Upper and Lower Breast Mound: 3D Analysis of Patients who Underwent Breast Reconstruction Breast Curvature of the Upper and Lower Breast Mound: 3D Analysis of Patients who Underwent Breast Reconstruction Juhun LEE a,b, Gregory P. REECE b, Mia K. MARKEY a,b* a The University of Texas at Austin,

More information

FAST 3D MODELLING AND PRECISE MEASUREMENT OF SOFT TISSUE FOR CRANIOFACIAL RECONSTRUCTION USING LASER SCANNING

FAST 3D MODELLING AND PRECISE MEASUREMENT OF SOFT TISSUE FOR CRANIOFACIAL RECONSTRUCTION USING LASER SCANNING FAST 3D MODELLING AND PRECISE MEASUREMENT OF SOFT TISSUE FOR CRANIOFACIAL RECONSTRUCTION USING LASER SCANNING Mohd Sharuddin Ibrahim, Halim Setan & Zulkepli Majid Department of Geomatic Engineering, Faculty

More information

What s new in Solutionix s scanners?

What s new in Solutionix s scanners? SOLUTIONIX 1 What s new in Solutionix s scanners? Solutionix provides fully automated 3D scanning solutions for both small and medium sized objects. With a powerful scan engine and affordable pricing,

More information

A CAD analysis programme for prosthetics and orthotics

A CAD analysis programme for prosthetics and orthotics Prosthetics and Orthotics International, 1994, 18, 112-117 Technical note A CAD analysis programme for prosthetics and orthotics E. LEMAIRE Prosthetics and Orthotics Department, The Rehabilitation Centre,

More information

Computer Vision. 3D acquisition

Computer Vision. 3D acquisition è Computer 3D acquisition Acknowledgement Courtesy of Prof. Luc Van Gool 3D acquisition taxonomy s image cannot currently be displayed. 3D acquisition methods Thi passive active uni-directional multi-directional

More information

Does BRT return a predicted group membership or value for continuous variable? Yes, in the $fit object In this dataset, R 2 =0.346.

Does BRT return a predicted group membership or value for continuous variable? Yes, in the $fit object In this dataset, R 2 =0.346. Does BRT return a predicted group membership or value for continuous variable? Yes, in the $fit object In this dataset, R 2 =0.346 Is BRT the same as random forest? Very similar, randomforest package in

More information

Data Fusion Virtual Surgery Medical Virtual Reality Team. Endo-Robot. Database Functional. Database

Data Fusion Virtual Surgery Medical Virtual Reality Team. Endo-Robot. Database Functional. Database 2017 29 6 16 GITI 3D From 3D to 4D imaging Data Fusion Virtual Surgery Medical Virtual Reality Team Morphological Database Functional Database Endo-Robot High Dimensional Database Team Tele-surgery Robotic

More information

Computer and Machine Vision

Computer and Machine Vision Computer and Machine Vision Lecture Week 12 Part-2 Additional 3D Scene Considerations March 29, 2014 Sam Siewert Outline of Week 12 Computer Vision APIs and Languages Alternatives to C++ and OpenCV API

More information

Computational Methods in NeuroImage Analysis!

Computational Methods in NeuroImage Analysis! Computational Methods in NeuroImage Analysis! Instructor: Moo K. Chung" mkchung@wisc.edu" Lecture 8" Geometric computation" October 29, 2010" NOTICE! Final Exam: December 3 9:00-12:00am (35%)" Topics:

More information

Mathematics 308 Geometry. Chapter 9. Drawing three dimensional objects

Mathematics 308 Geometry. Chapter 9. Drawing three dimensional objects Mathematics 308 Geometry Chapter 9. Drawing three dimensional objects In this chapter we will see how to draw three dimensional objects with PostScript. The task will be made easier by a package of routines

More information

Quantitative Three-Dimensional Imaging of the Posterior Segment with the Heidelberg Retina Tomograph

Quantitative Three-Dimensional Imaging of the Posterior Segment with the Heidelberg Retina Tomograph Quantitative Three-Dimensional Imaging of the Posterior Segment with the Heidelberg Retina Tomograph Heidelberg Engineering GmbH, Heidelberg, Germany Contents 1 Introduction... 1 2 Confocal laser scanning

More information

INTRODUCTION TO MEDICAL IMAGING- 3D LOCALIZATION LAB MANUAL 1. Modifications for P551 Fall 2013 Medical Physics Laboratory

INTRODUCTION TO MEDICAL IMAGING- 3D LOCALIZATION LAB MANUAL 1. Modifications for P551 Fall 2013 Medical Physics Laboratory INTRODUCTION TO MEDICAL IMAGING- 3D LOCALIZATION LAB MANUAL 1 Modifications for P551 Fall 2013 Medical Physics Laboratory Introduction Following the introductory lab 0, this lab exercise the student through

More information

THE APPLICATION OF THE 3D SURFACE SCANNING IN THE FACIAL FEATURES ANALYSIS 1. INTRODUCTION

THE APPLICATION OF THE 3D SURFACE SCANNING IN THE FACIAL FEATURES ANALYSIS 1. INTRODUCTION JOURNAL OF MEDICAL INFORMATICS & TECHNOLOGIES Vol. 9/2005, ISSN 1642-6037 Agnieszka TOMAKA *, Barbara LIŚNIEWSKA-MACHOROWSKA ** 3D surface scanning, facial features analysis, THE APPLICATION OF THE 3D

More information

Guide for Geomagic Design X 3D Scan Data Cleanup and Editing. General Information

Guide for Geomagic Design X 3D Scan Data Cleanup and Editing. General Information Guide for Geomagic Design X 3D Scan Data Cleanup and Editing General Information Geomagic Design X (formerly Rapidform XOR) is an extremely powerful reverse engineering and 3D modeling software that combines

More information

Shape Classification and Cell Movement in 3D Matrix Tutorial (Part I)

Shape Classification and Cell Movement in 3D Matrix Tutorial (Part I) Shape Classification and Cell Movement in 3D Matrix Tutorial (Part I) Fred Park UCI icamp 2011 Outline 1. Motivation and Shape Definition 2. Shape Descriptors 3. Classification 4. Applications: Shape Matching,

More information

We can use square dot paper to draw each view (top, front, and sides) of the three dimensional objects:

We can use square dot paper to draw each view (top, front, and sides) of the three dimensional objects: Unit Eight Geometry Name: 8.1 Sketching Views of Objects When a photo of an object is not available, the object may be drawn on triangular dot paper. This is called isometric paper. Isometric means equal

More information

MODULE - 4. e-pg Pathshala

MODULE - 4. e-pg Pathshala e-pg Pathshala MODULE - 4 Subject : Computer Science Paper: Computer Graphics and Visualization Module: Midpoint Circle Drawing Procedure Module No: CS/CGV/4 Quadrant 1 e-text Before going into the Midpoint

More information

A Document Image Analysis System on Parallel Processors

A Document Image Analysis System on Parallel Processors A Document Image Analysis System on Parallel Processors Shamik Sural, CMC Ltd. 28 Camac Street, Calcutta 700 016, India. P.K.Das, Dept. of CSE. Jadavpur University, Calcutta 700 032, India. Abstract This

More information

Software of vestibulometry

Software of vestibulometry 1 Software of vestibulometry Presentation The EyeTracker system is composed of a «Shark» acquisition video card equipped with one or two ADSPS (Advance digital signal processing) for the location in real

More information

4D Auto MVQ (Mitral Valve Quantification)

4D Auto MVQ (Mitral Valve Quantification) 4D Auto MVQ (Mitral Valve Quantification) Federico Veronesi, Glenn Reidar Lie, Stein Inge Rabben GE Healthcare Introduction As the number of mitral valve repairs is on the rise, so is the need for mitral

More information

Robot Localization based on Geo-referenced Images and G raphic Methods

Robot Localization based on Geo-referenced Images and G raphic Methods Robot Localization based on Geo-referenced Images and G raphic Methods Sid Ahmed Berrabah Mechanical Department, Royal Military School, Belgium, sidahmed.berrabah@rma.ac.be Janusz Bedkowski, Łukasz Lubasiński,

More information

SOFTWARE SERVICES UNIT

SOFTWARE SERVICES UNIT SOFTWARE SERVICES UNIT Welsh Clinical Communication Gateway Version 17.1 Training Notes The purpose of these Notes is to highlight the changes to Welsh Clinical Communication Gateway () that occur in version

More information

Generation of Hulls Encompassing Neuronal Pathways Based on Tetrahedralization and 3D Alpha Shapes

Generation of Hulls Encompassing Neuronal Pathways Based on Tetrahedralization and 3D Alpha Shapes Generation of Hulls Encompassing Neuronal Pathways Based on Tetrahedralization and 3D Alpha Shapes Dorit Merhof 1,2, Martin Meister 1, Ezgi Bingöl 1, Peter Hastreiter 1,2, Christopher Nimsky 2,3, Günther

More information

Stereo and structured light

Stereo and structured light Stereo and structured light http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 20 Course announcements Homework 5 is still ongoing. - Make sure

More information

Flying Triangulation Acquiring the 360 Topography of the Human Body on the Fly

Flying Triangulation Acquiring the 360 Topography of the Human Body on the Fly Flying Triangulation Acquiring the 360 Topography of the Human Body on the Fly Svenja ETTL*, Oliver AROLD, Florian WILLOMITZER, Zheng YANG, Gerd HÄUSLER Institute of Optics, Information, and Photonics,

More information

GeoInterp: Contour Interpolation with Geodesic Snakes Release 1.00

GeoInterp: Contour Interpolation with Geodesic Snakes Release 1.00 GeoInterp: Contour Interpolation with Geodesic Snakes Release 1.00 Rohit R. Saboo, Julian G. Rosenman and Stephen M. Pizer July 1, 2006 University of North Carolina at Chapel Hill Abstract The process

More information

TEMPLATE-BASED AUTOMATIC SEGMENTATION OF MASSETER USING PRIOR KNOWLEDGE

TEMPLATE-BASED AUTOMATIC SEGMENTATION OF MASSETER USING PRIOR KNOWLEDGE TEMPLATE-BASED AUTOMATIC SEGMENTATION OF MASSETER USING PRIOR KNOWLEDGE H.P. Ng 1,, S.H. Ong 3, P.S. Goh 4, K.W.C. Foong 1, 5, W.L. Nowinski 1 NUS Graduate School for Integrative Sciences and Engineering,

More information

Dedicated Software Algorithms for 3D Clouds of Points

Dedicated Software Algorithms for 3D Clouds of Points Dedicated Software Algorithms for 3D Clouds of Points Introduction AQSENSE develops and commercializes 3D image acquisition and processing technologies that allow high speed in-line 100% production inspection,

More information

Information page for written examinations at Linköping University TER2

Information page for written examinations at Linköping University TER2 Information page for written examinations at Linköping University Examination date 2016-08-19 Room (1) TER2 Time 8-12 Course code Exam code Course name Exam name Department Number of questions in the examination

More information

Fusion of 3D B-spline surface patches reconstructed from image sequences

Fusion of 3D B-spline surface patches reconstructed from image sequences Fusion of 3D B-spline surface patches reconstructed from image sequences Roger Mohr ChangSheng Zhao Gautier Koscielny LFA-NR A 46 Avenue FBlix Viallet 38031 Grenoble cedex France Abstract This paper considers

More information

Name: Chapter 14 Light. Class: Date: 143 minutes. Time: 143 marks. Marks: Comments: Page 1 of 53

Name: Chapter 14 Light. Class: Date: 143 minutes. Time: 143 marks. Marks: Comments: Page 1 of 53 Chapter 4 Light Name: Class: Date: Time: 43 minutes Marks: 43 marks Comments: Page of 53 A person can see an image of himself in a tall plane mirror. The diagram shows how the person can see his hat. (a)

More information

LaserGuard LG300 area alarm system. 3D laser radar alarm system for motion control and alarm applications. Instruction manual

LaserGuard LG300 area alarm system. 3D laser radar alarm system for motion control and alarm applications. Instruction manual LaserGuard LG300 area alarm system 3D laser radar alarm system for motion control and alarm applications Instruction manual LaserGuard The LaserGuard program is the user interface for the 3D laser scanner

More information

Registration of Moving Surfaces by Means of One-Shot Laser Projection

Registration of Moving Surfaces by Means of One-Shot Laser Projection Registration of Moving Surfaces by Means of One-Shot Laser Projection Carles Matabosch 1,DavidFofi 2, Joaquim Salvi 1, and Josep Forest 1 1 University of Girona, Institut d Informatica i Aplicacions, Girona,

More information

The Grid File: An Adaptable, Symmetric Multikey File Structure

The Grid File: An Adaptable, Symmetric Multikey File Structure The Grid File: An Adaptable, Symmetric Multikey File Structure Presentation: Saskia Nieckau Moderation: Hedi Buchner The Grid File: An Adaptable, Symmetric Multikey File Structure 1. Multikey Structures

More information

Lecture 3 Sections 2.2, 4.4. Mon, Aug 31, 2009

Lecture 3 Sections 2.2, 4.4. Mon, Aug 31, 2009 Model s Lecture 3 Sections 2.2, 4.4 World s Eye s Clip s s s Window s Hampden-Sydney College Mon, Aug 31, 2009 Outline Model s World s Eye s Clip s s s Window s 1 2 3 Model s World s Eye s Clip s s s Window

More information

The Quantification of Volumetric Asymmetry by Dynamic Surface Topography. Thomas Shannon Oxford Brookes University Oxford, U.K.

The Quantification of Volumetric Asymmetry by Dynamic Surface Topography. Thomas Shannon Oxford Brookes University Oxford, U.K. The Quantification of Volumetric Asymmetry by Dynamic Surface Topography Thomas Shannon Oxford Brookes University Oxford, U.K. The psychosocial impact of the cosmetic defect on Adolescent Idiopathic Scoliosis

More information

Medical Image Registration by Maximization of Mutual Information

Medical Image Registration by Maximization of Mutual Information Medical Image Registration by Maximization of Mutual Information EE 591 Introduction to Information Theory Instructor Dr. Donald Adjeroh Submitted by Senthil.P.Ramamurthy Damodaraswamy, Umamaheswari Introduction

More information

AUTOMATED 4 AXIS ADAYfIVE SCANNING WITH THE DIGIBOTICS LASER DIGITIZER

AUTOMATED 4 AXIS ADAYfIVE SCANNING WITH THE DIGIBOTICS LASER DIGITIZER AUTOMATED 4 AXIS ADAYfIVE SCANNING WITH THE DIGIBOTICS LASER DIGITIZER INTRODUCTION The DIGIBOT 3D Laser Digitizer is a high performance 3D input device which combines laser ranging technology, personal

More information

Using Pinnacle 16 Deformable Image registration in a re-treat scenario

Using Pinnacle 16 Deformable Image registration in a re-treat scenario Introduction Using Pinnacle 16 Deformable Image registration in a re-treat scenario This short Hands On exercise will introduce how the Deformable Image Registration (DIR) tools in Pinnacle can be used

More information

Abstract. Introduction

Abstract. Introduction The analysis of geometrical and thermal errors of non-cartesian structures J.M. Freeman and D.G. Ford Engineering Control and Metrology Research Group, The School ofengineering, University of Huddersfield.

More information

Customer Training Manual. 3Shape OrthoViewer

Customer Training Manual. 3Shape OrthoViewer Customer Training Manual 3Shape OrthoViewer www.esmdigitalsolutions.com info@esmdigitalsolutions.com phone: USA +1 908 988 4956 IRL+353-(0)1-8084446 UK +44 (0)208 816 7860 SKYPE no.more.plaster Introduction

More information

2D-3D Registration using Gradient-based MI for Image Guided Surgery Systems

2D-3D Registration using Gradient-based MI for Image Guided Surgery Systems 2D-3D Registration using Gradient-based MI for Image Guided Surgery Systems Yeny Yim 1*, Xuanyi Chen 1, Mike Wakid 1, Steve Bielamowicz 2, James Hahn 1 1 Department of Computer Science, The George Washington

More information

Assessing Accuracy Factors in Deformable 2D/3D Medical Image Registration Using a Statistical Pelvis Model

Assessing Accuracy Factors in Deformable 2D/3D Medical Image Registration Using a Statistical Pelvis Model Assessing Accuracy Factors in Deformable 2D/3D Medical Image Registration Using a Statistical Pelvis Model Jianhua Yao National Institute of Health Bethesda, MD USA jyao@cc.nih.gov Russell Taylor The Johns

More information

Learning-based Neuroimage Registration

Learning-based Neuroimage Registration Learning-based Neuroimage Registration Leonid Teverovskiy and Yanxi Liu 1 October 2004 CMU-CALD-04-108, CMU-RI-TR-04-59 School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 Abstract

More information

Details on the new features, enhancements, and problem fixes of a software release October 17, 2014

Details on the new features, enhancements, and problem fixes of a software release October 17, 2014 Details on the new features, enhancements, and problem fixes of a software release October 17, 2014 These Release Notes announce the distribution of release 7.1, Beta Update 3, which includes enhancements

More information

Pathology Hinting as the Combination of Automatic Segmentation with a Statistical Shape Model

Pathology Hinting as the Combination of Automatic Segmentation with a Statistical Shape Model Pathology Hinting as the Combination of Automatic Segmentation with a Statistical Shape Model Pascal A. Dufour 12,HannanAbdillahi 3, Lala Ceklic 3,Ute Wolf-Schnurrbusch 23,JensKowal 12 1 ARTORG Center

More information

Microsoft Office Word 2010

Microsoft Office Word 2010 Microsoft Office Word 2010 Inserting and Working with Pictures (Images) 1. Images in your work An image is a great way to liven up a document, but in academic uses is normally only included where something

More information

3D Modeling of Objects Using Laser Scanning

3D Modeling of Objects Using Laser Scanning 1 3D Modeling of Objects Using Laser Scanning D. Jaya Deepu, LPU University, Punjab, India Email: Jaideepudadi@gmail.com Abstract: In the last few decades, constructing accurate three-dimensional models

More information

IMAGE PROCESSING AND IMAGE REGISTRATION ON SPIRAL ARCHITECTURE WITH salib

IMAGE PROCESSING AND IMAGE REGISTRATION ON SPIRAL ARCHITECTURE WITH salib IMAGE PROCESSING AND IMAGE REGISTRATION ON SPIRAL ARCHITECTURE WITH salib Stefan Bobe 1 and Gerald Schaefer 2,* 1 University of Applied Sciences, Bielefeld, Germany. 2 School of Computing and Informatics,

More information

CHAPTER 2: THREE DIMENSIONAL TOPOGRAPHICAL MAPPING SYSTEM. Target Object

CHAPTER 2: THREE DIMENSIONAL TOPOGRAPHICAL MAPPING SYSTEM. Target Object CHAPTER 2: THREE DIMENSIONAL TOPOGRAPHICAL MAPPING SYSTEM 2.1 Theory and Construction Target Object Laser Projector CCD Camera Host Computer / Image Processor Figure 2.1 Block Diagram of 3D Areal Mapper

More information

Univariate Statistics Summary

Univariate Statistics Summary Further Maths Univariate Statistics Summary Types of Data Data can be classified as categorical or numerical. Categorical data are observations or records that are arranged according to category. For example:

More information

Volumetric Deformable Models for Simulation of Laparoscopic Surgery

Volumetric Deformable Models for Simulation of Laparoscopic Surgery Volumetric Deformable Models for Simulation of Laparoscopic Surgery S. Cotin y, H. Delingette y, J.M. Clément z V. Tassetti z, J. Marescaux z, N. Ayache y y INRIA, Epidaure Project 2004, route des Lucioles,

More information

Lesson 1 Parametric Modeling Fundamentals

Lesson 1 Parametric Modeling Fundamentals 1-1 Lesson 1 Parametric Modeling Fundamentals Create Simple Parametric Models. Understand the Basic Parametric Modeling Process. Create and Profile Rough Sketches. Understand the "Shape before size" approach.

More information

TERRESTRIAL LASER SCANNER DATA PROCESSING

TERRESTRIAL LASER SCANNER DATA PROCESSING TERRESTRIAL LASER SCANNER DATA PROCESSING L. Bornaz (*), F. Rinaudo (*) (*) Politecnico di Torino - Dipartimento di Georisorse e Territorio C.so Duca degli Abruzzi, 24 10129 Torino Tel. +39.011.564.7687

More information

Report Wizard. New Feature Documentation

Report Wizard. New Feature Documentation Report Wizard New Feature Documentation What is it? The Reports Wizard screen is used collate data from the database into useful information about the practices activities from the criteria specified into

More information

Feature Extraction for Illustrating 3D Stone Tools from Unorganized Point Clouds

Feature Extraction for Illustrating 3D Stone Tools from Unorganized Point Clouds Feature Extraction for Illustrating 3D Stone Tools from Unorganized Point Clouds Enkhbayar Altantsetseg 1) Yuta Muraki 2) Katsutsugu Matsuyama 2) Fumito Chiba 3) Kouichi Konno 2) 1) Graduate School of

More information

Flexible Calibration of a Portable Structured Light System through Surface Plane

Flexible Calibration of a Portable Structured Light System through Surface Plane Vol. 34, No. 11 ACTA AUTOMATICA SINICA November, 2008 Flexible Calibration of a Portable Structured Light System through Surface Plane GAO Wei 1 WANG Liang 1 HU Zhan-Yi 1 Abstract For a portable structured

More information

DIGITAL RECONSTRUCTION OF A HUMAN SKULL

DIGITAL RECONSTRUCTION OF A HUMAN SKULL INTERNATIONAL DESIGN CONFERENCE - DESIGN 2008 Dubrovnik - Croatia, May 19-22, 2008. DIGITAL RECONSTRUCTION OF A HUMAN SKULL O. Etxaniz, R. Minguez, A. Arias, L. Barrenetxea and E. Solaberrieta Keywords:

More information

3D Visualization of Defects in Railroad Wheels

3D Visualization of Defects in Railroad Wheels 3D Visualization of Defects in Railroad Wheels by Bradley J. Westfall Consultant, Measurement & Automation and Benjamin A. Rayner Senior Architect, LabVIEW Champion Data Science Automation, Inc. USA Category:

More information

Structured light , , Computational Photography Fall 2017, Lecture 27

Structured light , , Computational Photography Fall 2017, Lecture 27 Structured light http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 27 Course announcements Homework 5 has been graded. - Mean: 129. - Median:

More information

The potential of the terrestrial laser scanning for geometrical building facades inspection

The potential of the terrestrial laser scanning for geometrical building facades inspection Rakenteiden Mekaniikka (Journal of Structural Mechanics) Vol. 4, No 4, 009, pp. 35-45 The potential of the terrestrial laser scanning for geometrical building facades inspection Fahim Al-Neshawy, Jukka

More information

The Most User-Friendly 3D scanner

The Most User-Friendly 3D scanner The Most User-Friendly 3D scanner The Solutionix C500 is optimized for scanning small- to medium-sized objects. With dual 5.0MP cameras, the C500 provides excellent data quality at a high resolution. In

More information