Computer graphics III Light reflection, BRDF. Jaroslav Křivánek, MFF UK

Similar documents
Computer graphics III Light reflection, BRDF. Jaroslav Křivánek, MFF UK

Computer Graphics. Jeng-Sheng Yeh 葉正聖 Ming Chuan University (modified from Bing-Yu Chen s slides)

Real-time. Shading of Folded Surfaces

Monte Carlo Integration

Discussion. History and Outline. Smoothness of Indirect Lighting. Irradiance Caching. Irradiance Calculation. Advanced Computer Graphics (Fall 2009)

Discussion. History and Outline. Smoothness of Indirect Lighting. Irradiance Calculation. Irradiance Caching. Advanced Computer Graphics (Fall 2009)

Diffuse and specular interreflections with classical, deterministic ray tracing

Monte Carlo 1: Integration

Physics 132 4/24/17. April 24, 2017 Physics 132 Prof. E. F. Redish. Outline

Monte Carlo Rendering

Reflection models. Rendering equation. Taxonomy 2. Taxonomy 1. Digital Image Synthesis Yung-Yu Chuang 11/01/2005

Monte Carlo 1: Integration

Interactive Rendering of Translucent Objects

Lighting. Dr. Scott Schaefer

Color in OpenGL Polygonal Shading Light Source in OpenGL Material Properties Normal Vectors Phong model

Realistic Rendering. Traditional Computer Graphics. Traditional Computer Graphics. Production Pipeline. Appearance in the Real World

REFRACTION. a. To study the refraction of light from plane surfaces. b. To determine the index of refraction for Acrylic and Water.

Surface Mapping One. CS7GV3 Real-time Rendering

Global Illumination. Computer Graphics COMP 770 (236) Spring Instructor: Brandon Lloyd 3/26/07 1

Electrical analysis of light-weight, triangular weave reflector antennas

Global Illumination and Radiosity

Global Illumination and Radiosity

Global Illumination and Radiosity

Fast, Arbitrary BRDF Shading for Low-Frequency Lighting Using Spherical Harmonics

Fundamentals of Rendering - Reflectance Functions

STUDY ON CLOSE RANGE DIGITISATION TECHNIQUES INTEGRATED WITH REFLECTANCE ESTIMATION

Global Illumination: Radiosity

R s s f. m y s. SPH3UW Unit 7.3 Spherical Concave Mirrors Page 1 of 12. Notes

Reflection models and radiometry Advanced Graphics

Fundamentals of Rendering - Reflectance Functions

PHYS 219 Spring semester Lecture 20: Reflection of Electromagnetic Radiation: Mirrors and Images Formed by Mirrors

DIFFRACTION SHADING MODELS FOR IRIDESCENT SURFACES

2.2 Photometric Image Formation

TEST-05 TOPIC: OPTICS COMPLETE

Scan Conversion & Shading

Introduction to Radiosity

Lights, Surfaces, and Cameras. Light sources emit photons Surfaces reflect & absorb photons Cameras measure photons

Scan Conversion & Shading

Topic 13: Radiometry. The Basic Light Transport Path

Timothy Walsh. Reflection Models

The Rendering Equation. Computer Graphics CMU /15-662

Approach to Modeling and Virtual-reality-based Simulation for Plant Canopy Lighting

Radiance. Radiance properties. Radiance properties. Computer Graphics (Fall 2008)

Surface Integrators. Digital Image Synthesis Yung-Yu Chuang 12/20/2007

Dependence of the Color Rendering Index on the Luminance of Light Sources and Munsell Samples

02 Shading and Frames. Steve Marschner CS5625 Spring 2016

Consistent Illumination within Optical See-Through Augmented Environments

AP PHYSICS B 2008 SCORING GUIDELINES

Accounting for the Use of Different Length Scale Factors in x, y and z Directions

Supplementary Information

Rendering of Complex Materials for Driving Simulators

1. Answer the following. a. A beam of vertically polarized light of intensity W/m2 encounters two polarizing filters as shown below.

Complex Filtering and Integration via Sampling

BRDF Computer Graphics (Spring 2008)

Form-factors Josef Pelikán CGG MFF UK Praha.

Plane Sampling for Light Paths from the Environment Map

FUNDAMENTALS OF RADIOMETRY

And if that 120MP Camera was cool

Six-Band HDTV Camera System for Color Reproduction Based on Spectral Information

PBRT core. Announcements. pbrt. pbrt plug-ins

Complex Shading Algorithms

Copyright 2004 by the Society of Photo-Optical Instrumentation Engineers.

Lecture 4: Reflection Models

Refraction Ray Normal

Slide 1 SPH3UW: OPTICS I. Slide 2. Slide 3. Introduction to Mirrors. Light incident on an object

CSE 681 Illumination and Phong Shading

Local Reflection Models

What are the camera parameters? Where are the light sources? What is the mapping from radiance to pixel color? Want to solve for 3D geometry

Computer Graphics. - BRDFs & Texturing - Hendrik Lensch. Computer Graphics WS07/08 BRDFs and Texturing

Lighting affects appearance

Photometric Stereo.

Announcement. Lighting and Photometric Stereo. Computer Vision I. Surface Reflectance Models. Lambertian (Diffuse) Surface.

Illumination and Shading - II

AVO Modeling of Monochromatic Spherical Waves: Comparison to Band-Limited Waves

Math Homotopy Theory Additional notes

Simple tool to evaluate the impact of daylight on building energy consumption

Short Papers. Toward Accurate Recovery of Shape from Shading Under Diffuse Lighting 1 INTRODUCTION 2 PROBLEM FORMULATION

Chapter 26: Geometrical Optics

dq dt I = Irradiance or Light Intensity is Flux Φ per area A (W/m 2 ) Φ =

NUMERICAL SOLVING OPTIMAL CONTROL PROBLEMS BY THE METHOD OF VARIATIONS

Shading & Material Appearance

Specular reflection. Lighting II. Snell s Law. Refraction at boundary of media

3D vector computer graphics

The Rendering Equation. Computer Graphics CMU /15-662, Fall 2016

Comparison of calculation methods and models in software for computer graphics and radiative heat exchange

Introduction to Geometrical Optics - a 2D ray tracing Excel model for spherical mirrors - Part 2

Reflectance Models (BRDF)

Motivation. Motivation. Monte Carlo. Example: Soft Shadows. Outline. Monte Carlo Algorithms. Advanced Computer Graphics (Fall 2009)

Structure from Motion

Overview. Radiometry and Photometry. Foundations of Computer Graphics (Spring 2012)

dq dt I = Irradiance or Light Intensity is Flux Φ per area A (W/m 2 ) Φ =

Calculation of Sound Ray s Trajectories by the Method of Analogy to Mechanics at Ocean

Display Reflectance Model Based on the BRDF

CS 5625 Lec 2: Shading Models

Visual cues to 3D geometry. Light Reflection and Advanced Shading. Shading. Recognizing materials. size (perspective) occlusion shading

The Research of Ellipse Parameter Fitting Algorithm of Ultrasonic Imaging Logging in the Casing Hole

Radial Basis Functions

Technical report, November 2012 (Revision 2, July 2013) Implementing Vertex Connection and Merging

CS 534: Computer Vision Model Fitting

6.854 Advanced Algorithms Petar Maymounkov Problem Set 11 (November 23, 2005) With: Benjamin Rossman, Oren Weimann, and Pouya Kheradpour

Transcription:

Computer graphcs III Lght reflecton, BRDF Jaroslav Křvánek, MFF UK Jaroslav.Krvanek@mff.cun.cz

Basc radometrc quanttes Image: Wojcech Jarosz CG III (NPGR010) - J. Křvánek 2015

Interacton of lght wth a surface Absorpton Reflecton Transmsson / refracton Reflectve propertes of materals determne the relaton of reflected radance L r to ncomng radance L, and therefore the appearance of the object: color, glossness, etc. CG III (NPGR010) - J. Křvánek 2015

Interacton of lght wth a surface Same llumnaton Dfferent materals Source: MERL BRDF database CG III (NPGR010) - J. Křvánek 2015

BRDF Bdrectonal reflectance dstrbuton functon (cz: Dvousměrová dstrbuční funkce odrazu) outgong n L (ω ) L r (ω o ) dω reflected θ o θ ncomng f r ( ω ω ) o = dlr ( ωo) de( ω ) = L dlr ( ωo) ( ω ) cosθ dω [sr 1 ] CG III (NPGR010) - J. Křvánek 2015

BRDF Mathematcal model of the reflecton propertes of a surface Intuton Value of a BRDF = probablty densty, descrbng the event that a lght energy packet, or photon, comng from drecton ω gets reflected to the drecton ω o. Range: ( ω o) [ 0, ) ω f r CG III (NPGR010) - J. Křvánek 2015

BRDF The BRDF s a model of the bulk behavor of lght on the mcrostructure when vewed from dstance CG III (NPGR010) - J. Křvánek 2015 Westn et al. Predctng Reflectance Functons from Complex Surfaces, SIGGRAPH 1992.

BRDF propertes Helmholz recprocty (always holds n nature, a physcally-plausble BRDF model must follow t) f r ( ω ωo) = f ( ωo ω) r CG III (NPGR010) - J. Křvánek 2015

BRDF propertes Energy conservaton Reflected flux per unt area (.e. radosty B) cannot be larger than the ncomng flux per unt surface area (.e. rradance E). CG III (NPGR010) - J. Křvánek 2015 [ ] 1 )cos ( cos )cos ( ) ( )cos ( )cos ( o = = = = o o r r o o r d L d d L f d L d L E B ω θ ω ω θ ω θ ω ω ω ω θ ω ω θ ω

BRDF (an)sotropy Isotropc BRDF = nvarant to a rotaton around surface normal CG III (NPGR010) - J. Křvánek 2015 ( ) ( ) ( ) o o o o o o,,, ;,, ;, φ φ θ θ φ φ θ φ φ θ φ θ φ θ = + + = r r r f f f

Surfaces wth ansotropc BRDF CG III (NPGR010) - J. Křvánek 2015

Ansotropc BRDF Dfferent mcroscopc roughness n dfferent drectons (brushed metals, fabrcs, ) CG III (NPGR010) - J. Křvánek 2015

Isotropc vs. ansotropc BRDF Isotropc BRDFs have only 3 degrees of freedom Instead of φ and φ o t s enough to consder only φ = φ φ o But ths s not enough to descrbe an ansotropc BRDF Descrpton of an ansotropc BRDF φ and φ o are expressed n a local coordnate frame (U, V, N) U tangent e.g. the drecton of brushng V bnormal N surface normal the Z axs of the local coordnate frame CG III (NPGR010) - J. Křvánek 2015

Reflecton equaton A.k.a. reflectance equaton, llumnaton ntegral, OVTIGRE ( outgong, vacuum, tme-nvarant, gray radance equaton ) How much total lght gets reflected n the drecton ω o? From the defnton of the BRDF, we have dl r ( ω ) o = f r ( ω ω ) L o ( ω ) cosθ dω CG III (NPGR010) - J. Křvánek 2015

Reflecton equaton Integratng the contrbutons dl r over the entre hemsphere: L r ( x, ω ) o = L H ( x) ( x, ω ) f r ( x, ω ω ) cosθ dω o upper hemsphere over x L o (x, ω o ) θ o n L (x, ω ) θ dω L r (x, ω o ) CG III (NPGR010) - J. Křvánek 2015

Reflecton equaton Evaluatng the reflectance equaton renders mages!!! Drect llumnaton Envronment maps Area lght sources etc. CG III (NPGR010) - J. Křvánek 2015

Reflectance Rato of the ncomng and outgong flux A.k.a. albedo (used mostly for dffuse reflecton) Hemsphercal-hemsphercal reflectance See the Energy conservaton slde Hemsphercal-drectonal reflectance The amount of lght that gets reflected n drecton ω o when llumnated by the unt, unform ncomng radance. ρ( ω ) o = a( ω ) o = H ( x) f r ( x, ω ω ) o cosθ dω CG III (NPGR010) - J. Křvánek 2015

Hemsphercal-drectonal reflectance Nonnegatve Less than or equal to 1 (energy conservaton) ρ( ω o ) [ 0,1] Equal to drectonal-hemsphercal reflectance What s the percentage of the energy comng from the ncomng drecton ω that gets reflected (to any drecton)? Equalty follows from the Helmholz recprocty CG III (NPGR010) - J. Křvánek 2015

CG III (NPGR010) - J. Křvánek 2015

CG III (NPGR010) - J. Křvánek 2015

BRDF components General BRDF Ideal dffuse (Lambertan) Ideal specular Glossy, drectonal dffuse CG III (NPGR010) - J. Křvánek 2015

Ideal dffuse reflecton

Ideal dffuse reflecton CG III (NPGR010) - J. Křvánek 2015

Ideal dffuse reflecton A.k.a. Lambertan reflecton Johann Henrch Lambert, Photometra, 1760. Postulate: Lght gets reflected to all drectons wth the same probablty, rrespectve of the drecton t came from The correspondng BRDF s a constant functon (ndependent of ω, ω o ) ( ω ω = f r, d o) fr, d CG III (NPGR010) - J. Křvánek 2015

Ideal dffuse reflecton Reflecton on a Lambertan surface: L o ( ωo) = f r, d L = f r, d H ( x) Vew ndependent appearance E ( ω ) cosθ dω rradance Outgong radance L o s ndependent of ω o Reflectance (derve) ρ = π d f r, d CG III (NPGR010) - J. Křvánek 2015

Ideal dffuse reflecton Mathematcal dealzaton that does not exst n nature The actual behavor of natural materals devates from the Lambertan assumpton especally for grazng ncdence angles CG III (NPGR010) - J. Křvánek 2015

Whte-out condtons Under a covered sky we cannot tell the shape of a terran covered by snow We do not have ths problem close to a localzed lght source. Why? CG III (NPGR010) - J. Křvánek 2015

Whte-out condtons We assume sky radance ndependent of drecton (covered sky) L ( = L x, ω) We also assume Lambertan reflecton on snow sky Reflected radance gven by: snow snow Lo = ρd L sky Whte-out!!! CG III (NPGR010) - J. Křvánek 2015

Ideal mrror reflecton

Ideal mrror reflecton CG III (NPGR010) - J. Křvánek 2015

CG III (NPGR010) - J. Křvánek 2015

CG III (NPGR010) - J. Křvánek 2015 Nshno, Nayar: Eyes for Relghtng, SIGGRAPH 2004

The law of reflecton n θ o θ φ φ o θ o = θ φ o = (φ + π) mod 2π Drecton of the reflected ray (derve the formula) ω o = 2( ω n) n ω CG III (NPGR010) - J. Křvánek 2015

Dgresson: Drac delta dstrbuton Defnton (nformal): The followng holds for any f: Image: Wkpeda Delta dstrbuton s not a functon (otherwse the ntegrals would = 0) CG III (NPGR010) - J. Křvánek 2015

BRDF of the deal mrror BRDF of the deal mrror s a Drac delta dstrbuton θ o = θ θ o n θ We want: L θ, ϕ ) = R( θ ) L ( θ, ϕ ± π ) r ( o o o o Fresnel reflectance (see below) f r, m ( θ, ϕ ; θ, ϕ ) o o = R( θ ) δ (cosθ cosθo) δ ( ϕ ϕo cosθ ± π ) CG III (NPGR010) - J. Křvánek 2015

BRDF of the deal mrror BRDF of the deal mrror s a Drac delta dstrbuton Varfcaton: CG III (NPGR010) - J. Křvánek 2015 ), ( ) ( cos ), ( cos ) ( ) cos (cos ) ( cos (.) (.) ), ( r r o o, o o r π ϕ θ θ ω θ ϕ θ θ π ϕ ϕ δ θ θ δ θ ω θ ϕ θ ± = ± = = L R d L R d L f L m r

CG III (NPGR010) - J. Křvánek 2015

Ideal refracton

Ideal refracton CG III (NPGR010) - J. Křvánek 2015

Ideal refracton Index of refracton η Water 1.33, glass 1.6, damond 2.4 Often depends on the wavelength Snell s law η sn θ = η o snθ o η ω η o ω o CG III (NPGR010) - J. Křvánek 2015

Ideal refracton Drecton of the refracted ray: ω o = η η η o = η o o ω ( 2 2 η cosθ + 1 η (1 cos θ ) )n o o f < 0, total nternal reflecton Image: wkpeda Crtcal angle: ηo θ, = c arcsn η CG III (NPGR010) - J. Křvánek 2015

Ideal refracton Change of radance Follows from the conservaton of energy (flux) When gong from an optcally rarer to a more dense medum, lght energy gets compressed n drectons => hgher energy densty => hgher radance η L o = L η 2 o 2 CG III (NPGR010) - J. Křvánek 2015

BRDF of deal refracton BRDF of the deal refracton s a delta dstrbuton: Change of radance Fresnel transmttance Snell s law f t ( θ, ϕ ; θ, ϕ ) o o η = (1 R( θ)) η 2 o 2 δ ( η snθ η o snθo) δ ( ϕ ϕo cosθ ± π ) Refracted ray stays n the ncdence plane CG III (NPGR010) - J. Křvánek 2015

Fresnel equatons

Fresnel equatons Read [frenel] Rato of the transmtted and reflected lght depends on the ncdent drecton From above more transmsson From the sde more reflecton Extremely mportant for realstc renderng of glass, water and other smooth delectrcs Not to be confused wth Fresnel lenses (used n lghthouses) CG III (NPGR010) - J. Křvánek 2015

Fresnel equatons Delectrcs Image: Wkpeda CG III (NPGR010) - J. Křvánek 2015

Fresnel equatons Delectrcs CG III (NPGR010) - J. Křvánek 2015

Fresnel equatons From the sde - lttle transmsson - more reflecton Try for yourself!!! From above - lttle reflecton - more transmsson CG III (NPGR010) - J. Křvánek 2015

Fresnel equatons Metals CG III (NPGR010) - J. Křvánek 2015

CG III (NPGR010) - J. Křvánek 2015

CG III (NPGR010) - J. Křvánek 2015

Glossy reflecton

Glossy reflecton Nether deal dffuse nor deal mrror All real materals n fact fall n ths category CG III (NPGR010) - J. Křvánek 2015

Surface roughness and blurred reflectons The rougher the blurrer Mcroscopc surface roughness CG III (NPGR010) - J. Křvánek 2015

CG III (NPGR010) - J. Křvánek 2015

BRDF models

BRDF modelng BRDF s a model of the bulk behavor of lght when vewng a surface from dstance BRDF models Emprcal Physcally based Approxmaton of measured data (a.k.a meso-scale) CG III (NPGR010) - J. Křvánek 2015

Emprcal BRDF models An arbtrary formula that takes ω and ω o as arguments ω and ω o are sometmes denoted L (Lght drecton) a V (Vewng drecton) Example: Phong model Arbtrary shadng calculatons (shaders) CG III (NPGR010) - J. Křvánek 2015

Phong shadng model L N R V ( n k ( N L) + k ( V R ) C = I ) d s R = 2( N L) N L CG III (NPGR010) - J. Křvánek 2015

Phong shadng model n the radometrc notaton ω n r ω o Orgnal shadng model L ( n cosθ cos θ ) ( ωo) = L ( ω) k d k s o + cosθ = ω r r = 2( n ω ) n ω r o r BRDF f r = L L o cosθ f Phong Org r = k d + k s n cos θr cosθ CG III (NPGR010) - J. Křvánek 2015

Physcally-plausble Phong BRDF Modfcaton to ensure recprocty (symmetry) and energy conservaton Phong modf d + r = + Energy conserved when f ρ π n 2 ρs cos 2π n θ r ρ d + ρ s 1 It s stll an emprcal formula (.e. t does not follow from physcal consderatons), but at least t fulflls the basc propertes of a BRDF CG III (NPGR010) - J. Křvánek 2015

Physcally-plausble BRDF models E.g. Torrance-Sparrow / Cook-Torrance model Based on the mcrofacet theory CG III (NPGR010) - J. Křvánek 2015

CG III (NPGR010) - J. Křvánek 2015

Torrance-Sparrow BRDF Analytcally derved Used for modelng glossy surfaces (as the Phong model) Corresponds more closely to realty than Phong Derved from a physcal model of the surface mcrogeometry (as opposed to because t looks good - approach used for the Phong model) CG III (NPGR010) - J. Křvánek 2015

Torrance-Sparrow BRDF Assumes that the macrosurface conssts of randomly orented mcrofacets We assume that each mcrofacet behaves as an deal mrror. We consder 3 phenomena: Reflecton Maskng CG III (NPGR010) - J. Křvánek 2015 Shadowng

Torrance-Sparrow BRDF Fresnel term Geometry term Models shadowng and maskng f = F( θ) G( ω, ωr) D( θh) 4cos( θ)cos( θr) Mcrofacet dstrbuton Part of the macroscopc surface vsble by the lght source Part of the macroscopc surface vsble by the vewer CG III (NPGR010) - J. Křvánek 2015

Approxmaton of measured data We can ft any BRDF model to the data Some BRDF models have been specfcally desgned for the purpose of fttng measured data, e.g. Ward BRDF, Lafortune BRDF Nonlnear optmzaton requred to fnd the BRDF parameters CG III (NPGR010) - J. Křvánek 2015

BRDF measurements Gono-reflectometer CG III (NPGR010) - J. Křvánek 2015

BRDF models vs. measured data CG III (NPGR010) - J. Křvánek 2015

BRDF models vs. measured data CG III (NPGR010) - J. Křvánek 2015

BRDF models vs. measured data CG III (NPGR010) - J. Křvánek 2015

BRDF models vs. measured data CG III (NPGR010) - J. Křvánek 2015

BRDF models vs. measured data CG III (NPGR010) - J. Křvánek 2015

BRDF, BTDF, BSDF: What s up wth all these abbrevatons? BTDF Bdrectonal transmttance dstrbuton functon Descrbed lght transmsson BSDF = BRDF+BTDF Bdrectonal scatterng dstrbuton functon CG III (NPGR010) - J. Křvánek 2015

SBRDF, BTF SV-BRDF Spatally Varyng BRDF BRDF parameters are spatally varyng (can be gven by a surface texture) BTF Bdrectonal Texture Functon Used for materals wth complex structure As opposed to the BRDF, models even the meso-scale CG III (NPGR010) - J. Křvánek 2015

BSSRDF BRDF Lght arrvng at a pont s reflected/transmtted at the same pont No subsurface scatterng consdered BSSRDF B-drectonal surface scatterng reflectance dstrbuton functon Takes nto account scatterng of lght under the surface CG III (NPGR010) - J. Křvánek 2015

BSSRDF Sub-surface scatterng makes surfaces looks softer BRDF BSSRDF CG III (NPGR010) - J. Křvánek 2015

BSSRDF BRDF BSSRDF CG III (NPGR010) - J. Křvánek 2015