Noc Evolution and Performance Optimization by Addition of Long Range Links: A Survey. By Naveen Choudhary & Vaishali Maheshwari

Similar documents
STG-NoC: A Tool for Generating Energy Optimized Custom Built NoC Topology

EnergyEfficientBranchandBoundbasedOnChipIrregularNetworkDesign

International Journal of Research and Innovation in Applied Science (IJRIAS) Volume I, Issue IX, December 2016 ISSN

An Energy Efficient Topology Augmentation Methodology Using Hash Based Smart Shortcut Links in 2-D Mesh

WITH the development of the semiconductor technology,

Escape Path based Irregular Network-on-chip Simulation Framework

Routing Algorithms, Process Model for Quality of Services (QoS) and Architectures for Two-Dimensional 4 4 Mesh Topology Network-on-Chip

MinRoot and CMesh: Interconnection Architectures for Network-on-Chip Systems

Bursty Communication Performance Analysis of Network-on-Chip with Diverse Traffic Permutations

Network on Chip Architecture: An Overview

A Dynamic NOC Arbitration Technique using Combination of VCT and XY Routing

Network-on-Chip Architecture

Design and Implementation of Low Complexity Router for 2D Mesh Topology using FPGA

BARP-A Dynamic Routing Protocol for Balanced Distribution of Traffic in NoCs

Analyzing Methodologies of Irregular NoC Topology Synthesis

SoC Design Lecture 13: NoC (Network-on-Chip) Department of Computer Engineering Sharif University of Technology

Design and Implementation of Buffer Loan Algorithm for BiNoC Router

Akash Raut* et al ISSN: [IJESAT] [International Journal of Engineering Science & Advanced Technology] Volume-6, Issue-3,

Fault-Tolerant Multiple Task Migration in Mesh NoC s over virtual Point-to-Point connections

A Novel Energy Efficient Source Routing for Mesh NoCs

ASurveyonTopologybasedReactiveRoutingProtocolsinVanets

On the Physicl Layout of PRDT-Based NoCs

Mapping and Configuration Methods for Multi-Use-Case Networks on Chips

Application-Specific Network-on-Chip Architecture Customization via Long-Range Link Insertion

Evaluation of NOC Using Tightly Coupled Router Architecture

SoC Design. Prof. Dr. Christophe Bobda Institut für Informatik Lehrstuhl für Technische Informatik

AC : HOT SPOT MINIMIZATION OF NOC USING ANT-NET DYNAMIC ROUTING ALGORITHM

Efficient And Advance Routing Logic For Network On Chip

Design and Implementation of a Packet Switched Dynamic Buffer Resize Router on FPGA Vivek Raj.K 1 Prasad Kumar 2 Shashi Raj.K 3

Network on Chip Architectures BY JAGAN MURALIDHARAN NIRAJ VASUDEVAN

ToMinimize the Consumption of Logical Addresses in a Network using OSPF with Overloading Technique

Transmission Control Protocol over Wireless LAN

NoC Test-Chip Project: Working Document

DESIGN AND IMPLEMENTATION ARCHITECTURE FOR RELIABLE ROUTER RKT SWITCH IN NOC

Design And Verification of 10X10 Router For NOC Applications

CAD System Lab Graduate Institute of Electronics Engineering National Taiwan University Taipei, Taiwan, ROC

Heuristics Core Mapping in On-Chip Networks for Parallel Stream-Based Applications

Networks-on-Chip Router: Configuration and Implementation

4. Networks. in parallel computers. Advances in Computer Architecture

COMPARISON OF OCTAGON-CELL NETWORK WITH OTHER INTERCONNECTED NETWORK TOPOLOGIES AND ITS APPLICATIONS

Design of a System-on-Chip Switched Network and its Design Support Λ

Clustering-Based Topology Generation Approach for Application-Specific Network on Chip

Encoding and Decoding Techniques for Distributed Data Storage Systems

ISSN Vol.04,Issue.01, January-2016, Pages:

FPGA Prototyping and Parameterised based Resource Evaluation of Network on Chip Architecture

ERA: An Efficient Routing Algorithm for Power, Throughput and Latency in Network-on-Chips

LOW POWER REDUCED ROUTER NOC ARCHITECTURE DESIGN WITH CLASSICAL BUS BASED SYSTEM

Network-on-chip (NOC) Topologies

FPGA based Design of Low Power Reconfigurable Router for Network on Chip (NoC)

A Strategy for Interconnect Testing in Stacked Mesh Network-on- Chip

CHAPTER 6 FPGA IMPLEMENTATION OF ARBITERS ALGORITHM FOR NETWORK-ON-CHIP

On Packet Switched Networks for On-Chip Communication

NEtwork-on-Chip (NoC) [3], [6] is a scalable interconnect

Lecture 18: Communication Models and Architectures: Interconnection Networks

Design of Synchronous NoC Router for System-on-Chip Communication and Implement in FPGA using VHDL

OVERVIEW: NETWORK ON CHIP 3D ARCHITECTURE

HARDWARE IMPLEMENTATION OF PIPELINE BASED ROUTER DESIGN FOR ON- CHIP NETWORK

Fitting the Router Characteristics in NoCs to Meet QoS Requirements

Extended Junction Based Source Routing Technique for Large Mesh Topology Network on Chip Platforms

Highly Resilient Minimal Path Routing Algorithm for Fault Tolerant Network-on-Chips

Lecture 2: Topology - I

DESIGN OF EFFICIENT ROUTING ALGORITHM FOR CONGESTION CONTROL IN NOC

Dynamic Stress Wormhole Routing for Spidergon NoC with effective fault tolerance and load distribution

Mapping of Real-time Applications on

Keywords : Bayesian, classification, tokens, text, probability, keywords. GJCST-C Classification: E.5

Fault Tolerant and Secure Architectures for On Chip Networks With Emerging Interconnect Technologies. Mohsin Y Ahmed Conlan Wesson

ISSN Vol.03, Issue.02, March-2015, Pages:

Sanaz Azampanah Ahmad Khademzadeh Nader Bagherzadeh Majid Janidarmian Reza Shojaee

Mapping and Physical Planning of Networks-on-Chip Architectures with Quality-of-Service Guarantees

Deadlock-free XY-YX router for on-chip interconnection network

Future Gigascale MCSoCs Applications: Computation & Communication Orthogonalization

ComparisonofPacketDeliveryforblackholeattackinadhocnetwork. Comparison of Packet Delivery for Black Hole Attack in ad hoc Network

Transaction Level Model Simulator for NoC-based MPSoC Platform

TheComponentsthatcanBuildFlexibleEfficientSoftwareDefinedNetwork

Performance Analysis of NoC Architectures

JUNCTION BASED ROUTING: A NOVEL TECHNIQUE FOR LARGE NETWORK ON CHIP PLATFORMS

on Chip Architectures for Multi Core Systems

SURVEY ON LOW-LATENCY AND LOW-POWER SCHEMES FOR ON-CHIP NETWORKS

AREA-EFFICIENT DESIGN OF SCHEDULER FOR ROUTING NODE OF NETWORK-ON-CHIP

A Survey of Techniques for Power Aware On-Chip Networks.

The Design and Implementation of a Low-Latency On-Chip Network

Available online at ScienceDirect. Procedia Computer Science 89 (2016 )

A Heuristic Search Algorithm for Re-routing of On-Chip Networks in The Presence of Faulty Links and Switches

High Performance Interconnect and NoC Router Design

Design Space Exploration and Prototyping for On-chip Multimedia Applications

SVM Classification in Multiclass Letter Recognition System

A Literature Review of on-chip Network Design using an Agent-based Management Method

Application Specific Buffer Allocation for Wormhole Routing Networks-on-Chip

FCUDA-NoC: A Scalable and Efficient Network-on-Chip Implementation for the CUDA-to-FPGA Flow

Modeling the Traffic Effect for the Application Cores Mapping Problem onto NoCs

Dynamic Router Design For Reliable Communication In Noc

An Energy-Efficient Reconfigurable NoC Architecture with RF-Interconnects

Design and Test Solutions for Networks-on-Chip. Jin-Ho Ahn Hoseo University

RIMT IET, Mandi Gobindgarh Abstract - In this paper, analysis the speed of sending message in Healthcare standard 7 with the use of back

Lecture 22: Router Design

DLABS: a Dual-Lane Buffer-Sharing Router Architecture for Networks on Chip

Real Time NoC Based Pipelined Architectonics With Efficient TDM Schema

Area and Power-efficient Innovative Network-on-Chip Architecture

Demand Based Routing in Network-on-Chip(NoC)

Embedded Systems: Hardware Components (part II) Todor Stefanov

Transcription:

Global Journal of Computer Science and Technology: E Network, Web & Security Volume 15 Issue 6 Version 1.0 Year 2015 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 0975-4172 & Print ISSN: 0975-4350 Noc Evolution and Performance Optimization by Addition of Long Range Links: A Survey By Naveen Choudhary & Vaishali Maheshwari Abstract- In the last decade, Networks-on-Chips became the leading edge technology due to the growing requirements of electronic systems. Basically, NoC is an advancement of bus interconnect technology. The challenge is to interconnect existing components such as processors, controllers, and memory arrays in such a way that there is an optimal utilization of communication resources necessitating optimization of the various dominant factors like energy/power consumption, interconnection delay, latency, throughput, etc. In this paper, we focused on the evolution of NoC. Then we studied and have shown through an example that when application specific long-range links are inserted among the tiles whose communication frequencies are high, there is a reduction in the average packet latency and an energy efficient architecture is build up with high throughput. We also discussed the turn model which is deadlock free and the energy model for NoC. Keywords: NoC, long range link, 2D, turn model. GJCST-E Classification : D.3.4 NMIMS, University, India NocEvolutionandPerformanceOptimizationbyAdditionofLongRangeLinksASurvey Strictly as per the compliance and regulations of: 2015. Naveen Choudhary & Vaishali Maheshwari. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all noncommercial use, distribution, and reproduction inany medium, provided the original work is properly cited.

Noc Evolution and Performance Optimization by Addition of Long Range Links: A Survey Naveen Choudhary α & Vaishali Maheshwari σ Abstract- In the last decade, Networks-on-Chips became the leading edge technology due to the growing requirements of electronic systems. Basically, NoC is an advancement of bus interconnect technology. The challenge is to interconnect existing components such as processors, controllers, and memory arrays in such a way that there is an optimal utilization of communication resources necessitating optimization of the various dominant factors like energy/power consumption, interconnection delay, latency, throughput, etc. In this paper, we focused on the evolution of NoC. Then we studied and have shown through an example that when application specific long-range links are inserted among the tiles whose communication frequencies are high, there is a reduction in the average packet latency and an energy efficient architecture is build up with high throughput. We also discussed the turn model which is deadlock free and the energy model for NoC. Keywords: NoC, long range link, 2D, turn model. I. Introduction P resent day VLSI technology permits to build systems with millions of transistors on a single chip to meet the growing computational applications and to achieve high performance with lowpower/energy requirements. A system on a chip or system on chip (SoC) is an integrated circuit (IC) that integrates all components of a computer or other electronic system into a single chip but the interconnection between each other is a challenging issue [2]. Traditionally, the interconnection networks used for communication among the components in a system on chip were bus-based and point to point links. In a shared bus interconnection network, many masters and slaves share the bus with each other but only one master at a time can use the bus, and the other masters have to wait for their turn so a bus arbiter makes a decision among multiple bus access requests. The shared bus architecture was used because of its lowcost and simple installation characteristics. However, it has limitation in its scalability because only one master at a time can use the bus at a time. It becomes a communication bottleneck when the number of bus requesters grows tremendously and the bandwidth is limited. Dedicated point-to-point links improves latency, power usage and bandwidth availability. But as the number of IPs grows, the number of dedicated point-to- point interconnections grows exponentially resulting in a larger realization area [3]. A solution that satisfies scalable bandwidth requirement is "Network on Chip (NoC) architecture". Dally and Towlesproposed that NoC eliminate ad-hoc global wiring and introduced on-chip interconnection network with modular design which gives better performance, higher bandwidth, and scalability and reusable components. NoCs use packets to route data from the source Processing Element (PE) or node to the destination PE or node via a network fabric that consists of network interfaces, routers and interconnection links [1]. A research on network-on-chip (NoC) depicts a change of state from computation-centric to communication-centric design paradigm by development of scalable communication structures and thus achieving global communication in SoC [4]. A 2D mesh topology is a regular grid-like NoC architecture which has a simpler design layout. They have well-controlled electrical parameters and reduced power consumption on the global wires. Such architectures have long packet latencies although the shortest path algorithms are used because here the packet have to travels many hops to reach to the destination node which leads to an energy inefficient architecture [6]. Figure 1 : A standard 4x4 2D mesh network A completely new concept is proposed of laying few long rang links on the top of a regular 2D mesh network depending on the communication traffic characteristics of various applications to reduce the number of hops between the communicating nodes. Thus, reducing the average latency of a packet and thereby, improving the performance of the entire network [5]. 25 Author α: Department of Computer Science and Engineering, CTAE, MPUAT, Udaipur, India. Author σ: Ph.D. Scholar, Department of Computer Science and Engineering, CTAE, MPUAT, Udaipur, India. e-mail: vaishalisodani@gmail.com

26 Figure 2 : Long range links are added to a standard 4X4 mesh network In this survey paper, we summarize the evolution and necessity of NoC. We have shown the NoC architectures for a standard mesh network and also modified the same by addition of long range links. For the convenience in Section II, computations are shown to calculate average packet latency and Manhattan distance for a standard mesh network and for network using long range links. In Section III, turn model is discussed. In Section IV, energy model is shown.lastly, conclusion followed by the future scope is discussed in section V. II. Computations For random traffic patterns categorized by the communication frequencies fij, τ0is computed by the author [5] written as follows: Eq. 1 where d(i,j) is the distance from routers i to router j, and tr, ts, tw are the is architectural parameters representing time to make the routing decision, traverse the switch and the link, respectively. Finally, L is the length of the packet, while W is the width of the network channel. For the standard mesh network, the Manhattan distance (d M ) is used to compute d(i, j)where x and y denote the x-y coordinates. [5] For the routers with long-range links, [5] Eq. 2 Eq. 3 In the above equation, l (i,k) means that node i is connected to node k via a long-range link [5]. An example shown below demonstrates that the use of long range link decreases the number of hops traversed by a packet for reaching to the destination node. Figure 3 : A standard 4x4 2D mesh network where S and D represents source and destination respectively Figure 4 : XY Routing [8] path for reaching from source node to destination node and the nodes visited in between for a standard mesh network The x,y coordinates for source node, 13 and destination node, 7 are (0,3) and (2,1) respectively. Therefore, d m (i,j) = 4

Figure 5 : XY routing path for reaching from source to destination node using long range link. Now, calculating dm(i,j) for the above figure using long range link, d m (i,j) = 3 III. Turn Model A packet traverses through various nodes as it moves from source to destination. At each hop a decision is to be made whether to move straight or take IV. a turn along a routing path. This decision is significant because a wrong turn may lead to cyclic dependencies which may further cause a deadlock due to which packet is unable to reach destination. Some combinations of turns are proposed which are deadlock free. This is called turn model [10]. A packet has to follow turn model till it reaches to destination. Figure 6 : Turn Model [10]: Turns shown in black are allowed while turns shown in red are prohibited. Dynamic Communication Energy Model The dynamic communication energy model for the network on chip can be defined as: E bit (t i,t j ) = n hops E rbit + (n hops -1) E Lbit Eq. 4 Where E bit (t i,t j ) is the average energy consumption for sending one bit of data from t i to tile t j, n hops is the number of routers the bit traverses from tile t i to tile t j, E rbit is the energy consumed by the router for transporting one bit of data and E Lbit is the energy consumed by unit link/channel for transporting one bit of data. To reduce energy consumption, it is important to identify the energy efficient architectures. Therefore the energy-performance trade-offs need to be considered. Depending on the parameter selected an efficient methodology is proposed that is to be designed based on the selected performance metrics with help of long range interconnects for standard grid based network [9]. V. Conclusion We have summarized the evolution and necessity of NoC by showing the disadvantanges of buses over NoC architectures. We have shown the NoC architectures for a standard mesh network and also modified the same by addition of long range links. By taking an example we have shown thatby adding long range links to a mesh network number of hops traversed by a packet. Hence, we found that that there is a Global Journal of C omp uter S cience and T echnology ( E ) Volume XV Issue VI Version I Year 2015 27

28 significant reduction in the average packet latency and increase in network throughput. VI. Future Scope For exploring more network structures and to reduce energy consumption and wire delay, we can intend to explore the effect of long rank interconnects/links based on the application specific traffic load for constant bit rate traffic with practical constraints on link length and the port availability per tile. The feasibility of the proposed design is planned to be explored for 2D as well as 3D NoCs. A 3D NoC is the stack of 2D NoC in such a way that each stack is again connected to its front and rear stack. It was proposed that in 3D NoC, the numbers of hops traversed by the flit towards the destination are reduced, thereby, have the following advantages such as high throughput, reduced message latency and energy dissipation as compared to the traditional 2D NoCs [10]. So we propose that the long range links when inserted in a 3D NoC topology will give drastically good results in terms of high network throughput and reduced average packet latency. References Références Referencias 1. W. Dally, B. Towles, Route packets, not wires: Onchip interconnection networks, In Proc. DAC, June 2001. 2. L. Benini, G. De Micheli. Networks on chips: A new SoC paradigm, IEEE Computer. 35(1), 2002. 3. Hyung Gyu Lee, N. Chang, Umit Y. Ogras and R. Marculescu, On-chip communication architecture exploration: A quantitative evaluation of point-topoint, bus, and network-on-chip approaches, ACM Transactions on Design Automation of Electronic Systems, vol.12, no.3, article 23, 2007. 4. T. Bjerregaard and S. Mahadevan A Survey of Research and Practices of Network-on-Chip,ACM Computing Surveys, vol.38., 2006. 5. Umit Y. Ogras and R. Marculescu Application- Specific Network-on-Chip Architecture Customization via Long-Range Link Insertion, 2005. 6. Umit Y. Ogras and R. Marculescu It s a Small World After All: NoC Performance Optimization Via Long- Range Link Insertion, IEEE, VOL. 14, NO. 7, July 2006. 7. N. Choudhary Network-on-Chip: A New SoC Communication Infrastructure Paradigm. International Journal of Soft Computing and Engineering (IJSCE), ISSN: 2231-2307, vol.1, 332-335. 8. W. Zhang, L. Hou, J. Wang, S. Geng, W. Wu, Comparison Research between XY and OddEven Routing Algorithm of a 2-Dimension 3X3 Mesh Topology Network-on-Chip 2006 9. C. J. Glass and L. M. Ni, The turn model for adaptive routing, in Proc. ISCA, 1992, pp. 278 287. 10. M. K. Puthal, M. S. Gaur, and V. Laxmi, Performance Comparison of 2D and 3D Mesh NoC, 2011.