A Review Paper on Improvement in Gain and Noise Figure in Raman Amplifiers in Optical Communication System

Similar documents
Performance Evaluation of Qos for Multicast Streams in Optical Passive Networks

S.R.M. University Faculty of Engineering and Technology School of Electronics and Communication Engineering

Spectrum Allocation Policies for Flex Grid Network with Data Rate Limited Transmission

Optical WDM-PON Access System with Shared Light Source

Hybrid Integration of a Semiconductor Optical Amplifier for High Throughput Optical Packet Switched Interconnection Networks

Comparative Analysis of Network Topologies Using Optical Amplifiers

Analyses on the Effects of Crosstalk in a Dense Wavelength Division Multiplexing (DWDM) System Considering a WDM Based Optical Cross Connect (OXC)

TRANSMISSION PERFORMANCE EVALUATION OF OPTICAL ADD DROP MULTIPLEXERS (OADMs) in OPTICAL TELECOMMUNICATION RING NETWORKS

Signal-Quality Consideration for Dynamic Connection Provisioning in All- Optical Wavelength-Routed Networks

DWDM Topologies CHAPTER. This chapter explains Cisco ONS dense wavelength division multiplexing (DWDM) topologies.

TECHNOLOGY AND ARCHITECTURE

OptiDriver 100 Gbps Application Suite

Design of High capacity, reliable, efficient Long distance communication network. using DWDM

Performance Analysis of Unidirectional and Bidirectional Broadband Passive Optical Networks

TeraWave Fiber Fiber for the Long Haul

ISSN: International Journal of Advanced Research in Computer Science and Electronics Engineering (IJARCSEE) Volume 3, Issue 4, April 2014

PLI IN WDM/DWDM RECEIVER

Optical Networks. A Practical Perspective. Rajiv Ramaswami Kumar N. Sivarajan MORGAN KAUFMANN PUBLISHERS

Name of Course : E1-E2 CFA. Chapter 15. Topic : DWDM

A Review of Traffic Management in WDM Optical Networks: Progress and Challenges

Academic Course Description. CO2111 Optical Network and Photonic Switching Second Semester, (Even semester)

Optical Networks: A Practical Perspective

All-Optical Switches The Evolution of Optical Functionality Roy Appelman, Zeev Zalevsky, Jacob Vertman, Jim Goede, Civcom

Accumulated Crosstalk Enhancement of Array Waveguide Grating with Different Channels (32) Spacing

Simple Optical Network Architectures

QoS for the Selection of OVPN Connection and Wavelength Assignment

Introduction to Optical Networks

Future In Optical Transmission System

Analysis of Star, Tree and Mesh Optical Network Topologies for successive distance between nodes Using Optimized Raman-EDFA Hybrid Optical Amplifier

Multicasting with Physical Layer Constraints in Metropolitan Optical Networks with Mesh Topologies

Optical Add Drop Multiplexer (OADM) Based on Dense Wavelength Division Multiplexing Technology in Next Generation Optical Networks

Design of AWG-based WDM-PON Architecture with Multicast Capability

Exact and Approximate Analytical Modeling of an FLBM-Based All-Optical Packet Switch

REVIEW ON WDM AND TDM PON USING DIFFERENT CODING SCHEMES FOR EXTENDED REACH

Horizon 2020 EU Japan coordinated R&D project on Scalable And Flexible optical Architecture for Reconfigurable Infrastructure (SAFARI)

Simulation of an all Optical Time Division Multiplexing Router Employing Symmetric Mach-Zehnder (SMZ)


WDM-PON Architecture Implement Using AWG with Multicasting Efficiency

FUTURE TRENDS IN OPTICAL FIBRE COMMUNICATION

ITT Technical Institute. ET3430 Fiber Optic Communications Onsite Course SYLLABUS

Innovative Architecture of Switching Device for Expanding the Applications in Fiber to the Home (FTTH)

A Survey of DWDM Networks, its Development and Future Scope in Telecommunication Domain

154 International Journal of Electronics & Communication Technology. Dept. of ECE, MM University, Mullana, Ambala, Haryana, India

Open Cloud Interconnect: Use Cases for the QFX10000 Coherent DWDM Line Card

Lambda Networks DWDM. Vara Varavithya Department of Electrical Engineering King Mongkut s Institute of Technology North Bangkok

Unless otherwise specified, ONS refers to both ANSI and ETSI shelf assemblies.

Crosstalk Reduction Algorithms Codes in Multiplexer/Demultiplexer Based Array Waveguide Grating in Dense Wavelength Division Multiplexing

Decoupled Line System + Coherent Terminal Optics Link Design & Commissioning

AON Agile Optical Networks Measuring the Optical Signal-to-Noise Ratio in Agile Optical

Terminology. John D Ambrosia Futurewei, Subsidiary of Huawei Jan 24, 2018

Simulation of an all Optical Time Division Multiplexing Router Employing TOADs.

Why Service Providers Should Consider IPoDWDM for 100G and Beyond

Understanding TeleCom Networks Today II The World of Data

Optical Fibers For Designing Multiple Applications By Deepa Venkitesh READ ONLINE

Effects of using RZ and NRZ modulation formats for TDM-PON system on Transmission Characteristics for Downstream Signals

PERFORMANCE ANALYSIS AND APPLICATIONS OF PASSIVE OPTICAL NETWORKS

Module 11 - Fiber Optic Networks and the Internet

5GBPS CWDM-PON ARCHITECTURE FOR LONG REACH UNICAST AND MULTICAST DATA USING HYBRID AMPLIFIER

Simulation of Simultaneous All Optical Clock Extraction and Demultiplexing for OTDM Packet Signal Using a SMZ Switch

Beykent University Network Courses

High Power Coupler. 4.Specifications: Operating Wavelength (nm) Pump Wavelength (nm) coupling efficiency(%) >60

The Analysis of SARDANA HPON Networks Using the HPON Network Configurator

Wavelength routed shared buffer based feed-forward architectures for optical packet switching

Modeling, Simulating, and Characterizing Performance in

Real Time Implementation of Data Communication using Ipv4Telecom Network through Sdhstm-4 Digital Transmission Wan

Review: Passive optical networks current trends and future

Prep4Pass. IT certification exam prep provide, High passing rate

Optical Add Drop Multiplex- Survey

Lightwave Communications Systems Research at the University of Kansas. Kenneth Demarest EECS Department The University of Kansas

Wavelength-Switched to Flex-Grid Optical Networks

A very high capacity optical fibre network for largescale antenna constellations: the RETINA project

DWDM Rack mounted EDFA

Design Of QOS Aware Light Path Planning And Technical Aspects In Wdm Networks

PHOTONIC ATM FRONT-END PROCESSOR

Introduction to Integrated Photonic Devices

ERicsson pau 140o family photonic attachment unit

A Compact, Low-power Consumption Optical Transmitter

Physical Layer Part 3

OFFH-CDM ALL-OPTICAL NETWORK

Modeling of Elliptical Air Hole PCF for Lower Dispersion

Signature Core Fiber Optic Cabling System

AllWave FIBER BENEFITS EXECUTIVE SUMMARY. Metropolitan Interoffice Transport Networks

NEW YORK CITY COLLEGE of TECHNOLOGY

Performance Evaluation of the Maximum Achievable Bit Rate of a Next Generation TWDM Passive Optical Network

Arista 7500E DWDM Solution and Use Cases

Developing flexible WDM networks using wavelength tuneable components

Fast Ethernet Simplex Transceivers for POF Inhouse LAN

International Standardization Activities on Optical Interfaces

THE code-division multiple-access (CDMA) technology,

Adaptive Data Burst Assembly in OBS Networks

Optical Signal-to-Noise Ratio Restoration Algorithm Applied to Optical Network Resilience to Node Failures

Brocade approved solutions for 16/10/8G FC SAN connectivity

Modelling of standard and specialty fibre-based systems using finite element methods

Designing optimal long-period fiber gratings with the overlapped Gaussian-apodization method for flattening EDFA gain spectra

TRANS-OCEANIC OADM NETWORKS: FAULTS AND RECOVERY

from ocean to cloud KEY FEATURES OF THE UNDERSEA PLANT FOR HIGH CAPACITY AND FLEXIBILITY

TCOM 608 Optical Communications Cross-listed as ECE 590 Optical Communications

WDM PON: Systems and Technologies. ECOC workshop Turino, Italy, 2010

OFT - Optical Fiber Telecommunications

The following CompTIA Network+ domain objectives and examples are covered in this module:

Transcription:

A Review Paper on Improvement in Gain and Noise Figure in Raman Amplifiers in Optical Communication System 1 Er. Jyoti Dhir, 2 Er. Vivek gupta 1 Student, Dept. of ECE, Rayat and Bahra Institute of Engg. & Biotechnology, Sahauran, Punjab 2 Asstt. Professor, Dept. of ECE, Rayat and Bahra Institute of Engg. & Biotechnology, Sahauran, Abstract:- Raman amplifiers has been found to be an attractive candidate for optical dense wavelength division multiplexing system related applications. In the design of Raman amplifier, determination of noise figure and gain are the major concerns because these improve the overall system performance. In this paper, the previous results of gain and noise figure are discussed from year 2000 to 2012. Keywords:- Stimulated Raman Scattering, Optical Communication System, Distributed Raman Amplifier, Discrete/Lumped Raman Amplifier and Hybrid Amplifiers. I. INTRODUCTION In order to transmit signals over long distances(>100 km) it is necessary to compensate the attenuation losses within the fiber. An optical amplifier is a device that amplifies an optical signal directly, without the need to first convert it to an electrical signal. This is one of the main reasons for the success of today s optical communication systems. Optical amplifiers can be divided into two classes: optical fiber amplifiers (OFA) and semiconductor optical amplifier (SOA) [1]. The OFAs are EDFAs and Raman amplifiers. In Raman amplifiers, Raman scattering of incoming light with phonons in the lattice of the gain medium produces photons coherent with the incoming photons. Further Raman amplifier is classified in two categories: distributed Raman amplifiers and discrete/lumped Raman amplifiers. A distributed Raman amplifier is one in which the transmission fiber is utilised as the gain medium by multiplexing a pump wavelength with signal wavelength, while a lumped Raman amplifier utilises a dedicated, shorter length of fiber to provide amplification. In case of lumped Raman amplifier highly non linear fiber with a small core is utilised to increase the interaction between signal and pump wavelengths and thereby reduce the length of fiber required. Raman amplifiers have the main advantage as to SOAs and EDFAs. Raman amplifiers are used as bidirectional and signal and pump wavelength are amplified in the single wavelength fed into the system only. II. STIMULATED RAMAN SCATTERING The Raman amplifier is based on the phenomena of SRS. SRS is a nonlinear optical process in which a photon, called a pump photon is absorbed by a material while simultaneously a photon energy is emitted. The difference in photon energy is compensated by a change of a vibrational state of the material [2]. 643

Fig 1: Illustration of spontaneous stokes and anti-stokes Raman scattering Fig. 1 illustrates the two basic types of spontaneous Raman scattering. In so-called Stokes scattering, a pump photon of energy hv p is absorbed, and a Stokes photon of energy hv s < hv p is emitted, while the material undergoes a transition to a higher vibrational energy state. On the other hand, Anti-Stokes scattering can occur when the material already is in an excited vibrational state. Then, a pump photon of energy hv p is absorbed, and a quantum of vibrational energy is added to that energy to yield an anti-stokes photon of higher energy hv as > hv p. The transmit spectrum of a six channel DWDM system in the 1550 nm window. All six wavelengths have approximately the same amplitude. Figure 2 : DWDM Transmit Spectrum with Six Wavelengths By applying SRS the wavelengths, it is obvious that the noise background has increased, making the amplitudes of the six wavelengths different. The lower wavelengths have a smaller amplitude than the upper wavelengths. Figure 3 : Received Spectrum After SRS is on a Long Fiber 644

III. PROPERTIES OF RAMAN AMPLIFIERS a) As indicated power is transferred from shorter wavelengths to longer wavelengths. b) Coupling with the pump wavelength can be accomplished either in the forward or counter propagating direction. c) Power is coupled from the pump only if the signal channel is sending a 1 bit. d) Variable wavelength: Depends on pump wavelength. For example pumping at 1500 nm produces gain at about 1560-1570 nm. ADVANTAGES OF RAMAN AMPLIFIERS a) Variable wavelength amplification possible. b) Compatible with installed SM fiber. c) Can be used to "extend" EDFAs. d) Can result in a lower average power over a span, good for lower crosstalk. e) Very broadband operation may be possible. IV. COMPARITIVE ANALYSIS S.No. Paper Name Journal Name Public ation Year 1 The impact of fiber affective are on systems using RAs [3] conference on electronics, h/w, wireless and optical comm. Technique Used 2002 2 Fibers are Gain 20.2-22.2 db. Corning SMF28 higher gain Noise Figure Higher noise in corning SMF28 2 Transient gain dynamics in saturated RAs [4] Optical technology fiber 2003 5 pumps are used 20-24 db 3 RAs simulations with bursty traffic [5] 2003 Raman and EDFA are Gain change per amplifier in RA is small 4 Transient effects in gain clamped discrete RA cascades [6] 5 Simulation of various configurations IEEE 2004 Channels drop/add Proc. Of SPIE 2007 Forwardin g pumping is used 20 db Less than 4 db ~18.5 db When DCF mixed with forward 645

of single pump dispersion compensating raman/edfa hybrid amplifiers [7] pumping NF increases 6 Analysis of low noise and gain flattened distributed RAs using different fibers [8] 7 Analysis and investigation of NF of FRA [9] conference on electronics, h/w, wireless and optical communication journal of electronics and science engineering 2007 2 Fibers are 2008 ASE and 2nd order is used Gain is less in germaniu m doped than silica fiber ASE: 15-30 db 2nd order: 0.9 db improved 0.3-1.8 db ASE: 2.3-3.6 db 2nd order: 1.5 db improved 8 Reduction of noise in fiber optic RA [10] 9 Investigation on multipump fiber RAs on WDM in OCS [11] journal of electronics and science engg journal applications of 2010 NF decreases 2012 1 to 7 pumps are used Gain ripple decreases 0.87-0.42 V. CONCLUSION Optical signals gain are amplified upto 31 db in the network optical fiber. The Raman optical amplifiers have a wide gain bandwidth. The can use any installed transmission fiber. [12]-[13]. Noise in Raman amplifier is also reduced upto 5 db. As gain of Raman amplifier is inversely proportional to the noise, so, if gain is improved noise figure is improved and hence noise is reduced in the system and in turn the overall system performance is improved. REFERENCES [1] Bhawna Utreja, Hardeep Singh, A review paper on comparison of optical amplifiers in optical communication systems, Canadian journal on electrical and electronics engineering, vol.2, No.11, pp. 505-513, November 2011. [2] R.H.Stolen, Raman amplification for telecommunications 1, Physical principles, chapter fundamentals of Raman application in fibers, pages 35-59, Springer- Verlag 2004. 646

[3] Nigel Taylor and Jim Grochocinski, The impact of fiber effective area on systems using Raman amplification, Jan (2002) [4] Bonani, M. Papararo and M. Fuochi, Transient gain dynamics in saturated Raman amplifiers, Optical fiber technology, 15 (2004), p.p 91-123. [5] Mohammed N. Islam, Mike Freeman and Jaeyoun Kim, Raman amplifier simulations with bursty traffic. [6] G. Bolognini and F.Di Pasquale, Transient effects in gain clamped discrete Raman amplifier cascades, IEEE, vol 16, no 1, 2004. [7] Maria Adelaide P.M.de Andrade, Joaquim Anaceleto and Jose Manuel M.M. de Almeida, Simulation of various configurations of single pump dispersion compensating Raman/EDFA hybrid amplifiers, vol. 6468,(2007). [8] Farzin Emami and Amir H. Jafari, Analysis of low noise and gain flattened distributed Raman amplifiers using different fibers, 2007, p.p 119-122. [9] Ramanpreet Kaur and Kirandeep Kaur, Analysis and investigation of noise figure of fiber Raman amplifier, journal of electronics and science engineering, 2008. [10] Raman Kumar, Reduction of noise in fiber optic raman amplifier, journal of science and technology, vol. 1, Issue 1, Sept (2010). [11] Kulwinder Singh, Manjeet Singh Patterh and Manjit Singh Bhamrah, Investigation on multipump fiber Raman amplifiers on WDM in optical communication system, journal of applications, vol 39, no 4, 2(2012), p.p 8-12. [12] A.A.Rieznik and H.L.Fragnito, Analytical solution for the dynamic behaviour of EDFAs with constant population inversion along the fiber, J.Opt-Soc. Amer. B, Opt. Phys. Vol.21, No.10, pp 1732-1739, October 2004. [13] Z.G.Lu, J.R.Liu, S.Raymond, P.J.Poole, P.J. Barrios, D.Poitras, F.G.Sun, G. Pakulski, P.J. Bock and T.J.Hall, Highly efficient non-degenerate four wave mixing in InAs/InGaAsP quantum dots, Electronics letters,vol.48, No. 19, pp 1112-1114,2006. 647