Innovative Modeling and Rapid Prototyping of Turbocharger Impeller

Similar documents
Finite Element Analysis and Optimization of I.C. Engine Piston Using RADIOSS and OptiStruct

Miniaturizing Components by Reverse Engineering and Rapid Prototyping Techniques

RAPID PROTOTYPING FOR SLING DESIGN OPTIMIZATION

Convergent Modeling and Reverse Engineering

ANALYSIS AND OPTIMIZATION OF FLYWHEEL

MDMD Rapid Product Development

Static And Modal Analysis Of Rotating Wheel Rim Using Ansys

ScienceDirect. Reverse Engineering of Parts with Optical Scanning and Additive Manufacturing

Design Verification Procedure (DVP) Load Case Analysis of Car Bonnet

An Engineering Application Selection Guideline for Reverse Engineering Systems: Laser System and Optical System

Laser scanning and CAD conversion accuracy correction of a highly curved engineering component using a precision tactile measuring system

Nouveautés ANSYS pour le calcul structurel et l impression 3D. CADFEM 2017 ANSYS Additive Manufacturing

midas NFX An insight into midas NFX

ONE DIMENSIONAL (1D) SIMULATION TOOL: GT-POWER

FEA and Topology Optimization of an Engine Mounting Bracket

RHEOMOLD ENGINEERING SOLUTIONS LLP

Static Structural Analysis and Optimization of Engine Mounting Bracket

Chapter 9 3D Modeling

Stress analysis of Camshaft by using ANSYS Software

Images from 3D Creative Magazine. 3D Modelling Systems

THREE DIMENSIONAL DYNAMIC STRESS ANALYSES FOR A GEAR TEETH USING FINITE ELEMENT METHOD

COMPUTER AIDED REVERSE ENGINEERING SYSTEM USED FOR CUSTOMIZED PRODUCTS

AND INSPECTION SOFTWARE

Analysis of Gas Duct Movement in Corex Process Y.P. Reddy 2, Sinhgad College of Engg, Pune

Analysis of Crank End of Connecting Rod using Finite Element Method

USAGE OF ANSA S AUTOMATED VOLUME MESHING-METHODS IN THE RAPID PRODUCT DEVELOPMENT PROCESS OF DIESEL ENGINES

Similar Pulley Wheel Description J.E. Akin, Rice University

A Comparison Study of 3D Scanners for Diagnosing Deviations in Their Outputs Using Reverse Engineering Technique

The Application of CAD/CAM in the Design of Industrial Products

Static, Modal and Kinematic Analysis of Hydraulic Excavator

INDUSTRIAL SYSTEM DEVELOPMENT FOR VOLUMETRIC INTEGRITY

Driven by Innovation. March 28th

QUALITY CONTROL OF PARTS AND ASSEMBLIES USING SOFTWARE GOM INSPECT BASED ON PORTABLE CMM DATA

NUMERICAL ANALYSIS OF CENTRIFUGAL PUMP IMPELLER FOR PERFORMANCE IMPROVEMENT

Introduction to CAD/CAM/CAE

PTC Creo Simulate. Features and Specifications. Data Sheet

Sharif University of Technology. Session # Rapid Prototyping

A Comprehensive Introduction to SolidWorks 2011

THE COMPUTER SIMULATION FOR INVESTMENT CASTING FROM SUPER-ALLOYS NI Ing. Aleš Herman *

FE Analysis Of Runner Blade For Small Bulb Turbine

Finite Element Modal Analysis and Mesh Optimization of a Typical Turbo Fan Engine Fan Hub Frame

Geometric Modeling. Introduction

STRESS ANALYSIS AND DESIGN OPTIMIZATION WITH CATIA

Study of Design and Analysis of Air Conditioner Compressor Mounting Bracket

2: Static analysis of a plate

Real World to Virtual World. With Geomagic Design X

Design optimization of C Frame of Hydraulic Press Machine

Page 1 of 6

Advanced Webinar. Date: December 8, 2011 Topic: General Use of midas GTS (Part I) Presenter: Abid Ali, Geotechnical Engineer

Topology Optimization for Designers

Reverse Engineering Tool to improve quality and efficiency of design, manufacture and analysis.

FEA Simulation Approach for Braking Linkage: A Comparison through Cross-section Modification

THE COMPUTATIONAL MODEL INFLUENCE ON THE NUMERICAL SIMULATION ACCURACY FOR FORMING ALLOY EN AW 5754

Performance Analysis of an After Cooler Used In High Power Engine Using CFD

Creating a solid documentation based on a 3D scans performed on. SMARTTECHs scanner scan3d

VALIDATE SIMULATION TECHNIQUES OF A MOBILE EXPLOSIVE CONTAINMENT VESSEL

An introduction to. the Additive Direct Digital Manufacturing (DDM) Value Chain. Terrence J. McGowan Associate Technical Fellow Boeing

Aerodynamic Design Optimization of Centrifugal Compressor Impeller Based on Genetic Algorithm and Artificial Neural Network

Fabrication of partially double-curved surfaces out of flat sheet material through a 3d puzzle approach

US foundry Bradken implements optical measuring technology

The application of a SMARTTECH 3D scanner for the production of additional parts / industry: motorcycle accessories

Simpleware: Converting 3D Images into Models for Visualisation, Measurement and Computational Simulation

3D INSPECTION SOFTWARE

How to model a car body in T-Splines

This lab exercise has two parts: (a) scan a part using a laser scanner, (b) construct a surface model from the scanned data points.

Topology Optimization of an Engine Bracket Under Harmonic Loads

Advanced Computation in the design and development of aircraft engines. Serge Eury SNECMA

3-dimensional technology. January d Software for Maya archaeology research GEOMAGIC. Author: Cindy Contreras / Editor: Nicholas Hellmuth

Finite Element Analysis and Experimental Validation of Lower Control Arm

Week 2 Lecture 3D Part Design. ME Introduction to CAD/CAE Tools

Design Analysis Of Industrial Gear Box Casing.

Modeling a Scanned Object with RapidWorks

SOLIDWORKS 2019 Advanced Techniques

DESIGN & ANALYSIS OF CONNECTING ROD OF FORMING AND CUTTING DIE PILLAR STATION OF VACUUM FORMING MACHINE

Using three-dimensional CURVIC contact models to predict stress concentration effects in an axisymmetric model

Design and development of optimized sprocket for Track hoe

Finite Element Analysis and Structure Optimal Design of the Column of Deep-Hole Drilling Machine

[1] involuteσ(spur and Helical Gear Design)

Surface quality of foundry pattern manufactured by FDM method - rapid prototyping

DEVELOPING AND 3D PROTOTYPING OF A CUSTOMIZED DEVICE FOR CNC LASER MICRO-MACHINING

76 ACADIA22 >> CONNECTING CROSSROADS OF DIGITAL DISCOURSE

DYNARDO Dynardo GmbH CFD Examples. Dr.-Ing. Johannes Will President Dynardo GmbH

Important note To cite this publication, please use the final published version (if applicable). Please check the document version above.

Tube stamping simulation for the crossmember of rear suspension system

Recent Advances in MSC/PATRAN Pre-Processing Software Allows Modeling of Complex Automotive Lamp Designs

STRENGTH RELIABILITY OF TURBINE ROTOR ENSURING BASED ON MULTIDISCIPLINARY OPTIMIZATION Salnikov Anton* *CIAM

ANSYS Discovery SpaceClaim Capabilities

TTH 3D Printing Handbook

Measurement report. Table of Contents

Engineering designs today are frequently

CONTACT STATE AND STRESS ANALYSIS IN A KEY JOINT BY FEM

Modal Based Optimization of TAPS Using OptiStruct

Principal Roll Structure Design Using Non-Linear Implicit Optimisation in Radioss

Impact of 3D Laser Data Resolution and Accuracy on Pipeline Dents Strain Analysis

PRESSURE DROP AND FLOW UNIFORMITY ANALYSIS OF COMPLETE EXHAUST SYSTEMS FOR DIESEL ENGINES

PRODUCT DEVELOPMENT FROM 3D SCANNER TO CNC MACHINE IN REVERSE ENGINEERING

Design, Modification and Analysis of Two Wheeler Cooling Sinusoidal Wavy Fins

Complex Shapes Creation with Hybrid Modelling

MODERN DIMENSIONAL MEASURING TECHNIQUES BASED ON OPTICAL PRINCIPLES

Structural Analysis of an Aluminum Spiral Staircase. EMCH 407 Final Project Presented by: Marcos Lopez and Dillan Nguyen

Transcription:

Innovative Modeling and Rapid Prototyping of Turbocharger Impeller Mallikarjuna 1, Dr. U chandrashekar 2 1 Department of Mechanical Engineering, M.S.Ramaiah Institute of Technology, Bangalore-560054, India. 2 Gas Turbine Research Establishment, Bangalore-560054, India. ABSTRACT A Turbocharger is a forced induction device that is used to allow more power to be produced for an engine of a given size driven by the engine s exhaust gases is used in petrol, diesel powered cars, trucks, marine applications, aircraft etc.in exhaust gas turbo charging, part of exhaust gas energy, which would normally be wasted is used to drive a turbine. The turbine shaft is connected to a compressor, which draws in combustion air, compresses it, and then supplies it to the engine. The increased air supply enables more fuel to be burnt, thus leading to lower fuel consumption and less emission; hence the engine develops higher power. Development of impeller for turbochargers through conventional manufacturing has got many challenges due to the blade geometry complexity and high competition in industries due to cost management. The normal manufacturing route involves casting and machining this would lead the cost. Time consumption and not efficient for small manufactures. The aim of the project is to make impeller for turbochargers with great design flexibility, less time consumption by integrating the reverse engineering (RE) and rapid prototyping (RP) techniques called Stereolithography apparatus (SLA). SLA technique would give the design flexibility with reduced cost and it can be used for visualization, mechanical testing etc. Keywords: Epoxy resin, Impeller, Reverse Engineering, Rapid prototyping, SLA. 1. INTRODUCTION The aim of the project is to replace the conventional manufacturing process with the rapid casting process for development of turbocharger impeller. Generally turbocharger impeller manufacturing industry used to conventional manufacturing process for development of impeller. The turbocharger impeller development through conventional manufacturing process confronts many challenges due to small thickness of blades, geometrical complexity and high competition in the turbo industry leading to severe cost-cutting measures at all stages of product development. In the normal practice development of turbocharger impeller the foundry technique of pouring metal into sand casting was the age old to today conventional practice in the manufacturing industry. The new technique impeller to produce as following. First the design specifications are developed according to the standards and then the 3D model is created by the help of commercial software. This is followed by tooling for pattern design and creates the core and cavity made of wood or aluminium and the molten metal is poured. Later the casting is subjected to shot blasting and machined for the required dimensions and specifications. The machined and finished components are then tested for quality assurance. This entire cycle is time consuming and there is a little scope for incorporating a design modification and there is no flexibility for interventions. For the past 100 years that approach has been acceptable. Today the emphasis is on meeting customer s unique turbocharger impeller requirements and meeting those requirements in ever shorter period of time. This reality is new challenges for impeller manufactures and caused a rethinking of the processes of design, development and implementation of the product. International practices for turbocharger impeller manufacturing have imbibed several advanced techniques in design, analysis and manufacturing domains so as to compress the time frame of production and also induct flexibility into design process. One of the recent features is the use of rapid prototyping techniques wherein the first set of impeller in design process are produced and directly used in impeller testing. For industrial enterprises a very important factor is the speed with which a new or improved product can flow to a 1426

market. In a competitive market, it is well known that products that are introduced before those of their competitors generally are more profitable and take a larger share of the market. At the same time a very important aspect for the enterprise is the production of high-quality turbocharger impellers. 2 REVERSE ENGINEERING POINT AND IMAGE PHASE Registration: Manual and automatic alignment Data optimization: Noise and point redundancy reduction, sampling points and identifying primitives Basic operations: Rotate and move, datum control and separating and merging point clouds Image processing: Region growing and thresholding Reverse engineering (RE) is defined as the process of obtaining a geometric CAD model from 3-D points acquired by scanning/ digitizing existing parts/products. In RE process the physical component of turbocharger impeller is scanned and got the point cloud data using laser scanner. There are different types of 3D scanners for digitizing the surface of components but for this impeller scan laser scanner technique has been used. Then the cloud data is of impeller is taken into the Geomagic studio software for creating the model. In that software there are many tools to make perfect model of impeller. Finally developed the impeller model using CATIA V5 software 2.1 THE GEOMAGIC STUDIO APPLICATION IS MADE UP THE CAD MODEL For an overall view of RE software operation, the different RE data processing phases will first be described. The required RE operations are then considered. The complete RE data processing chain, from scan data to the final NURBS POLYGON PHASE Polygon optimization: Noise reduction and cleaning, abnormal faces cleaning, polygon mesh refinement and polygon mesh decimation. Polygon edit and control: Filling holes, defeaturing, edge detection and sharpening control Basic operations: Rotate and move, datum control, CURVE PHASE Primitive fitting: Circle, cylinder and plane Curve construction: Cross section and curve fitting from points Curve modification and editing: Curve reparameterization, curve degree conversion, curve smooth and clean, control point edit, transition and extension, point generation and curve redirection Boolean, offset, shells, thicken, cut and mirror NURBS SURFACE PHASE Surface from curve: Loft, UV-network and extrude Patch creation and control: Curvature detect, patch editing and patch template re use NURBS surface creation and controls: Grids, NURBS patches merging, NURBS surface smoothing and editing Evaluation: Point to CAD, polygon to CAD, CAD to CAD. Fig 1 Alignment of points 1427

Fig 2 wrap phase Fig 6 finished impeller model 3 LINEAR STATIC ANALYSES 3.1 Materials Fig 3 after cleaning the surface The materials are used for the turbocharger impeller should have the good strength and high heat resistant properties are as follows: INCONEL alloy A-286 INCONEL alloy N06230 Wrought Aluminium alloy-2219 Fig 4 after merging the blades Fig 7 Meshed impeller component 3.2 STATIC ANALYSIS OF IMPELLER MODEL Fig 5 importing into CATIA screen Here in this analysis complete model is considered and load is a pressure 6 bar applied in y-direction to the blade faces. For three different materials stress and displacement effects on model 1428

are discussed and simulation diagrams of respective materials shown in the below figures. Fig 10 Impeller and simulation diagram (Von misses stress) 3.2.1 Stress and displacement for material- INCONEL alloy A-286 Fig 11 Impeller and simulation diagram (Displacement) Fig 8 Impeller and simulation diagram (von mises stress) 3.2.3 Stress and displacement for material- Wrought Aluminium alloy-2219 Fig 9 impeller and simulation diagram (Displacement) 3.2.2 Stress and displacement for material- INCONEL alloy N06230 Fig 12 Impeller and simulation diagram (Von misses stress) Fig13 Impeller and simulation diagram (Displacement) 1429

Stress in Mpa 4.0 RESULTS & DISCUSSION Table 1 Material results comparison Properties INCOLO INCONE Wrough Y alloy A- L alloy t Al 286 N06230 alloy- 2219 Max. Von mises stress in MPa Displacemen t in mm 5.7 5.569 5.602 0.002 0.002 0.006 Graph 2 shows displacement vs materials for pressure 6 bar The maximum von Mises stress noticed at blade root at near the hub and shaft hole maximum stress is 5.7 N/mm 2, for material INCONEL alloy A286 The maximum displacement is about 0.006mm at load of 6 bar, for material Wrought Al alloy 2219 It is concluded that, the maximum stress among the 3 materials is of 5.7MPa is noticed for material 1 is well within the allowable limit. Hence, the design is safe and still we can do optimization of the impeller because it is very less maximum stress when compared with the yield stress. For three materials is we can do optimization 5.75 5.0 RAPID PROTOTYPING 5.7 5.65 5.6 5.7 5.55 5.602 5.569 5.5 Materials Rapid prototyping: The term rapid prototyping (RP) refers to a class of technologies that are used to produce physical objects layer-bylayer directly from computer-aided design (CAD) data. Graph 1 Shows stress distribution vs materials for pressure 6 bar These techniques allow designers to produce tangible prototypes of their designs quickly, rather than just two-dimensional pictures. A wide range of techniques and materials can be used for rapid prototyping. There are morethan ten commercial rapid prototyping processes and more than five concept modeling processes; all have unique properties. The impeller is built by using the following RP technique. Material Sla 5510 Resin 1430

Table 1: Properties of liquid resin turbocharger today's market emphasizing the speed with customized components. In this scenario who Measurement Condition value Appearance clear Viscosity @30 C 180cps Part building layer thickness 0.05 mm 0.10 mm 0.15 mm 5.1 STEREOLITHOGRAPHY APPARATUS (SLA) The Stereolithography Apparatusmethod is used most commonly in prototyping, model building or production applications. SLA prototypes have become the preferred choice among designers, engineers, researchers, students and many other areas that use rapid prototyping. the all the scan point cloud data recreated the SLA is the most economical method to produce plastic prototypes and models. will reach the market obviously sale the product and occupy the customers competitively. This reality is new challenges for impeller manufactures and caused a rethinking of the processes of design, development and implementation of the product. The project focused on how rethinking is applied in terms of the application of advanced engineering tools and methods to specify the design and development of products. Design and development of the impeller using conventional manufacturing process (Sand Casting) is very complicated, difficult and also time consuming. In this project work we are mainly concentration on the impeller design and development methods. In design RE process creating the impeller model, from physical component of impeller generating the point cloud data by laser scanner, then that data is import into the geomagic studio software and in this merged impeller model and finished in the Catia V5 R 19 software and finally SLA technique created the impeller prototype. Fig 13 Impeller prototype produced using SLA process 6.0 CONCLUSION This will lead to time saving and cost of manufacturing. The development of the impeller using SLA process is used for visualization, mechanical test etc. and also Rapid tooling for mass production.in the design of the impeller we are go through checking possibility optimization process, with three different materials. And also Analysis to be carried out for optimization of component to analyze the design is safe or not using static. From the analysis part concluded that we can do optimization on impeller. The impeller manufacturing conventional is start with design, casting, machining and production. The impeller is most important part of the 1431

REFERENCES [1]V.R.S.KishoreAjjarapu,K.V.P.P.Chandu,D.M.M ohanthybabu, design and analysis of the impeller of a turbocharger for a diesel engine E- ISSN2249 8974. [2] GrzegorzBudzik, Krzysztof KubiakJacek Bernaczek, Marek Magniszewski, Hybrid Method for Rapid Prototyping of Core Models of Aircraft Engine Blades, Vol. 19, No. 2 2012. [3] G. Budzik, Properties of made by different methods of RP impeller foundry patterns Volume 7 Issue 2/2007 83 86 [7]C.Coleman. "Turbocharger History." Renault 5 GT. Internet:http://freespace.virgin.net/c.coleman/t urbhist.htm [Feb. 25, 2007]. [8] Albert Kammerer Experimental Research into Resonant Vibration of Centrifugal Compressor Blades Diss. ETH No. 18587Swiss Federal Institute of Technology (ETH Zürich) [9] Caitlin J. Smythe Forced Response Predictions in Modern Centrifugal Compressor Design Massachusetts Institute of Technology Libraries June 2005 [4]Prof.R.Arravind, Dr.M.Saravanan, R.Mohamed Rijuvan. Modal analysis of a radial flow composite impeller Vol. 4, Issue 1 ISSN 0976-2558. [5] Vinesh Raja, Kiran J. Fernandes, Reverse Engineering an industrial prospective by (ISBN- 13: 9781846288555) [6]Chua C.K., Leong K.F. and Lim C.S Rapid Prototyping: Principles and Applications, 2nd Edition (ISBN 981-238-117-1) [10] Mallilakrjuna, Souvenir and book of Abstracts Innovative modeling & rapid prototyping of the turbocharger impeller proc. International conference on Advanced materials, Manufacturing, Management & Thermal sciences-2013, MF53 SIT Tumkur, India. 1432