Gauge Design Configurations for High Charge / Discharge Rate Applications

Similar documents
Battery gauge system design overviewprocess flow, tools and configuration

Jinrong Qian Battery Management Applications Manager. March Meeting the Challenges of Battery Management Design for Handheld Devices

G5803 1A Single Cell Li-Ion Battery Linear Charger

1, 2, 4 and 8-Channel Very Low Capacitance ESD Protectors

MAX1720x/MAX1721x Battery Pack Implementation Guide

STBC ma standalone linear Li-Ion battery charger with thermal regulation. Description. Features. Applications

bq20z70 and bq20z90 Application Book

Battery Protection IC for Single-cell Pack

SAT BMS. User Guide. Rev

CW2013. Low-Cost 1s Fuel Gauge IC with Low-SOC Alert. General Description. Features. Applications. Order Information

Designed to GO... Universal Battery Monitor Using the bq2018 Power Minder IC. Typical Applications. Features. Figure 1. bq2018 Circuit Connection

SGM mA, Ultra Low Dropout, Low Power, RF Linear Regulators

DIO5151B 700mA/1A Buck/Boost Charge Pump LED Driver

EVALUATION KIT AVAILABLE 28V Linear Li+ Battery Charger with Smart Autoboot Assistant OFF

MAX8804V/MAX8804W/MAX8804Y/MAX8804Z

SGM2031 Low Power, Low Dropout, RF - Linear Regulators

Ethernet Protection A Whole Solution Han Zou, ProTek Devices

AOZ8900. Ultra-Low Capacitance TVS Diode Array PRELIMINARY. Features. General Description. Applications. Typical Application

SGM2020 Low Power, Low Dropout, RF - Linear Regulators

Type Version Ordering Code Package PEB 2025-N V 1.5 Q67100-H6300 P-LCC-28-R (SMD) PEB 2025-P V 1.5 Q67100-H6241 P-DIP-22

DV2003S1. Fast Charge Development System. Control of On-Board P-FET Switch-Mode Regulator. Features. Connection Descriptions. General Description

V PP IN V CC3 IN V CC5 IN EN0 EN1 MIC2561 V CC5_EN V CC3_EN

RT9505. Linear Single Cell Li-Ion Battery Charger IC. General Description. Features. Applications. Ordering Information. Pin Configurations

AOZ8101. Ultra-Low Capacitance TVS Diode Array. General Description. Features. Applications. Typical Application

LTC4089/-5 DESCRIPTION

bq2056 Designed to Go Parts List General Description bq2056 Charge Algorithm Current Voltage

FS326. One Cell Lithium-ion/Polymer Battery Protection IC. FS326 x Serial code from A to G *

FAN3989 USB/Charger Detection Device with Load Switch

PART TOP VIEW. TO LOAD SINGLE Li+ CELL TO IN LOGIC OUT. Maxim Integrated Products 1

Operation Manual of Smart Battery Systems (SBS) with SmBus V1.1 support for 12.8V LiFePO4 battery pack (6.6Ah-100Ah)

SGM2019 Low Power, Low Dropout, RF - Linear Regulators

Low-Capacitance, 2/3/4/6-Channel, ±15kV ESD Protection Arrays for High-Speed Data Interfaces

HIGH-PRECISION COULOMB COUNTER. George Sandler, UNCC ECE

ZLED7002. Toggle (Side-Step) Dual-Channel LED Driver. Datasheet. Features. Brief Description. Benefits. Available Support. Physical Characteristics

BCT mA Buck/Boost Charge Pump LED Driver

28V Dual Input Linear Li+ Battery Chargers with Battery Detection and Overvoltage-Protected Output

Energy Management System. Operation and Installation Manual

NanoPower BPX. Datasheet High-capacity battery pack for nano-satellites

YB1300S Switched Capacitor Boost Converter 5V/4.5V

2 AA Cell to 3.3V USB On-The-Go Devices White LED Drivers Handheld Devices. The HM3200B is available in the 6-pin SOT23-6.

SGM2032 Low Power, Low Dropout, RF Linear Regulators

AIC1520. Ferrite Bead GND. *33µF, 16V Tantalum, or 100µF, 10V Electrolytic Bold line indicate high-current traces. USB High-Side Power Switch

AN4870 Application note

SGM2019 Low Power, Low Dropout, RF-Linear Regulators

2007 Portable Power Design Seminar. Topic 3. Battery Charging Design Considerations. Charles Mauney and Jinrong Qian. Battery Management Applications

DIO5158 1A Lithium Ion Battery Charger IC

Single-/Dual-Input 1-Cell Li+ Chargers with OVP Protection and Programmable Charge Timer

Li Ion Smart Battery Manager Module with Safety

SGM Channel, 6th-Order Video Filter Driver for SD/HD

AUR9801D. Pin Assignments. Description. Applications. Features LI-ION/LI POLYMER BATTERY CHARGER AUR9801D

DS1306. Serial Alarm Real Time Clock (RTC)

User s Guide. User s Guide

SN8200 LI+ DUAL BATTERY CONTROLLER

bq76pl536 Design and Layout Guide

HM9708 HM9708. Battery-Powered Equipment Motherboard USB Power Switch USB Device Power Switch Hot-Plug Power Supplies Battery-Charger Circuits DC+ VIN

HX4002 HX1001. White LED Backlighting Li-Ion Battery Backup Supplies Local 3V to 5V Conversion Smart Card Readers PCMCIA Local 5V Supplies

DM9051NP Layout Guide

RT9532. Linear Single Cell Li-Ion Battery Charger IC for Portable Applications. General Description. Features. Applications. Marking Information

OEM-ORP ORP. Reads mV mV. Range. 1 reading every 420ms. Response time. Any type & brand. Supported probes. Single point.

6 Channel EMI Filter Array with ESD Protection

EDL-0A 2.5V CW LASER DIODE DRIVER

DS WIRE INTERFACE 11 DECOUPLING CAP GND

LM3526 Dual Port USB Power Switch and Over-Current Protection

MIC2560. General Description. Features. Applications. Typical Application. PCMCIA Card Socket V CC and V PP Switching Matrix

RT9526. Linear Single Cell Li-Ion Battery Charger with Input Over Voltage Protection. General Description. Features. Applications. Pin Configurations

SFC ChipClamp ΤΜ Flip Chip TVS Diode with T-Filter PRELIMINARY Features

250 Mbps Transceiver in LC FB2M5LVR

2. Control Pin Functions and Applications

Transcendent Frequency Counter

AOZ8102. Ultra-Low Capacitance TVS Diode Array. Features. General Description. Applications. Typical Application


PI6C557-01BQ. PCIe 3.0 Clock Generator with 1 HCSL Outputs. Features. Description. Pin Configuration (16-Pin TQFN) Block Diagram

HL2430/2432/2434/2436

CHAPTER 5. Voltage Regulator

VCC 1 GND. Environmental. Pb-Free Halogen Free. V D = 20V Max* 5V 3.3V G1/G2 PG 8 DIS2 3

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 1142A-A/B USB POWER MANAGER WITH Li-ION CHARGER AND THREE STEP-DOWN REGULATORS

RT9527L. Single Cell Li-Ion Battery Charger with Adjustable Charging Current for Portable Applications. General Description. Features.

I.C. PCLK_IN DE_IN GND CNTL_IN1 RGB_IN0 RGB_IN1 RGB_IN2 RGB_IN3 RGB_IN4 RGB_IN5 RGB_IN6 RGB_IN7 CNTL_IN7 CNTL_IN6 CNTL_IN5 CNTL_IN4 CNTL_IN3 CNTL_IN2

HF81 X Capacitor Bleeder

PAN3504 USB OPTICAL MOUSE SINGLE CHIP

Features. 10k. 10k ON/OFF. 1µF OVERCURRENT OVERCURRENT. Typical Two-Port Bus-Powered Hub

ISL9205. Li-ion Battery Charger. Features. Applications FN Data Sheet July 28, 2010

MIC2544A/2548A. General Description. Features. Applications. Typical Application. Programmable Current Limit High-Side Switch

UNISONIC TECHNOLOGIES CO., LTD URCZ1284-XX

BUS CONVERTER (TJA1054) User Manual

TI Designs 40 V to 400 V Uni-directional Current/Voltage/Power Monitoring Reference Design

Using the bq4845 for a Low-Cost RTC/NVSRAM Subsystem

Name Operation Temperature Package Package Mark

up7535 Dual-Input Triple-Output Power Multiplexer in PSOP-8L for USB High Side Switch General Description Ordering Information Applications

SGM mA, Low Power, Low Dropout 3 -Terminal, Linear Regulators

AZC002-04S Low Capacitance ESD Protection Array For High Speed Data Interfaces Features IEC (ESD) ±15kV (air), ±8kV (contact)

USER S MANUAL. Key Features. Specifications. Related Literature. Ordering Information ISL94202EVKIT1Z. ISL94202EVKIT1Z Evaluation Kit User Guide

Bootstrap Circuitry Selection for Half-Bridge Configurations

MAX14653/MAX14654/ MAX14655/MAX High-Current Overvoltage Protectors with Adjustable OVLO

STBC mA Standalone linear Li-Ion Battery charger with thermal regulation. Feature summary. Description. Applications.

Features MIC2779L IN OUT HTH GND. Cellular Telephone Battery Monitor

AOZ8809ADI. Ultra-Low Capacitance TVS Diode. Features. General Description. Applications. Typical Applications

CS213. Protection IC for 1-Cell Battery Pack. Description. Features. Application. Typical Application Circuit

isma-b-fcu FCU Hardware User Manual Global Control 5 Sp. z o.o. Warsaw, Poland

VGA Port Companion Circuit

Transcription:

Gauge Design Configurations for High Charge / Discharge Rate Applications Thomas Cosby 1

Agenda Special pack applications High charge and discharge rates High capacity packs High cell count packs Hardware considerations Design consideration for boards Sense Resistor Choices FET selection for gauge + protectors Calibration Parameter configuration Products (bq78350, bq34z100-g1) 2

Special Pack Applications High charge and discharge rates The current reporting registers can support up to 32A charge or discharge current. Current scaling can be used to support higher current applications. High capacity packs The gauge can typically support up to 29Ah Design Capacity. Current scaling can be used to support higher capacity applications. High cell count packs The bq34z100-g1 can support up to 65V pack voltage and the bq78350 can support up to 15S application with VSCALE. Voltage scaling can be used to support higher voltage applications. 3

High Charge and Discharge Rates (> 32A) If we need to support a 48A discharge current, then that pack will be scale by 48A/32A = 1.5 Scale factor rounded up to 2x. We can fool the gauge by current calibration: for a 5 mohm Rsense, if we calibrate at an actual current of 4A, we can use the value 2A for calibration so the CC Gain and CC Delta would become 10 mohm. We now have a calibration ratio of 50% Modify all current and capacity related data flash values by the scale factor, example: 1st level OC from 6000mA to 3000mA; pay attention to sleep current/quit current, as these are impacted as well; also modify DesignCapacity, DesignEnergy Exception is AFE OC Dsg, AFE SC Chg and Dsg: calculate these values based on the voltage = true Rsense * true current All reported current and capacity parameters will need to be scaled up by the scale factor to restore the true values. 4

High Capacity Packs (>29Ah) If we need to support a 80Ah capacity, then that pack will be scale by 80Ah/29Ah = 2.75 Scale factor rounded up to 3x or 4x. You will scale the current during calibration: for a 5 mohm Rsense, if we calibrate at an actual current of 20A, we can use the value 5A for calibration so the CC Gain and CC Delta would become 20 mohm. We now have a calibration ratio of 25% for a 4x scale factor. Modify all current and capacity related data flash values by the scale factor, example: 1st level OC from 6000mA to 1500mA; pay attention to sleep current/quit current, as these are impacted as well; also modify DesignCapacity, DesignEnergy Exception is AFE OC Dsg, AFE SC Chg and Dsg: calculate these values based on the voltage = true Rsense * true current All reported current and capacity parameters will need to be scaled up by the scale factor to restore the true values. 5

High Cell Count Packs (>65V) The bq34z100-g1 can support a pack voltage up to 65V. The input to the IC (BAT pin) must be <1V, so the external divider ratio will be set to support the Maximum Pack Voltage. As an example, if we have an 18S Li-Ion pack, then we should set the Maximum Pack Voltage to the Recommended Single Cell Maximum Voltage (eg: 5V) x Actual Number of Series Cells (e.g: 18) = 90V Setup the voltage divider to support a 90V pack voltage using the equation: Rseries = 16500 Ω x (Maximum Pack Voltage mv 900 mv) / 900 mv The bottom leg of the divider resistor should be in the range of 15 KΩ to 25 K, using 16.5 KΩ: Rseries = 16500 Ω x (90000mV 900 mv) / 900 mv = 1.634 Mohm A standard value 1.62 Mohm resistor will support an 89V pack voltage. This will provide adequate cell voltage measurement margin for a Li-Ion cell. 6

High Cell Count Packs (>65V) The data flash configuration must be scaled to ensure that the maximum reported voltage does not exceed 65535mV. This additional scaling is created by scaling the value stored in Number of Series Cells. The calculation is: Maximum Pack Voltage (e.g.: 90000mV) / Maximum Reportable Value (65535mV) = 1.38 The Number of Series Cells are an integer units so the value will be rounded up, use a 2x scaling factor. Stored Number of Series Cells = actual number of series cells / scaling factor 18 / 2 = 9 You will need to divide the voltage by 2x when calibrating. E.g. If the applied voltage is 80V, then you will enter 40000mV in the program. In this configuration, the host device that is reading the reported voltage value must also know that the voltage is scaled so that it can rescale the voltage to the true pack voltage. Note: There is a limitation as to the actual number of series cells that can be scaled. The result of the equation must be an integer. The result cannot rounded up or down, because this would cause the gauge to calculate the wrong cell voltage. As an example, if the actual number of series cells were 17, then the Number of Series Cells must be set to 17 and the voltage will be reported as a single cell. The VOLTSEL bit must be set in the Pack Configuration register. 7

Hardware considerations Design consideration for boards Layout for high current paths. ESD Sense resistor choices and layout FET selection for gauge + protectors Calibration 8

Design Consideration for Boards The coulomb counting network is probably the most important section to consider in the layout. The high current paths are the next most important. The gauge should be not placed inside the current loop for the best gauging accuracy. Transients and fields can induce error into current and voltage measurements. Use high frequency bypass capacitors and spark gaps to shunt ESD transients. 9

bq76920 / bq78350 EVM Layout CELLS LOAD Discharge current path 10/24/2012 10

bq40z50 EVM Layout Signal Plane GND Plane Gas Gauge GND Plane Power Stage High Temp Section Cell Inputs Top Layer 2nd Layer 3rd Layer Bottom Layer 10/24/2012 11

bq40z50 EVM Layout DISCHARGE CURRENT EXAMPLE FET caps Sense Resistor PACK- SYSPRES PACK+ Spark gaps VCC Resistor FETs (back side) 4P 3P 2P 1P 1N 10/24/2012 12

bq40z50 EVM Layout DISCHARGE CURRENT EXAMPLE FET caps Sense Resistor PACK- SYSPRES PACK+ Spark gaps VCC Resistor FETs (back side) 4P 3P 2P 1P 1N 10/24/2012 13

Battery Pack ESD Hit Pin Exposure will get ESD Hit ESD damages Protection FETs and BMU 10/24/2012 14

Battery Pack ESD Protection PACK+ Preferred diverting path for a ZAP to Pack +: Capacitors C1 & C2 Ensure caps can absorb 2.5 micro coulombs 10/24/2012 15

Battery Pack ESD Protection PACK- Preferred diverting path for a ZAP to Pack-: Capacitors C1 & C2 10/24/2012 16

Battery Pack ESD Protection Other Preferred diverting path for a ZAP to COMM: R1, R2 and D 10/24/2012 17

Use Proper Grounding Avoid Inductive Voltage Drop Wrong V = L di/dt Right Low level ground systems must connect to a single point at the sense resistor 10/24/2012 18

Use Spark Gaps Spark gap after a few strikes. PRES T SMD SMC PACK- PACK+ Spark gap on the right has been exposed to multiple ESD strikes. Use a spark gap at the pack connector Reduce Peak Voltage seen by the internal circuit (IC) Must be PCB external Layer Must be free of solder mask or other non-conductive coating A 10-mil (0.2 mm) gap has a voltage breakdown about 1500 volts 10/24/2012 19

Communications Line Protection 100 ohms keeps signal edges sharp, but Zeners may not survive continuous short Insure that diodes returns to Pack not to low current ground 10/24/2012 20

Sense Resistor Choices The sense resistor is one of the most critical components for good gauging performance. All of the gauge use a differential input stage to measure the voltage across the sense resistor to count coulombs. A filter is added to reduce the effects of noise and transients on current measurements. The filter should be placed close to the device. An additional high frequency capacitor can be placed between C18 and the device, if very fast transients are present. The signal traces should be routed parallel to one another and an close a possible to help with common-mode rejection. 21

Sense Resistor Choices We recommend that a 50ppm Temperature Coefficient of Resistance (TCR) resistor be used to improve accuracy. The value of the resistor will depend on the device. You must consider the voltage drop and coulomb counter offset. R SENSE < V (SR) / I MAX ; 125mV / 100A = 1.25mΩ Input Offset / R SENSE ; 10uV / 1.25mΩ = 8mA A filter is added to reduce the effects of noise and transients on current measurements. The filter should be placed close to the device. The signal traces should be routed parallel to one another and an close a possible to help with common-mode rejection. 22

FET selection for gauge + protectors considerations Most of the gauges support high-side n-channel FETs for the charge and discharge paths. The gate drive current capability depends on the AFE device, but it is typically in the 20uA range. The bq769x0 devices support a low-side CHG / DSG FET architecture. The bq76200 will be released to serve as a pre-driver to support high-side FETs and the device can support multiple FETs placed in parallel for high current applications. 23

Calibration Pack is calibrated for a 2x Scale Factor. Apply a -2000mA discharge current. Enter -1000mA in the Applied Current field. CC Gain and CC Delta set to 20 mohm for a 10 mohm sense resistor. Current reported at ½ actual value. 24

Parameter Configuration bq34z100 Parameter name Parameter Value Display Units Taper Current 100 mamp Min Taper Capacity 25 mamphr CC Threshold 900 mamphr Design Capacity 1000 MilliAmpHour Design Energy 5400 MilliWattHour SOH Load I -400 MilliAmp SOC1 Set Threshold 150 mah SOC1 Clear Threshold 175 mah SOCF Set Threshold 75 mah SOCF Clear Threshold 100 mah Sleep Current 10 mamp User Rate-mA 0 MilliAmp User Rate-Pwr 0 mw/cw Reserve Cap-mAh 0 MilliAmpHour Reserve Energy 0 mwh/cwh Dsg Current Threshold 60 mamp Chg Current Threshold 75 mamp Quit Current 40 mamp Qmax Cell 0 1000 mamphr CC Gain 10.123 mohm CC Delta 10.147 mohm Deadband 5 mamp Each current and capacity parameter must be scaled by the Scale Factor. Small values, such as Deadband may be left alone, because they will be too small. The CC Gain and CC Delta will be scaled when the current is calibrated. Their values will be set to the Scale Factor x Rsense. 25

Parameter Configuration bq78350 Subclass name Parameter name Parameter Value Units Current CC Gain 1 mohm Current Capacity Gain 1 mohm Current Deadband Deadband 3 ma OCC Threshold 6000 ma OCC Recovery Threshold -200 ma OCD Threshold -6000 ma OCD Recovery Threshold 200 ma PTO Charge Threshold 2000 ma PTO Suspend Threshold 1800 ma PTO Reset 2 mah CTO Charge Threshold 2500 ma CTO Suspend Threshold 2000 ma CTO Reset 2 mah OC Threshold 300 mah OC Recovery 2 mah SOCC Threshold 10000 ma SOCD Threshold -10000 ma VIMR Check Current 10 ma CFET OFF Threshold 5 ma DFET OFF Threshold -5 ma Fast Charging Current 3000 ma Pre-Charging Current 100 ma Subclass name Parameter name Parameter Value Units Termination Config Charge Term Taper Current 250 ma Current Thresholds Dsg Current Threshold 100 ma Current Thresholds Chg Current Threshold 50 ma Current Thresholds Quit Current 10 ma Design Design Capacity mah 4400 mah Design Design Capacity cwh 6336 cwh State Learned Full Charge Capacity 4400 mah CEDV cfg FCC Learn Up 512 mah CEDV cfg FCC Learn Down 256 mah CEDV cfg OverLoad Current 5000 ma CEDV cfg Electronics Load 0 3uA CEDV cfg Near Full 200 mah CEDV cfg Reserve Capacity 0 mah Sleep Sleep Current 10 ma Data Remaining AH Cap. Alarm 300 mah Data Remaining WH Cap. Alarm 432 cwh THESE PARAMETERS ARE NOT SCALED. Subclass name Parameter name Parameter Value Units AOLD Threshold and Delay 0 hex ASCD Threshold and Delay 0 hex 26

Products bq34z100-g1 Supports Li-Ion, LiFePO4, PbA, NiMH, and NiCd Chemistries Capacity Estimation Using Patented Impedance Track Technology for Batteries from 3 V to 65 V Supports Battery Capacities up to 29Ahr with Standard Configuration Options Supports Charge and Discharge Currents up 32A with Standard Configuration Options configurations. External NTC Thermistor Support Supports Two-Wire I2C and HDQ Single-Wire Communication Interfaces with Host System SHA-1/HMAC Authentication One- or Four-LED Direct Display Five-LED and Higher Display Through Port Expander Reduced Power Modes (Typical Battery Pack Operating Range Conditions) Normal Operation: < 145-μA Average Sleep: < 84-μA Average bq34z100-g1 Full Sleep: < 30-μA Average bq78350 Flexible Configuration for 3 to 5 Series (bq76920), 6 to 10 Series (bq76930), and 9 to 15 Series (bq76940) Li-Ion and LiFePO4 Batteries Compensated End-of-Discharge Voltage (CEDV) Gauging Algorithm Supports Battery Configurations up to 320 Ahr Supports Charge and Discharge Current Reporting up to 320 A External NTC Thermistor Support from Companion AFE Supports SMBus Host Communication Offers an Optional Resistor Programmable SMBus Slave Address for up to Eight Different Bus Addresses SHA-1 Authentication Drives up to a 5-Segment LED or LCD Display for State-Of-Charge Indication Full Array of Programmable Protection Features Voltage Current Temperature System Components 27

bq34z100-g1 28

bq78350-r1 // bq76920 / bq76930 / bq76940 29

bq78350-r1 // bq76920 / bq76930 / bq76940 AFE Options: 3-5 cells 6-10 cells 9-15 cells 30

Representative equipment Energy Storage Systems Cordless home appliances General 12 48V battery packs Light electric vehicles (LEV): ebikes, escooters, Pedelec and pedal assist bicycles) Battery backup/ups systems Telecom Power systems Robotic or handheld vacuum cleaners, other tools Drones 31

Questions