Modified Watershed Segmentation with Denoising of Medical Images

Similar documents
Global Journal of Engineering Science and Research Management

K11. Modified Hybrid Median Filter for Image Denoising

C E N T E R A T H O U S T O N S C H O O L of H E A L T H I N F O R M A T I O N S C I E N C E S. Image Operations II

Digital Image Processing

EE795: Computer Vision and Intelligent Systems

Keywords: Thresholding, Morphological operations, Image filtering, Adaptive histogram equalization, Ceramic tile.

Babu Madhav Institute of Information Technology Years Integrated M.Sc.(IT)(Semester - 7)

Mingle Face Detection using Adaptive Thresholding and Hybrid Median Filter

SURVEY ON IMAGE PROCESSING IN THE FIELD OF DE-NOISING TECHNIQUES AND EDGE DETECTION TECHNIQUES ON RADIOGRAPHIC IMAGES

Image Segmentation Based on Watershed and Edge Detection Techniques

Image Processing. Traitement d images. Yuliya Tarabalka Tel.

Studies on Watershed Segmentation for Blood Cell Images Using Different Distance Transforms

Webpage: Volume 3, Issue V, May 2015 eissn:

Tumor Detection and classification of Medical MRI UsingAdvance ROIPropANN Algorithm

Fundamentals of Digital Image Processing

Texture Image Segmentation using FCM

EDGE BASED REGION GROWING

Filters. Advanced and Special Topics: Filters. Filters

Research Article Image Segmentation Using Gray-Scale Morphology and Marker-Controlled Watershed Transformation

Detection of Bone Fracture using Image Processing Methods

Lecture: Segmentation I FMAN30: Medical Image Analysis. Anders Heyden

Detection of Edges Using Mathematical Morphological Operators

VC 10/11 T9 Region-Based Segmentation

A Case Study on Mathematical Morphology Segmentation for MRI Brain Image

Comparative Analysis of Various Edge Detection Techniques in Biometric Application

Ulrik Söderström 16 Feb Image Processing. Segmentation

ECG782: Multidimensional Digital Signal Processing

Image Denoising Based on Hybrid Fourier and Neighborhood Wavelet Coefficients Jun Cheng, Songli Lei

ECG782: Multidimensional Digital Signal Processing

Segmentation of Noisy Binary Images Containing Circular and Elliptical Objects using Genetic Algorithms

Document Image Restoration Using Binary Morphological Filters. Jisheng Liang, Robert M. Haralick. Seattle, Washington Ihsin T.

Gesture based PTZ camera control

A Quantitative Approach for Textural Image Segmentation with Median Filter

Chapter 3: Intensity Transformations and Spatial Filtering

EECS490: Digital Image Processing. Lecture #19

Shape Feature Extraction of Brain MRI Using Slope Magnitude Method for Efficient Image Analysis

Morphological Technique in Medical Imaging for Human Brain Image Segmentation

Filtering and Enhancing Images

Bioimage Informatics

Extraction and Recognition of Alphanumeric Characters from Vehicle Number Plate

Compression of RADARSAT Data with Block Adaptive Wavelets Abstract: 1. Introduction

CS4733 Class Notes, Computer Vision

Volume 2, Issue 9, September 2014 ISSN

Topic 4 Image Segmentation

Final Review. Image Processing CSE 166 Lecture 18

A Survey on Edge Detection Techniques using Different Types of Digital Images

Mathematical Morphology and Distance Transforms. Robin Strand

Segmentation

A WAVELET BASED BIOMEDICAL IMAGE COMPRESSION WITH ROI CODING

Efficient Image Denoising Algorithm for Gaussian and Impulse Noises

MOVING OBJECT DETECTION USING BACKGROUND SUBTRACTION ALGORITHM USING SIMULINK

An Efficient Image Sharpening Filter for Enhancing Edge Detection Techniques for 2D, High Definition and Linearly Blurred Images

Digital Image Processing Lecture 7. Segmentation and labeling of objects. Methods for segmentation. Labeling, 2 different algorithms

Perception. Autonomous Mobile Robots. Sensors Vision Uncertainties, Line extraction from laser scans. Autonomous Systems Lab. Zürich.

Edges and Binary Images

IT Digital Image ProcessingVII Semester - Question Bank

EDGE DETECTION IN MEDICAL IMAGES USING THE WAVELET TRANSFORM

Edges and Binary Image Analysis April 12 th, 2018

Comparison between Various Edge Detection Methods on Satellite Image

HCR Using K-Means Clustering Algorithm

Region & edge based Segmentation

Structural Analysis of Aerial Photographs (HB47 Computer Vision: Assignment)

A New Technique of Extraction of Edge Detection Using Digital Image Processing

Denoising and Edge Detection Using Sobelmethod

Computer Vision 2. SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung. Computer Vision 2 Dr. Benjamin Guthier

Comparative Study of Watershed and K means Clustering in Brain Tumour Identification

SIMULATIVE ANALYSIS OF EDGE DETECTION OPERATORS AS APPLIED FOR ROAD IMAGES

Image Enhancement Using Fuzzy Morphology

FPGA IMPLEMENTATION FOR REAL TIME SOBEL EDGE DETECTOR BLOCK USING 3-LINE BUFFERS

ADVANCED IMAGE PROCESSING METHODS FOR ULTRASONIC NDE RESEARCH C. H. Chen, University of Massachusetts Dartmouth, N.

Morphological Image Processing GUI using MATLAB

Recognition of Changes in SAR Images Based on Gauss-Log Ratio and MRFFCM

DESIGN OF A NOVEL IMAGE FUSION ALGORITHM FOR IMPULSE NOISE REMOVAL IN REMOTE SENSING IMAGES BY USING THE QUALITY ASSESSMENT

TEXT DETECTION AND RECOGNITION IN CAMERA BASED IMAGES

Image Analysis Image Segmentation (Basic Methods)

Biometrics Technology: Image Processing & Pattern Recognition (by Dr. Dickson Tong)

ECEN 447 Digital Image Processing

Hybrid filters for medical image reconstruction

LEVEL SET ALGORITHMS COMPARISON FOR MULTI-SLICE CT LEFT VENTRICLE SEGMENTATION

ECG782: Multidimensional Digital Signal Processing

Edge detection in medical images using the Wavelet Transform

Image Transformation Techniques Dr. Rajeev Srivastava Dept. of Computer Engineering, ITBHU, Varanasi

Image Segmentation Techniques

Today INF How did Andy Warhol get his inspiration? Edge linking (very briefly) Segmentation approaches

Image Gap Interpolation for Color Images Using Discrete Cosine Transform

[ ] Review. Edges and Binary Images. Edge detection. Derivative of Gaussian filter. Image gradient. Tuesday, Sept 16

Feature Extraction of Edge Detected Images

EXAM SOLUTIONS. Image Processing and Computer Vision Course 2D1421 Monday, 13 th of March 2006,

Filtering of impulse noise in digital signals using logical transform

Review on Different Segmentation Techniques For Lung Cancer CT Images

Image processing. Reading. What is an image? Brian Curless CSE 457 Spring 2017

MEDICAL IMAGE NOISE REDUCTION AND REGION CONTRAST ENHANCEMENT USING PARTIAL DIFFERENTIAL EQUATIONS

SRCEM, Banmore(M.P.), India

Lecture 2 Image Processing and Filtering

A Comparative Assessment of the Performances of Different Edge Detection Operator using Harris Corner Detection Method

Disease Prediction of Paddy Crops Using Data Mining and Image Processing Techniques

A Local Statistics Based Region Growing Segmentation Method for Ultrasound Medical Images

Spatial Adaptive Filter for Object Boundary Identification in an Image

Novel Approaches of Image Segmentation for Water Bodies Extraction

Small-scale objects extraction in digital images

Transcription:

Modified Watershed Segmentation with Denoising of Medical Images Usha Mittal 1, Sanyam Anand 2 M.Tech student, Dept. of CSE, Lovely Professional University, Phagwara, Punjab, India 1 Assistant Professor, Dept. of CSE, Lovely Professional University, Phagwara, Punjab, India 2 Abstract: De-noising and segmentation are fundamental steps in processing of images. They can be used as preprocessing and post-processing step. They are used to enhance the image quality. Various medical imaging that are used in these days are Magnetic Resonance Images (MRI), Ultrasound, X-Ray, CT Scan etc. Various types of noises affect the quality of images which may lead to unpredictable results. Various noises like speckle noise, Gaussian noise and Rician noise is present in ultrasound, MRI respectively. With the segmentation region required for analysis and diagnosis purpose is extracted. Various algorithm for segmentation like watershed, K-mean clustering, FCM, thresholding, region growing etc. exist. In this paper, we propose an improved watershed segmentation using denoising filter. First of all, image will be de-noised with morphological opening-closing technique then watershed transform using linear correlation and convolution operations is applied to improve efficiency, accuracy and complexity of the algorithm. In this paper, watershed segmentation and various techniques which are used to improve the performance of watershed segmentation are discussed and comparative analysis is done. Keywords: De-noising, Segmentation, Watershed, Region merging, RAG, Morphological Operations. I. INTRODUCTION Digital Image processing refers to processing of digital images by digital computers [1]. Now a day, in every field digital imaging is widely used. But image quality is major concern as various equipment errors, inefficiency and environmental factors degrade the quality of images by introducing noises in images. Noise is an unwanted signal present in the image but modifies the actual image content. But in most of areas like medical, satellite, pattern recognition etc. require images with zero tolerance to these noises. But it is not possibly to completely eliminate the noise but reduction can be done by applying various filters and then area which is needed for analysis purpose can be extracted from the image. Various filters that can be used for de-noising are median filter, wiener filter, hybrid filter, sobel operator etc. For segmentation watershed algorithm is discussed. But watershed algorithm suffers from over segmentation [5]. To remove over segmentation problem, various techniques are used i.e. marker controlled approach, region merging etc. The paper is organized as follows: first of all various de-noising techniques are discussed then Watershed algorithm combined with other approaches is discussed and after that Comparative analysis of various denoising and segmentation techniques is given. II. DE-NOISING OF IMAGES De-noising refers to the process of eliminating unwanted signal from image. De-noising can be performed either in spatial domain or in frequency domain. Spatial domain refers to the image plane itself [1]. Image processing operations applied on image directly modify the pixels of image. Frequency domain refers to representation of image into various frequency bands. Various filters that are used for de-noising are mean filter, median filter, wiener filter, hybrid filter, modified hybrid filter. A. Mean Filter In this scheme, a 3*3, 5*5 or 7*7 kernel is used and scans over the whole image from left top corner to bottom right corner. Mean of all the pixels lying within window is calculated and then center pixel is replaced with calculated mean. Mean is calculated by adding all pixel values and divided by sum of kernel elements. Unpredictable results are produced at the boundary [1],[3]. To remove this problem either boundaries of image are appended with zero value or duplicate value as boundary value. But mean filter doesn t produce acceptable results as it is not necessary all elements within window are close to each other. B. Median Filter In this filter, same 3*3, 5*5 or 7*7 mask is used. Center pixel is replaced with the median of pixels lying in kernel window [1][3]. Median is calculated by sorting all the pixel values and then taking the middle element. It is efficient than mean filter but boundary is preserved in same way as in mean filter. Median filter is efficient for reducing speckle noise and salt & pepper noise. Copyright to IJIRSET www.ijirset.com 982

C. Wiener Filter Wiener filtering is an inverse filtering technique which is used to recover blurred image and images corrupted with additive (Gaussian) noise [3]. It works in frequency domain. In this filter, it is assumed that signal and noise processes are second-order stationary. Wiener filter is slow as it is operated in frequency domain. But to increase the speed, inverse FFT of wiener filter is calculated to obtain the impulse response. Impulse response is truncated in spatial domain to generate convolution mask. Although performance of wiener filter is low in spatial domain as compared to frequency domain but speed is much higher. In wiener filtering, although MSE value is showing degrading results but visual representation of the image is better. D. Hybrid Filter In this filter, median and wiener filter are used. Noisy image is inputted to the median filter and output of median filter acts as input for wiener filter. This filter is used to reduce various noises like salt and pepper, Gaussian noise, impulse noise and blurring effect from images [4]. E. Modified Hybrid Median Filter In this filter, combination of mean and median filter is used. The way of calculating mean and median is as follows:suppose for n*n kernel, following matrix is produced to calculate the value. D * R * D * D R D * R R C R R * D R D * D * R * D First of all, find the mean of R (mean_r) values and mean of D (mean_d) values. Second, find the median (md) of pixels marked as D and central pixels C. Then calculate final median mm=median (mean_r, mean_d,md,c) and replace pixel X i,j. This filter produces better results as compared to other filters [3]. F. De-noising Using Morphology For morphological operations, two types of images are required: the original image on which processing need to be done and a structuring element of a specific shape that will act as a parameter to operation. Most commonly used morphological operations are dilation and erosion. Basically erosion shrinks the image means decreases the pixel values of the image and dilation expands the image means increases the pixel values of image. Based on erosion and dilation, morphological opening and closing operations are performed. Morphological opening is erosion followed by dilation operation. Morphological closing is defined as dilation operation followed by erosion. Using morphological operations for de-noising, the main concern is to select the appropriate structuring element. Structuring element should be large for removing noise [2]. III. SEGMENTATION OF IMAGES A. Watershed Algorithm Watershed segmentation is region-based segmentation whose idea comes from geography. Watershed algorithm is based on the image representation in three dimensions: two spatial coordinates and intensity. For topographic interpretation, three types of points are considered: A) points which belongs to regional minima. B) Points where if water drop is placed, it will fall with certainty to single minima. C) Points at which water is likely to fall to more than one minimum [1]. Imagine the landscape is submerged in a lake, with holes pierced in local minima. Watershed lines are divide lines of the domains of attraction of rain falling over the region. Watershed algorithm provides the complete division of the image [6]. It shows the connected regions with enclosed boundaries of single pixel wide. Main disadvantage of this algorithm is over-segmentation. Due to over-segmentation, regions are not clearly visible and it is sensible to noise. Various approaches are used to eliminate over segmentation like marker controlled approach, region merging etc. Copyright to IJIRSET www.ijirset.com 983

B. Approaches to Remove Over Segmentation 1) Region Merging: Region merging depends upon two criteria: a) region model, describing each region with a set of features. b) Dis-similarity measure, difference in the intensity values of two regions or dis-similarity between pixels along the boundaries. Merging on the basis of intensity is done by Region Adjacency Graph (RAG). Merging on the basis of features is done by computing texture features of regions. 2) Region Adjacency Graph (RAG): In this, graph structures are considered for implementation. Different regions are represented by nodes. Adjacency between regions is represented by drawing an arc. Dual RAGs are also commonly used in which nodes represent boundaries and regions are represented by arcs separating the boundaries. Fig.1. Segmented Image Fig. 2. Region Adjacency Graph Fig. 3. Dual RAG Figure 1 shows the image consisting of 5 regions. Figure 2 shows the region adjacency graph of image shown in figure 1. This has 5 nodes representing 5 different regions and 12 arcs showing adjacency between 5 regions. Figure 3 shows Dual RAG of the same image. Algorithm of RAG based on boundary pixels: 1. Input an image and create its RAG. 2. For each region R i a. Consider its neighbor region R j. b. If R i and R j are similar, merge them to one region and update RAG. 3. Steps 2 and 3 will be repeated until no region will merge. Similarity criteria: Two regions will be merged if boundary between them is weak [8]. Algorithm for region merging based on intensity values: 1. Calculate the size of each region say N i. 2. Calculate the mean intensity of each region R i and and denote this by:..(1) 3. Define the criteria for two neighboring partitions I and j. a. Calculate the difference in the mean intensities between two partitions say i and j: (2) b. Calculate the difference in the intensities between two partitions: (3) 4. Calculate Cij for similarity measurement in intensity values between two partitions: Copyright to IJIRSET www.ijirset.com 984

..(4) Choose the threshold value Tc. If Cij is less than Tc then regions will be merged otherwise not [7]. 3) Marker-Controlled Approach In this approach, foreground and background markers are extracted. For foreground markers, morphological operations, opening by reconstruction and closing by reconstruction is used. In this erosion followed by dilation operation is performed. For finding good foreground markers regional maxima is calculated. For marking the background pixels, thresholding operation is performed which results the binary image. Then watershed ridge lines are calculated. After that we find regional minima in certain locations to modify gradient magnitude image so that regional minima occur at foreground and background pixels [5]. 4) Modified Marker-Controlled Approach In this rather than using morphological operations, simple convolution and correlation operations are used for finding the foreground and background markers [5]. In convolution, two arrays of different sizes are multiplied to get the third array. One mask or kernel is used to calculate the convolution. The mask is scanned over the whole image and the output pixel value is weighted sum of input array within the mask where weights are the values assigned in mask to each pixel of the window. Mathematically convolution can be defined as:..(5) Where f is the input image and k is the kernel of m*n size. Convolution is equivalent to dilation in morphological operations Correlation is almost similar to convolution, it is computed as a weighted sum of neighboring pixels. Weight matrix is known as correlation kernel which is 180 degree rotation of convolution kernel. Mathematically, it is defined as:.(6) Where f is input image and k is correlation kernel of mxn size. Correlation is equivalent to erosion in morphological operations. This modified marker-controlled algorithm is much faster than morphological based algorithm. Speed and accuracy of this algorithm is more as compared to old algorithm [5]. Copyright to IJIRSET www.ijirset.com 985

IV. COMPARISON OF VARIOUS DE-NOISING FILTERS TABLE 1 : COMPARISON OF VARIOUS DE-NOISING FILTERS Filter Working Principle Advantages Disadvantages Mean Filter Based on average value of pixels Reduces Gaussian noise. Response time is fast Results in distorted boundaries and edges Median Filter Wiener Filter Based on the median value of pixels Based on inverse filtering in frequency domain Efficient for reducing salt & pepper noise, speckle noise. Boundaries and edges are preserved Efficient for removing blurring effects from images Complex and time consuming as compared to mean filter. Due to working in frequency domain, its speed is slow. Doesn t provide good results for speckle noise. Hybrid Filter Combination of median and wiener filter Removes speckle noise, impulse noise and blurring effects from images Complex and time consuming Modified hybrid median Filter Combination of mean and median filter Efficient for removing speckle, salt and pepper and Gaussian noise Computation time is more as compared to simple median filter. Morphology Based De-noising Based on Morphological opening and closing Operations Efficient and producing better results as compared to other filters V. COMPARISON OF VARIOUS SEGMENTATION ALGORITHMS TABLE 2: COMPARISON OF VARIOUS SEGMENTATION ALGORITHMS Segmentation Algorithm Working Principle Advantages Disadvantages Region-based algorithm. Produce complete division of Watershed Algorithm Basic idea comes from Over segmentation the image geography. Marker Controlled watershed Segmentation Modified Marker Controlled Watershed Segmentation Watershed segmentation with texture based region merging. Watershed segmentation and region merging with region adjacency graph K-mean and watershed segmentation.[7] Based on morphological operations. Based on convolution and correlation operations Based on watershed and post processing is done on the basis of features of regions Based on watershed and post processing is done on segmentation map on the basis of intensity values Based on K-means, watershed, and region merging concept. Produce less number of segments as compared to watershed. Results obtained from this are very much efficient and clear. Efficiently extract tumors and stones from images. faster as compared to morphological operations After merging, number of partitions reduced to 80-90 percent Number of partitions reduces gradually Number of merged segmentations regions are 85-95 approx. K-means reduces the problem of over segmentation also. Time complexity is more. More computation time required. Computation time required less as compared to texture based merging. Copyright to IJIRSET www.ijirset.com 986

VI. CONCLUSION AND FUTURE SCOPE In this paper, we discussed about de-noising and segmentation techniques. As if segmentation alone is performed on the image, it does not produce acceptable results. So, to achieve better visualization of segmentation map, it should be pre-processed first to remove unwanted signals. It improves accuracy and helps in better interpretation. Final results obtained after segmentation depends upon the techniques applied for pre-processing of image, segmentation and postprocessing technique. ACKNOWLEDGMENTS I would like to express my greatest gratitude to Mr. Sanyam Anand for his continuous support for the paper. REFERENCES [1] R. C. Gonzalez and R. E. Woods, Digital Image Processing, Addison-Wesley, Longman Inc., 2000. [2] Mahesh Kumar, Sukhwinder Singh. Edge Detection And Denoising Medical Image Using Morphology. International Journal of Engineering Science & Emerging Technologies, June 2012 [3] Zeinab A. Mustafa, Banazier A. Abrahim and Yasser M. Kadah, Modified Hybrid Median Filter for Image Denoising. 29 th National Radio Science Conference, April-2012. [4] Rekha Rani, Sukhbir Singh, Amit Malik. Image Denoising Using Hybrid Filter. International Journal of Innovative Technology and Exploring Engineering, June 2012 [5] Brijesh Shah, Jigar Modh and Satish Shah. A Modified Marker Controlled Watershed Algorithm with Linear Convolution for Medical Image Segmentation. International Journal of Computational Engineering Research, August 2008 [6] H.P. Ng, S. Hunag, S.H. Ong, K. W. C. Foong, P. S. Goh, W.L. Nowinski. Medical Image Segmentation Using Watershed Segmentation with Texture-Based Region Merging. 30 th annual international IEEE EMBS conference Vancouver, British Columbia, Canada, August 2008 [7] H.P. Ng, S.H. Ong, K.W.C Foong, P.S.Goh, W.L. Nowinski. Medical Image Segmentation Using K-Means Clustering and Improved Watershed Algorithm. IEEE, 2006 [8] Xiaoyan Zhang, Yong Shan, Wei Wei, Zijian Zhu. An Image Segmentation Method Based on Improved Watershed Algorithm. International Conference on Computational and Information Sciences, 2010 [9] Rajesh C. Patil, Dr. A. S. Bhalchandra. Brain Tumor Extraction from MRI Images Using MATLAB. International Journal of Electronics, Communication & Soft Computing Science and Engineering, June 2012. Copyright to IJIRSET www.ijirset.com 987